1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
/*
* Example program for the Allegro library, by Jason Wilkins.
*
* A Comparison Between Euler Angles and Quaternions.
*
* Euler angles are convenient for storing and creating 3D orientations.
* However, this program demonstrates that they are not good when
* interpolating between two different orientations. The problem is
* solved by using Allegro's quaternion operations.
*
* In this program, two cubes are rotated between random orientations.
* Notice that although they are have the same beginning and ending
* orientations, they do not follow the same path between orientations.
*
* One cube is being rotated by directly incrementing or decrementing
* the Euler angles from the starting point to the ending point.
* This is an intuitive notion, but it is incorrect because it does not
* cause the object to turn around a single unchanging axis of rotation.
* The axis of rotation wobbles resulting in the object spinning in
* strange ways. The object will eventually end up in the orientation
* that the user intended, but it gets there in a way that is unattractive.
* Imagine if this method was used to update the position of a camera in a
* game! Sometimes it would swing wildly and disorient the player.
*
* The other cube is animated using quaternions. This results in a much
* more pleasing animation because the cube turns around a single axis
* of rotation.
*/
#include <stdlib.h>
#include <time.h>
#include "allegro.h"
/* the number of steps to get from the starting to the ending orientation */
#define NUM_STEPS 200
/* this structure holds an orientation expressed as Euler angles. Each number
* represents a rotation about the x, y, and z axis. In the case of Allegro
* there are 256 degrees to a circle. Yaw, pitch, and roll correspond to
* x, y, and z
*/
typedef struct EULER
{
float x, y, z;
} EULER;
/* matrix to transform world coordinates into normalized eye coordinates */
MATRIX_f camera;
MATRIX_f rotation;
/* the parts of the screen that display the demo boxes */
BITMAP *euler_screen;
BITMAP *quat_screen;
/* these are backbuffers, drawing is done here before updating the screen */
BITMAP *euler_buffer;
BITMAP *quat_buffer;
/* In these identifiers, 'from' refers to the starting orientation, 'to'
* refers to the ending orientation and 'in' refers to the interpolated
* orientation. 'q' refers to quaternion, 'e' refers to Euler
*/
MATRIX_f q_from_matrix;
MATRIX_f q_to_matrix;
MATRIX_f q_in_matrix;
MATRIX_f e_from_matrix;
MATRIX_f e_to_matrix;
MATRIX_f e_in_matrix;
QUAT q_to;
QUAT q_in;
QUAT q_from;
EULER e_from;
EULER e_to;
EULER e_in;
/* Here is defined a 2x2x2 cube centered about the origin, and
* an arrow pointing straight up. They are wireframe objects
* so only the points and edges are specified.
*
* It should be noted that the world coordinate system in this
* program is oriented like it is in most math books. X and Y
* are oriented like a floor and Z refers to the height above
* that floor.
*
* N - North
* S - South
* W - West
* E - East
* U - Up
* D - Down
*/
float box_points[8][3] =
{
/* X, Y, Z */
{ -1.0, -1.0, -1.0 }, /* NWD */
{ -1.0, -1.0, 1.0 }, /* NWU */
{ -1.0, 1.0, -1.0 }, /* NED */
{ -1.0, 1.0, 1.0 }, /* NEU */
{ 1.0, -1.0, -1.0 }, /* SWD */
{ 1.0, -1.0, 1.0 }, /* SWU */
{ 1.0, 1.0, -1.0 }, /* SED */
{ 1.0, 1.0, 1.0 }, /* SEU */
};
int box_edges[12][2] =
{
/* from, to */
{ 0, 2 }, /* bottom */
{ 2, 6 },
{ 6, 4 },
{ 4, 0 },
{ 1, 3 }, /* top */
{ 3, 7 },
{ 7, 5 },
{ 5, 1 },
{ 0, 1 }, /* sides */
{ 2, 3 },
{ 4, 5 },
{ 6, 7 }
};
float arrow_points[4][3] =
{
/* X, Y, Z */
{ 0.0, 0.0, 0.0 }, /* tail of the arrow, at the origin */
{ 0.0, 0.0, 2.0 }, /* tip of the arrow head */
{ 0.0, 0.25, 1.5 }, /* eastern part of the head */
{ 0.0, -0.25, 1.5 } /* western part of the head */
};
int arrow_edges[3][2] =
{
/* from, to */
{ 0, 1 },
{ 1, 2 },
{ 1, 3 }
};
/* Each demo box has associated with it two paths (stored as wireframe
* objects). These are used to store a history of the orientation of their
* interpolated axis. These sets of points are used to draw ribbons that
* show how an object rotated from one orientation to another.
*/
float e_path_points_1[NUM_STEPS+1][3];
float e_path_points_2[NUM_STEPS+1][3];
float q_path_points_1[NUM_STEPS+1][3];
float q_path_points_2[NUM_STEPS+1][3];
/* these arrays are shared by both ribbons */
float tmp_points[NUM_STEPS+1][3];
int path_edges[NUM_STEPS][2];
/* draw an object defined as a set of points and edges */
void render_wireframe_object(MATRIX_f *m, BITMAP *b, float p[][3], float t[][3], int e[][2], int np, int ne, int c)
{
int index, from, to;
/* transform the points and store them in a buffer */
for (index=0; index<np; index++) {
apply_matrix_f(m, p[index][0], p[index][1], p[index][2],
&(t[index][0]), &(t[index][1]), &(t[index][2]));
persp_project_f(t[index][0], t[index][1], t[index][2],
&(t[index][0]), &(t[index][1]));
}
/* draw the edges */
for (index=0; index<ne; index++) {
from = e[index][0];
to = e[index][1];
line(b, (int)(t[from][0]), (int)(t[from][1]), (int)(t[to][0]), (int)(t[to][1]), c);
}
}
/* draws a set of objects that demonstrate whats going on. It consists
* of a cube, an arrow showing the 'to' orientation, an another arrow
* showing the 'from' orientation, and another arrow showing the
* interpolated orientation.
*/
void render_demo_box(BITMAP *b, MATRIX_f *from, MATRIX_f *in, MATRIX_f *to, int col1, int col2, int col3)
{
float tmp_points[8][3];
render_wireframe_object(in, b, box_points, tmp_points, box_edges, 8, 12, col1);
render_wireframe_object(from, b, arrow_points, tmp_points, arrow_edges, 4, 3, col3);
render_wireframe_object(to, b, arrow_points, tmp_points, arrow_edges, 4, 3, col3);
render_wireframe_object(in, b, arrow_points, tmp_points, arrow_edges, 4, 3, col2);
}
/* Just interpolate linearly yaw, pitch, and roll. Doing this _correctly_
* (I.E get the same results as quat_interpolate) would require one to use
* linear integration, a subject that is in the last 100 pages of my 1500
* page Calculus book. This function is an example of what you should NOT
* do, as in some cases it will cause the orientation to swing wildly about.
* The path could be anything from nearly correct, a spiral, or a curly Q.
* The simple solution is to use quaternion interpolation, which always
* results in a simple circular path.
*/
void euler_interpolate(EULER * from, EULER * to, float t, EULER * out)
{
float delta;
delta = (to->x-from->x) * t;
out->x = from->x+delta;
delta = (to->y-from->y) * t;
out->y = from->y+delta;
delta = (to->z-from->z) * t;
out->z = from->z+delta;
}
int main()
{
int index;
allegro_init();
install_keyboard();
if (set_gfx_mode(GFX_SAFE, 640, 480, 0, 0) != 0) {
set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message("Unable to set any graphic mode\n%s\n", allegro_error);
return 1;
}
set_palette(desktop_palette);
clear_to_color(screen, palette_color[0]);
text_mode(-1);
/* Each back-buffer is one quarter the size of the screen
*/
euler_buffer = create_bitmap(320, 240);
quat_buffer = create_bitmap(320, 240);
if ((!euler_buffer) || (!quat_buffer)) {
set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message("Error creating bitmaps\n");
return 1;
}
set_palette(desktop_palette);
/* setup the viewport for rendering into the back-buffers */
set_projection_viewport(0, 0, 320, 240);
/* print out something helpful for the user */
textout(screen, font, "SPACE - next interpolation", 184, 24, palette_color[15]);
textout(screen, font, " R - repeat last interpolation", 184, 40, palette_color[15]);
textout(screen, font, " ESC - quit", 184, 56, palette_color[15]);
textout(screen, font, "Interpolating Euler Angles", 56, 110, palette_color[15]);
textout(screen, font, "Interpolating Quaternions", 380, 110, palette_color[15]);
textout(screen, font, "Incorrect!", 120, 360, palette_color[15]);
textout(screen, font, "Correct!", 448, 360, palette_color[15]);
/* initialize the path edges. This structure is used by both the Euler
* path and the quaternion path. It connects all the points end to end
*/
for (index=0; index<(NUM_STEPS-1); index++) {
path_edges[index][0] = index;
path_edges[index][1] = index + 1;
}
/* initialize the first destination orientation */
srand(time(NULL));
e_to.x = (float)(rand() % 256);
e_to.y = (float)(rand() % 256);
e_to.z = (float)(rand() % 256);
/* the camera is backed away from the origin and turned to face it */
get_camera_matrix_f(&camera, 5, 0, 0, -1, 0, 0, 0, 0, 1, 46, 1);
/* this is a 'for'ever loop */
for (;;) {
float t;
for (index=0; index<(NUM_STEPS+1); index++) {
t = index * (1.0 / NUM_STEPS);
/* the first part shows how to animate the cube incorrectly
* using Euler angles
*/
/* create the matrix for the starting orientation */
get_rotation_matrix_f(&rotation, e_from.x, e_from.y, e_from.z);
matrix_mul_f(&rotation, &camera, &e_from_matrix);
/* create the matrix for the ending orientation */
get_rotation_matrix_f(&rotation, e_to.x, e_to.y, e_to.z);
matrix_mul_f(&rotation, &camera, &e_to_matrix);
/* use the incorrect method to interpolate between them */
euler_interpolate(&e_from, &e_to, t, &e_in);
get_rotation_matrix_f(&rotation, e_in.x, e_in.y, e_in.z);
matrix_mul_f(&rotation, &camera, &e_in_matrix);
/* update the lines that make up the Euler orientation path */
apply_matrix_f(&rotation, 0, 0, 1.5,
&(e_path_points_1[index][0]),
&(e_path_points_1[index][1]),
&(e_path_points_1[index][2]));
apply_matrix_f(&rotation, 0, 0, 2.0,
&(e_path_points_2[index][0]),
&(e_path_points_2[index][1]),
&(e_path_points_2[index][2]));
/* render the results to the Euler sub-bitmap */
clear_to_color(euler_buffer, palette_color[0]);
render_demo_box(euler_buffer, &e_from_matrix, &e_in_matrix, &e_to_matrix,
palette_color[15], palette_color[1], palette_color[4]);
render_wireframe_object(&camera, euler_buffer, e_path_points_1,
tmp_points, path_edges, index+1, index,
palette_color[5]);
render_wireframe_object(&camera, euler_buffer, e_path_points_2,
tmp_points, path_edges, index+1, index,
palette_color[5]);
/* here is how to animate the cube correctly using quaternions */
/* create a matrix for the starting orientation. This time
* we create it using quaternions. This is to demonstrate
* that the quaternion gotten with get_rotation_quat will
* generate the save matrix as that gotten by get_rotation_matrix
*/
get_rotation_quat(&q_from, e_from.x, e_from.y, e_from.z);
quat_to_matrix(&q_from, &rotation);
matrix_mul_f(&rotation, &camera, &q_from_matrix);
/* this is the same as above, but for the ending orientation */
get_rotation_quat(&q_to, e_to.x, e_to.y, e_to.z);
quat_to_matrix(&q_to, &rotation);
matrix_mul_f(&rotation, &camera, &q_to_matrix);
/* quat_interpolate is the proper way to interpolate between two
* orientations.
*/
quat_interpolate(&q_from, &q_to, t, &q_in);
quat_to_matrix(&q_in, &rotation);
matrix_mul_f(&rotation, &camera, &q_in_matrix);
/* update the lines that make up the quaternion orientation path */
apply_matrix_f(&rotation, 0, 0, 1.5,
&(q_path_points_1[index][0]),
&(q_path_points_1[index][1]),
&(q_path_points_1[index][2]));
apply_matrix_f(&rotation, 0, 0, 2.0,
&(q_path_points_2[index][0]),
&(q_path_points_2[index][1]),
&(q_path_points_2[index][2]));
/* render the results to the quaternion sub-bitmap */
clear_to_color(quat_buffer, palette_color[0]);
render_demo_box(quat_buffer, &q_from_matrix, &q_in_matrix, &q_to_matrix,
palette_color[15], palette_color[1], palette_color[4]);
render_wireframe_object(&camera, quat_buffer, q_path_points_1,
tmp_points, path_edges, index+1, index,
palette_color[5]);
render_wireframe_object(&camera, quat_buffer, q_path_points_2,
tmp_points, path_edges, index+1, index,
palette_color[5]);
/* update the screen */
vsync();
acquire_bitmap(screen);
blit(euler_buffer, screen, 0, 0, 0, 120, 320, 240);
blit(quat_buffer, screen, 0, 0, 320, 120, 320, 240);
release_bitmap(screen);
}
/* handle user input */
for (;;) {
int input = readkey() >> 8;
if (input == KEY_R) {
/* skip updating the EULER angles so that the last interpolation
* will repeat
*/
break;
}
else if (input == KEY_SPACE) {
/* make the last ending orientation the starting orientation and
* generate a random new ending orientation
*/
e_from = e_to;
e_to.x = (float)(rand() % 256);
e_to.y = (float)(rand() % 256);
e_to.z = (float)(rand() % 256);
break;
}
else if (input == KEY_ESC) {
/* quit the program */
destroy_bitmap(euler_buffer);
destroy_bitmap(quat_buffer);
return 0;
}
}
}
}
END_OF_MAIN();
|