File: exquat.c

package info (click to toggle)
allegro4 2%3A4.0.1-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 17,052 kB
  • ctags: 12,972
  • sloc: ansic: 109,525; asm: 16,672; cpp: 3,221; sh: 1,761; makefile: 556; pascal: 105; perl: 73
file content (449 lines) | stat: -rw-r--r-- 13,423 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/*
 *    Example program for the Allegro library, by Jason Wilkins.
 *
 *    A Comparison Between Euler Angles and Quaternions.
 *
 *    Euler angles are convenient for storing and creating 3D orientations.
 *    However, this program demonstrates that they are not good when
 *    interpolating between two different orientations. The problem is
 *    solved by using Allegro's quaternion operations.
 *
 *    In this program, two cubes are rotated between random orientations.
 *    Notice that although they are have the same beginning and ending
 *    orientations, they do not follow the same path between orientations.
 *
 *    One cube is being rotated by directly incrementing or decrementing
 *    the Euler angles from the starting point to the ending point.
 *    This is an intuitive notion, but it is incorrect because it does not
 *    cause the object to turn around a single unchanging axis of rotation.
 *    The axis of rotation wobbles resulting in the object spinning in
 *    strange ways. The object will eventually end up in the orientation
 *    that the user intended, but it gets there in a way that is unattractive.
 *    Imagine if this method was used to update the position of a camera in a
 *    game! Sometimes it would swing wildly and disorient the player.
 *
 *    The other cube is animated using quaternions. This results in a much
 *    more pleasing animation because the cube turns around a single axis
 *    of rotation.
 */


#include <stdlib.h>
#include <time.h>

#include "allegro.h"



/* the number of steps to get from the starting to the ending orientation */
#define NUM_STEPS    200



/* this structure holds an orientation expressed as Euler angles. Each number
 * represents a rotation about the x, y, and z axis. In the case of Allegro
 * there are 256 degrees to a circle.  Yaw, pitch, and roll correspond to
 * x, y, and z 
 */
typedef struct EULER 
{
   float x, y, z;
} EULER;



/* matrix to transform world coordinates into normalized eye coordinates */
MATRIX_f camera;
MATRIX_f rotation;



/* the parts of the screen that display the demo boxes */
BITMAP *euler_screen;
BITMAP *quat_screen;



/* these are backbuffers, drawing is done here before updating the screen */
BITMAP *euler_buffer;
BITMAP *quat_buffer;



/* In these identifiers, 'from' refers to the starting orientation, 'to'
 * refers to the ending orientation and 'in' refers to the interpolated
 * orientation. 'q' refers to quaternion, 'e' refers to Euler
 */
MATRIX_f q_from_matrix;
MATRIX_f q_to_matrix;
MATRIX_f q_in_matrix;

MATRIX_f e_from_matrix;
MATRIX_f e_to_matrix;
MATRIX_f e_in_matrix;

QUAT q_to;
QUAT q_in;
QUAT q_from;

EULER e_from;
EULER e_to;
EULER e_in;



/* Here is defined a 2x2x2 cube centered about the origin, and
 * an arrow pointing straight up. They are wireframe objects
 * so only the points and edges are specified.
 *
 * It should be noted that the world coordinate system in this
 * program is oriented like it is in most math books. X and Y
 * are oriented like a floor and Z refers to the height above
 * that floor.
 *
 * N - North
 * S - South
 * W - West
 * E - East
 * U - Up
 * D - Down
 */

float box_points[8][3] =
{
   /* X,    Y,    Z   */
   { -1.0, -1.0, -1.0 },   /* NWD */
   { -1.0, -1.0,  1.0 },   /* NWU */
   { -1.0,  1.0, -1.0 },   /* NED */
   { -1.0,  1.0,  1.0 },   /* NEU */
   {  1.0, -1.0, -1.0 },   /* SWD */
   {  1.0, -1.0,  1.0 },   /* SWU */
   {  1.0,  1.0, -1.0 },   /* SED */
   {  1.0,  1.0,  1.0 },   /* SEU */
};



int box_edges[12][2] =
{
   /* from, to */
   { 0, 2 },               /* bottom */
   { 2, 6 },
   { 6, 4 },
   { 4, 0 },
   { 1, 3 },               /* top */
   { 3, 7 },
   { 7, 5 },
   { 5, 1 },
   { 0, 1 },               /* sides */
   { 2, 3 },
   { 4, 5 },
   { 6, 7 }
};



float arrow_points[4][3] =
{
   /* X,    Y,    Z  */
   { 0.0,  0.0,  0.0 },    /* tail of the arrow, at the origin */
   { 0.0,  0.0,  2.0 },    /* tip of the arrow head */
   { 0.0,  0.25, 1.5 },    /* eastern part of the head */
   { 0.0, -0.25, 1.5 }     /* western part of the head */
};



int arrow_edges[3][2] =
{
   /* from, to */
   { 0, 1 },
   { 1, 2 },
   { 1, 3 }
};



/* Each demo box has associated with it two paths (stored as wireframe
 * objects). These are used to store a history of the orientation of their
 * interpolated axis. These sets of points are used to draw ribbons that
 * show how an object rotated from one orientation to another.
 */
float e_path_points_1[NUM_STEPS+1][3];
float e_path_points_2[NUM_STEPS+1][3];
float q_path_points_1[NUM_STEPS+1][3];
float q_path_points_2[NUM_STEPS+1][3];



/* these arrays are shared by both ribbons */
float tmp_points[NUM_STEPS+1][3];
int path_edges[NUM_STEPS][2];



/* draw an object defined as a set of points and edges */
void render_wireframe_object(MATRIX_f *m, BITMAP *b, float p[][3], float t[][3], int e[][2], int np, int ne, int c)
{
   int index, from, to;

   /* transform the points and store them in a buffer */
   for (index=0; index<np; index++) {
      apply_matrix_f(m, p[index][0], p[index][1], p[index][2],
		     &(t[index][0]), &(t[index][1]), &(t[index][2]));

      persp_project_f(t[index][0], t[index][1], t[index][2],
		      &(t[index][0]), &(t[index][1]));
   }

   /* draw the edges */
   for (index=0; index<ne; index++) {
      from = e[index][0];
      to = e[index][1];

      line(b, (int)(t[from][0]), (int)(t[from][1]), (int)(t[to][0]), (int)(t[to][1]), c);
   }
}



/* draws a set of objects that demonstrate whats going on. It consists
 * of a cube, an arrow showing the 'to' orientation, an another arrow 
 * showing the 'from' orientation, and another arrow showing the
 * interpolated orientation.
 */
void render_demo_box(BITMAP *b, MATRIX_f *from, MATRIX_f *in, MATRIX_f *to, int col1, int col2, int col3)
{
   float tmp_points[8][3];

   render_wireframe_object(in, b, box_points, tmp_points, box_edges, 8, 12, col1);
   render_wireframe_object(from, b, arrow_points, tmp_points, arrow_edges, 4, 3, col3);
   render_wireframe_object(to, b, arrow_points, tmp_points, arrow_edges, 4, 3, col3);
   render_wireframe_object(in, b, arrow_points, tmp_points, arrow_edges, 4, 3, col2);
}



/* Just interpolate linearly yaw, pitch, and roll. Doing this _correctly_
 * (I.E get the same results as quat_interpolate) would require one to use
 * linear integration, a subject that is in the last 100 pages of my 1500
 * page Calculus book. This function is an example of what you should NOT
 * do, as in some cases it will cause the orientation to swing wildly about.
 * The path could be anything from nearly correct, a spiral, or a curly Q.
 * The simple solution is to use quaternion interpolation, which always
 * results in a simple circular path.
 */
void euler_interpolate(EULER * from, EULER * to, float t, EULER * out)
{
   float delta;

   delta = (to->x-from->x) * t;
   out->x = from->x+delta;

   delta = (to->y-from->y) * t;
   out->y = from->y+delta;

   delta = (to->z-from->z) * t;
   out->z = from->z+delta;
}



int main()
{
   int index;

   allegro_init();
   install_keyboard();
   if (set_gfx_mode(GFX_SAFE, 640, 480, 0, 0) != 0) {
      set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
      allegro_message("Unable to set any graphic mode\n%s\n", allegro_error);
      return 1;
   }
   set_palette(desktop_palette);
   clear_to_color(screen, palette_color[0]);
   text_mode(-1);

   /* Each back-buffer is one quarter the size of the screen
    */
   euler_buffer = create_bitmap(320, 240);
   quat_buffer = create_bitmap(320, 240);

   if ((!euler_buffer) || (!quat_buffer)) {
      set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
      allegro_message("Error creating bitmaps\n");
      return 1;
   }

   set_palette(desktop_palette);

   /* setup the viewport for rendering into the back-buffers */
   set_projection_viewport(0, 0, 320, 240);

   /* print out something helpful for the user */
   textout(screen, font, "SPACE - next interpolation", 184, 24, palette_color[15]);
   textout(screen, font, "    R - repeat last interpolation", 184, 40, palette_color[15]);
   textout(screen, font, "  ESC - quit", 184, 56, palette_color[15]);

   textout(screen, font, "Interpolating Euler Angles", 56, 110, palette_color[15]);
   textout(screen, font, "Interpolating Quaternions", 380, 110, palette_color[15]);

   textout(screen, font, "Incorrect!", 120, 360, palette_color[15]);
   textout(screen, font, "Correct!", 448, 360, palette_color[15]);

   /* initialize the path edges. This structure is used by both the Euler
    * path and the quaternion path. It connects all the points end to end
    */
   for (index=0; index<(NUM_STEPS-1); index++) {
      path_edges[index][0] = index;
      path_edges[index][1] = index + 1;
   }

   /* initialize the first destination orientation */
   srand(time(NULL));

   e_to.x = (float)(rand() % 256);
   e_to.y = (float)(rand() % 256);
   e_to.z = (float)(rand() % 256);

   /* the camera is backed away from the origin and turned to face it */
   get_camera_matrix_f(&camera, 5, 0, 0, -1, 0, 0, 0, 0, 1, 46, 1);

   /* this is a 'for'ever loop */
   for (;;) {
      float t;

      for (index=0; index<(NUM_STEPS+1); index++) {
	 t = index * (1.0 / NUM_STEPS);

	 /* the first part shows how to animate the cube incorrectly
	  * using Euler angles
	  */

	 /* create the matrix for the starting orientation */
	 get_rotation_matrix_f(&rotation, e_from.x, e_from.y, e_from.z);
	 matrix_mul_f(&rotation, &camera, &e_from_matrix);

	 /* create the matrix for the ending orientation */
	 get_rotation_matrix_f(&rotation, e_to.x, e_to.y, e_to.z);
	 matrix_mul_f(&rotation, &camera, &e_to_matrix);

	 /* use the incorrect method to interpolate between them */
	 euler_interpolate(&e_from, &e_to, t, &e_in);
	 get_rotation_matrix_f(&rotation, e_in.x, e_in.y, e_in.z);
	 matrix_mul_f(&rotation, &camera, &e_in_matrix);

	 /* update the lines that make up the Euler orientation path */
	 apply_matrix_f(&rotation, 0, 0, 1.5,
			&(e_path_points_1[index][0]),
			&(e_path_points_1[index][1]),
			&(e_path_points_1[index][2]));

	 apply_matrix_f(&rotation, 0, 0, 2.0,
			&(e_path_points_2[index][0]),
			&(e_path_points_2[index][1]),
			&(e_path_points_2[index][2]));

	 /* render the results to the Euler sub-bitmap */
	 clear_to_color(euler_buffer, palette_color[0]);
	 render_demo_box(euler_buffer, &e_from_matrix, &e_in_matrix, &e_to_matrix,
			 palette_color[15], palette_color[1], palette_color[4]);

	 render_wireframe_object(&camera, euler_buffer, e_path_points_1,
				 tmp_points, path_edges, index+1, index,
				 palette_color[5]);

	 render_wireframe_object(&camera, euler_buffer, e_path_points_2,
				 tmp_points, path_edges, index+1, index,
				 palette_color[5]);

	 /* here is how to animate the cube correctly using quaternions */

	 /* create a matrix for the starting orientation. This time
	  * we create it using quaternions.  This is to demonstrate
	  * that the quaternion gotten with get_rotation_quat will
	  * generate the save matrix as that gotten by get_rotation_matrix
	  */
	 get_rotation_quat(&q_from, e_from.x, e_from.y, e_from.z);
	 quat_to_matrix(&q_from, &rotation);
	 matrix_mul_f(&rotation, &camera, &q_from_matrix);

	 /* this is the same as above, but for the ending orientation */
	 get_rotation_quat(&q_to, e_to.x, e_to.y, e_to.z);
	 quat_to_matrix(&q_to, &rotation);
	 matrix_mul_f(&rotation, &camera, &q_to_matrix);

	 /* quat_interpolate is the proper way to interpolate between two
	  * orientations. 
	  */
	 quat_interpolate(&q_from, &q_to, t, &q_in);
	 quat_to_matrix(&q_in, &rotation);
	 matrix_mul_f(&rotation, &camera, &q_in_matrix);

	 /* update the lines that make up the quaternion orientation path */
	 apply_matrix_f(&rotation, 0, 0, 1.5,
			&(q_path_points_1[index][0]),
			&(q_path_points_1[index][1]),
			&(q_path_points_1[index][2]));

	 apply_matrix_f(&rotation, 0, 0, 2.0,
			&(q_path_points_2[index][0]),
			&(q_path_points_2[index][1]),
			&(q_path_points_2[index][2]));

	 /* render the results to the quaternion sub-bitmap */
	 clear_to_color(quat_buffer, palette_color[0]);

	 render_demo_box(quat_buffer, &q_from_matrix, &q_in_matrix, &q_to_matrix,
	 		 palette_color[15], palette_color[1], palette_color[4]);

	 render_wireframe_object(&camera, quat_buffer, q_path_points_1,
				 tmp_points, path_edges, index+1, index,
				 palette_color[5]);

	 render_wireframe_object(&camera, quat_buffer, q_path_points_2,
				 tmp_points, path_edges, index+1, index,
				 palette_color[5]);

	 /* update the screen */
	 vsync();

         acquire_bitmap(screen);
	 blit(euler_buffer, screen, 0, 0, 0,   120, 320, 240);
	 blit(quat_buffer,  screen, 0, 0, 320, 120, 320, 240);
         release_bitmap(screen);
      }

      /* handle user input */
      for (;;) {
	 int input = readkey() >> 8;

	 if (input == KEY_R) {
	    /* skip updating the EULER angles so that the last interpolation
	     * will repeat
	     */
	    break;
	 }
	 else if (input == KEY_SPACE) {
	    /* make the last ending orientation the starting orientation and
	     * generate a random new ending orientation
	     */
	    e_from = e_to;

	    e_to.x = (float)(rand() % 256);
	    e_to.y = (float)(rand() % 256);
	    e_to.z = (float)(rand() % 256);

	    break;
	 }
	 else if (input == KEY_ESC) {
	    /* quit the program */
	    destroy_bitmap(euler_buffer);
	    destroy_bitmap(quat_buffer);
	    return 0;
	 }
      }
   }
}

END_OF_MAIN();