1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
/* This examples demonstrates how to use the extension mechanism.
* Taken from AllegroGL.
*/
#define ALLEGRO_UNSTABLE
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <allegro5/allegro.h>
#include <allegro5/allegro_opengl.h>
#include "common.c"
#ifdef __APPLE__
#include <OpenGL/glu.h>
#else
#include <GL/glu.h>
#endif
#define WINDOW_W 640
#define WINDOW_H 480
#define MESH_SIZE 64
GLfloat mesh[MESH_SIZE][MESH_SIZE][3];
GLfloat wave_movement = 0.0f;
/* Define our vertex program.
* It basically does:
* pos = vertex.position;
* pos.y = (sin(wave.x + pos.x / 5) + sin(wave.x + pos.z / 4)) * 2.5;
* result.position = modelview * projection * pos;
*/
/* Plain ARBvp doesn't have a SIN opcode, so we provide one, built on a taylor
* expansion, with some fugding.
*
* First, we convert the operand to the [-pi..+pi] period by:
* - Dividing by 2pi, adding 1/2
* - Taking the fraction of the result
* - Multiplying by 2pi, then subtracting pi.
* x' = frac((x / 2pi) + 0.5) * 2pi - pi
*
* Then, we compute the sine using a 7th order Taylor series centered at 0:
* x' = x - x^3/3! + x^5/5! - x^7/7!
*
* Note that we begin by multiplying x by 0.98 as a fugding factor to
* compensate for the fact that our Taylor series is just an approximation.
* The error is then reduced to < 0.5% from the ideal sine function.
*/
#define SIN(d, s, t) \
/* Convert to [-pi..+pi] period */ \
"MAD "d", "s", one_over_pi, 0.5;\n" \
"FRC "d","d";\n" \
"MAD "d","d", two_pi, -pi;\n" \
"MUL "d","d", 0.98;\n" /* Scale input to compensate for prec error */\
/* Compute SIN(d), using a Taylor series */ \
"MUL "t".x, "d", "d";\n" /* x^2 */ \
"MUL "t".y, "t".x, "d";\n" /* x^3 */ \
"MUL "t".z, "t".y, "t".x;\n" /* x^5 */ \
"MUL "t".w, "t".z, "t".x;\n" /* x^7 */ \
"MAD "d", "t".y,-inv_3_fact, "d";\n" /* x - x^3/3! */ \
"MAD "d", "t".z, inv_5_fact, "d";\n" /* x - x^3/3! + x^5/5! */ \
"MAD "d", "t".w,-inv_7_fact, "d";\n" /* x - x^3/3! + x^5/5! - x^7/7!*/
/* This is the actual vertex program.
* It computes sin(wave.x + pos.x / 5) and sin(wave.x + pos.z), adds them up,
* scales the result by 2.5 and stores that as the vertex's y component.
*
* Then, it does the modelview-projection transform on the vertex.
*
* XXX<rohannessian> Broken ATI drivers need a \n after each "line"
*/
const char *program =
"!!ARBvp1.0\n"
"ATTRIB pos = vertex.position;\n"
"ATTRIB wave = vertex.attrib[1];\n"
"PARAM modelview[4] = { state.matrix.mvp };\n"
"PARAM one_over_pi = 0.1591549;\n"
"PARAM pi = 3.1415926;\n"
"PARAM two_pi = 6.2831853;\n"
"PARAM inv_3_fact = 0.1666666;\n"
"PARAM inv_5_fact = 0.00833333333;\n"
"PARAM inv_7_fact = 0.00019841269841269;\n"
"TEMP temp, temp2;\n"
/* temp.y = sin(wave.x + pos.x / 5) */
"MAD temp.y, pos.x, 0.2, wave.x;\n"
SIN("temp.y", "temp.y", "temp2")
/* temp.y += sin(wave.x + pos.z / 4) */
"MAD temp.x, pos.z, 0.25, wave.x;\n"
SIN("temp.x", "temp.x", "temp2")
"ADD temp.y, temp.x, temp.y;\n"
/* pos.y = temp.y * 2.5 */
"MOV temp2, pos;\n"
"MUL temp2.y, temp.y, 2.5;\n"
/* Transform the position by the modelview matrix */
"DP4 result.position.w, temp2, modelview[3];\n"
"DP4 result.position.x, temp2, modelview[0];\n"
"DP4 result.position.y, temp2, modelview[1];\n"
"DP4 result.position.z, temp2, modelview[2];\n"
"MOV result.color, vertex.color;\n"
"END";
/* NVIDIA drivers do a better job; let's use a simpler program if we can.
*/
const char *program_nv =
"!!ARBvp1.0"
"OPTION NV_vertex_program2;"
"ATTRIB wave = vertex.attrib[1];"
"PARAM modelview[4] = { state.matrix.mvp };"
"TEMP temp;"
"TEMP pos;"
"MOV pos, vertex.position;"
/* temp.x = sin(wave.x + pos.x / 5) */
/* temp.z = sin(wave.x + pos.z / 4) */
"MAD temp.xz, pos, {0.2, 1.0, 0.25, 1.0}, wave.x;"
"SIN temp.x, temp.x;"
"SIN temp.z, temp.z;"
/* temp.y = temp.x + temp.z */
"ADD temp.y, temp.x, temp.z;"
/* pos.y = temp.y * 2.5 */
"MUL pos.y, temp.y, 2.5;"
/* Transform the position by the modelview matrix */
"DP4 result.position.w, pos, modelview[3];"
"DP4 result.position.x, pos, modelview[0];"
"DP4 result.position.y, pos, modelview[1];"
"DP4 result.position.z, pos, modelview[2];"
"MOV result.color, vertex.color;"
"END";
static void create_mesh(void)
{
int x, z;
/* Create our mesh */
for (x = 0; x < MESH_SIZE; x++) {
for (z = 0; z < MESH_SIZE; z++) {
mesh[x][z][0] = (float) (MESH_SIZE / 2) - x;
mesh[x][z][1] = 0.0f;
mesh[x][z][2] = (float) (MESH_SIZE / 2) - z;
}
}
}
static void draw_mesh(void)
{
int x, z;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor4f(0.5f, 1.0f, 0.5f, 1.0f);
for (x = 0; x < MESH_SIZE - 1; x++) {
glBegin(GL_TRIANGLE_STRIP);
for (z = 0; z < MESH_SIZE - 1; z++) {
glVertexAttrib1fARB(1, wave_movement);
glVertex3fv(&mesh[x][z][0]);
glVertex3fv(&mesh[x+1][z][0]);
wave_movement += 0.00001f;
if (wave_movement > 2 * ALLEGRO_PI) {
wave_movement = 0.0f;
}
}
glEnd();
}
glFlush();
}
int main(int argc, const char *argv[])
{
GLuint pid;
ALLEGRO_DISPLAY *d;
ALLEGRO_EVENT_QUEUE *queue;
ALLEGRO_EVENT event;
ALLEGRO_TIMER *timer;
int frames = 0;
double start;
bool limited = true;
if (argc > 1 && 0 == strcmp(argv[1], "-nolimit")) {
limited = false;
}
if (!al_init()) {
abort_example("Could not init Allegro.\n");
}
open_log();
al_set_new_display_flags(ALLEGRO_OPENGL);
al_set_new_display_option(ALLEGRO_SAMPLE_BUFFERS, 1, ALLEGRO_SUGGEST);
al_set_new_display_option(ALLEGRO_SAMPLES, 4, ALLEGRO_SUGGEST);
d = al_create_display(WINDOW_W, WINDOW_H);
if (!d) {
abort_example("Unable to open a OpenGL display.\n");
}
if (al_get_display_option(d, ALLEGRO_SAMPLE_BUFFERS)) {
log_printf("With multisampling, level %i\n", al_get_display_option(d, ALLEGRO_SAMPLES));
}
else {
log_printf("Without multisampling.\n");
}
al_install_keyboard();
queue = al_create_event_queue();
al_register_event_source(queue, al_get_keyboard_event_source());
al_register_event_source(queue, al_get_display_event_source(d));
if (limited) {
timer = al_create_timer(1/60.0);
al_register_event_source(queue, al_get_timer_event_source(timer));
al_start_timer(timer);
}
else {
timer = NULL;
}
if (al_get_opengl_extension_list()->ALLEGRO_GL_ARB_multisample) {
glEnable(GL_MULTISAMPLE_ARB);
}
if (!al_get_opengl_extension_list()->ALLEGRO_GL_ARB_vertex_program) {
abort_example("This example requires a video card that supports "
" the ARB_vertex_program extension.\n");
}
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_SMOOTH);
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glDisable(GL_CULL_FACE);
/* Setup projection and modelview matrices */
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45.0, WINDOW_W/(float)WINDOW_H, 0.1, 100.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
/* Position the camera to look at our mesh from a distance */
gluLookAt(0.0f, 20.0f, -45.0f, 0.0f, 0.0f, 0.0f, 0, 1, 0);
create_mesh();
/* Define the vertex program */
glEnable(GL_VERTEX_PROGRAM_ARB);
glGenProgramsARB(1, &pid);
glBindProgramARB(GL_VERTEX_PROGRAM_ARB, pid);
glGetError();
if (al_get_opengl_extension_list()->ALLEGRO_GL_NV_vertex_program2_option) {
glProgramStringARB(GL_VERTEX_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB,
strlen(program_nv), program_nv);
}
else {
glProgramStringARB(GL_VERTEX_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB,
strlen(program), program);
}
/* Check for errors */
if (glGetError()) {
const char *pgm = al_get_opengl_extension_list()->ALLEGRO_GL_NV_vertex_program2_option
? program_nv : program;
GLint error_pos;
const GLubyte *error_str = glGetString(GL_PROGRAM_ERROR_STRING_ARB);
glGetIntegerv(GL_PROGRAM_ERROR_POSITION_ARB, &error_pos);
abort_example("Error compiling the vertex program:\n%s\n\nat "
"character: %i\n%s\n", error_str, (int)error_pos,
pgm + error_pos);
}
start = al_get_time();
while (1) {
if (limited) {
al_wait_for_event(queue, NULL);
}
if (!al_is_event_queue_empty(queue)) {
while (al_get_next_event(queue, &event)) {
switch (event.type) {
case ALLEGRO_EVENT_DISPLAY_CLOSE:
goto done;
case ALLEGRO_EVENT_KEY_DOWN:
if (event.keyboard.keycode == ALLEGRO_KEY_ESCAPE)
goto done;
break;
}
}
}
draw_mesh();
al_flip_display();
frames++;
}
done:
log_printf("%.1f FPS\n", frames / (al_get_time() - start));
glDeleteProgramsARB(1, &pid);
al_destroy_event_queue(queue);
al_destroy_display(d);
close_log(true);
return 0;
}
|