1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Digital design flow</title>
<!-- Author: Ludovic Jacomme May 2004 -->
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#000080" alink="#FF0000">
<img src="logo.gif">
<br>
<h1>The main steps of the digital design flow</h1>
<ul>
<li>Behavioral specification</li>
<li>RTL synthesis</li>
<li>Place and Route</li>
</ul>
<br>
<h1>Overview of the behavioral specification step</h1>
<ul>
<li>During this step the designer can cut the chip in several functional
blocks interconnected together
<br><br><img src=beh-spec-split.gif>
</li>
<br>
<li>Then he has to describe, using a hardware description langage (HDL),
the behavior of each functional block.<br> Each functional block can be:
</li>
<ul>
<li>a Finite State Machine
<br><img src=beh-spec-fsm.gif>
</li>
<li>a set of registers and transfert functions
<br><img src=beh-spec-rtl.gif>
</li>
<li>a set of interconnected other functional blocks
<br><img src=beh-spec-struct.gif>
</li>
</ul>
<br>
<li>The behavioral description has to be validate. The designer can use
different methods such as:
<ul>
<li>digital simulation using a set of stimuli.
(each stimuli describes the value of inputs pins
and the expected values of outputs pins)</li>
<li>model checking using a set of CTL formulae. (each CTL
formulae describe a property that the functional block has
to verified)</li>
</ul>
</ul>
<h1>The behavioral specification using the Alliance CAD system</h1>
<ul>
<li>Digital simulation using a set of stimuli:
<a id="asimut" name="asimut"></a>
<a id="xpat" name="xpat"></a>
<a id="genpat" name="genpat"></a>
<br><img src=beh-spec-asimut.gif><br>
<ul>
<li><a href="tools.html#genpat">GENPAT</a> is used to write
digital stimuli. It provides a C
interface of a set of functions usefull to create stimuli. It
loads a C file describing patterns and run the C compiler.
Finally it generates a stimuli file
(<a href="tools.html#pat">PAT</a> file format).
Note that patterns file can also
be written using a simple text editor.
<br></li>
<li><a href="tools.html#asimut">ASIMUT</a> is a VHDL simulator.
It loads behavioral or structural
descriptions written according to the Alliance VHDL subsets.
<a href="tools.html#asimut">ASIMUT</a> may also be linked with C
descriptions of behavioral
components.
It loads a stimuli file (<a href="tools.html#pat">PAT</a> file format) and then
run the simulation. The result is dumped in a new pattern file
and it can be displayed using <a href="tools.html#xpat">XPAT</a>.
<br></li>
<li><a href="tools.html#xpat">XPAT</a> is a graphical pattern
viewer. It loads a pattern file
(<a href="tools.html#pat">PAT</a> file format)
and displays waveforms on a graphical window.
<br></li>
</ul>
</li>
<br><li>Digital simulation of FSM descriptions:
<a id="syf" name="syf"></a>
<br><br><img src=beh-spec-syf.gif><br><br>
<ul>
<li><a href="tools.html#syf">SYF</a> loads the graph of a Finite
State Machine. This FSM is
described in VHDL using predefined templates. It encodes each
states of the FSM and tries to minimize the resulting
combinatorial logic.
Finally it drives a new description using the Alliance VHDL
dataflow subset (<a href="tools.html#vbe">VBE</a> file format).
<br></li>
</ul>
</li>
<br><li>Digital simulation of VHDL descriptions using Synospys VHDL subset:
<a id="vasy" name="vasy"></a>
<br><br><img src=beh-spec-vasy.gif><br><br>
<ul>
<li><a href="tools.html#vasy">VASY</a> can be seen as a VHDL
translator. It loads VHDL
behavioral or structural descriptions (written according to the
Synopsys <a href="tools.html#vhd">VHDL</a> subset).
It then drives one or more VHDL descriptions using the Alliance
VHDL dataflow or structural
subsets. <br> Those Alliance VHDL subsets are small and very
particular.
They are called <a href="tools.html#vbe">VBE</a> (VHDL
BEhavioral) and <a href="tools.html#vst">VST</a> (VHDL
STructural) file format.
<br></li>
</ul>
</li>
<br><li>Model checking of behavioral descriptions:
<a id="mocha" name="mocha"></a>
<br><br><img src=beh-spec-mocha.gif><br><br>
<ul>
<li><a href="tools.html#mocha">MOCHA</a> loads the graph of a
Finite State Machine
description. This FSM is described in VHDL using predefined
templates. Then it loads a list of CTL formulae (described in
CTL file format) and check formally if the given FSM verify CTL
properties. <a href="tools.html#mocha">MOCHA</a> can also be
used on a behavioral description
using the Alliance VHDL dataflow subset (<a href="tools.html#vbe">VBE</a>).
<br></li>
</ul>
</li>
<br><li><b>Summary of digital behavioral specification step</b></li>
<br><br><img src=beh-spec-alliance.gif>
</ul>
<!--
-->
<h1>Overview of the RTL synthesis step</h1>
<ul>
<li>This step consist on a transformation of a behavioral description
to an optimized netlist of gates (standard cells, macros-cells, datapaths etc ...).
</li>
<br>
<li>The designer can give optimization parameters and constraints to
be satisfied such as:
</li>
<ul>
<li>delay, arrival/required time
</li>
<li>surface
</li>
<li>power consumption
</li>
<li>etc ...
</li>
</ul>
<br>
<li>The RTL synthesis step has to be validate. The designer can use
different methods such as:
<ul>
<li>Post synthesis digital simulation
</li>
<li>Formal proof
</li>
</ul>
</ul>
<!--
-->
<h1>The RTL synthesis step using the Alliance CAD system</h1>
<ul>
<li>Logic synthesis and standard cell mapping
<a id="boom" name="boom"></a>
<a id="boog" name="boog"></a>
<a id="loon" name="loon"></a>
<a id="proof" name="proof"></a>
<br><br><img src=rtl-synth-logic.gif><br><br>
<ul>
<li><a href="tools.html#boom">BOOM</a> is used for the first
step of the synthesis process.
It loads a behavioural description
(<a href="tools.html#vbe">VBE</a>), if possible a parameter
file, and it builds an equivalent boolean network.
From one hand it minimizes the boolean expression
of each nodes of the network, and on the other hand it factorizes
equivalent nodes. The result is an equivalent boolean network where
the maximum depth is smaller and where boolean nodes have been factorized.
<br></li>
<li><a href="tools.html#asimut">ASIMUT</a> is the Alliance's VHDL simulator.
<br></li>
<li><a href="tools.html#proof">PROOF</a> is an equivalence
checker. It loads two behavioural descriptions
(<a href="tools.html#vbe">VBE</a>) and check their equivalence using formal technics.
<br></li>
<li><a href="tools.html#boog">BOOG</a> is used for the second
step of the synthesis process.
It loads a behavioural description
(<a href="tools.html#vbe">VBE</a>) beforehand optimized
with <a href="tools.html#boom">BOOM</a>
and builds an equivalent boolean network. It loads also a library of standard
cells and in option a parameter file.
For each boolean function of each node of the network,
it tries to find in the given library, a cell or a set of cells that produce
the same boolean function. This step is often called standard cell mapping.
The result is a netlist of cells with an equivalent behavior.
<br></li>
<li><a href="tools.html#loon">LOON</a> is used for the last
step of the synthesis process.
It loads a netlist of gates described in VHDL (<a href="tools.html#vst">VST</a>).
It loads also a library of standard cells and in option a parameter file.
<a href="tools.html#loon">LOON</a> computes the critical path
and performs a gate repowering to
decrease its delay and global capacitance.
The result is an optimized netlist described in VHDL
(<a href="tools.html#vst">VST</a>).
<br></li>
</ul>
</li>
<br>
<li>Handmake synthesis
<a id="genlib" name="genlib"></a>
<a id="xsch" name="xsch"></a>
<br><br><img src=rtl-synth-genlib.gif><br><br>
<ul>
<li><a href="tools.html#genlib">GENLIB</a> provides a C
interface of a set of functions usefull to create
a netlist of cells or a physical layout. For example given a cell library,
a simple C function call is enough to create an instance of a cell.
The result is a netlist (or a physical layout) built during the sequential
execution of the C source code.
<br></li>
<li><a href="tools.html#xsch">XSCH</a> is the graphical
schematic viewer of Alliance. It loads a netlist
(<a href="tools.html#vst">VST</a> file
format) and displays it on a graphical window.
<br></li>
<li><a href="tools.html#asimut">ASIMUT</a> is the Alliance's VHDL simulator.
<br></li>
</ul>
</li>
<br>
<li>Data-path synthesis
<br><br><img src=rtl-synth-dp.gif><br><br>
<ul>
<li><a href="tools.html#genlib">GENLIB</a> provides also a C
interface for several macro-cells generators such
as rom generator/register file generator etc ...
The layout and the netlist of a complex data-path can be easily
generated with only simple calls to predefined C functions.
<br></li>
<li><a href="tools.html#asimut">ASIMUT</a> is the Alliance's VHDL simulator.
<br></li>
</ul>
</li>
<br>
<li>FSM synthesis and state graph minimisation:
<a id="fmi" name="fmi"></a>
<a id="fsp" name="fsp"></a>
<br><br><img src=rtl-synth-fmi.gif><br><br>
<ul>
<li><a href="tools.html#fmi">FMI</a> loads the graph of a Finite
State Machine (<a href="tools.html#fsm">FSM</a> file format).
In the given FSM, <a href="tools.html#fmi">FMI</a> finds all
equivalent states and merges them all
together. The result is a new FSM, that still equivalent, but with a
reduced number of states.
Finally it drives this new description using <a href="tools.html#fsm">FSM</a>
file format.
<br></li>
<li><a href="tools.html#fsp">FSP</a> is an FSM equivalence
checker. It loads the graph of two FSMs and checks formally
(using a FSM product based algorithm) if they have exactly the
same behavior.
<br></li>
<li><a href="tools.html#syf">SYF</a> is a Finite State Machine synthesizer.
<br></li>
<li><a href="tools.html#b2f">B2F</a> is a Finite State Machine
abstractor.
It loads a RTL VHDL description (<a href="tools.html#vbe">VBE</a> file format).
It then build the graph of an equivalent Finite State Machine, using a symbolic
simulation algorithm. This tool does the inverse operation of the FSM synthesizer
<a href="tools.html#syf">SYF</a>
<br></li>
</ul>
</li>
</ul>
<!--
-->
<h1>Overview of the Place & Route step</h1>
<ul>
<li>This step consist on a transformation of a netlist description
to a physical layout.
</li>
<br>
<li>The designer can give some parameters and constraints to
be satisfied such as:
</li>
<ul>
<li>an initial placement of the cells
</li>
<li>a position for each physical connectors
</li>
<li>a form factor
</li>
<li>number of metal layers to be used
</li>
<li>etc ...
</li>
</ul>
<br>
<li>The place and route step has to be validated. The designer has to use
different methods such as:
<ul>
<li>Netlist exctration and netlist comparison
</li>
<li>Design rule checking
</li>
<li>Functionnal abstraction
</li>
</ul>
</ul>
<!--
-->
<h1>The place and route step using the Alliance CAD system</h1>
<ul>
<li>Overcell place and route
<a id="ocp" name="ocp"></a>
<a id="nero" name="nero"></a>
<br><br><img src=place-route-ocpr.gif><br><br>
<ul>
<li><a href="tools.html#ocp">OCP</a> is a placement tool. It
loads a netlist of standard cells.
The designer can specifies eventually connectors placement by given
a parameter file (IOC file format).
If there are non standard cell blocks in the netlist, the designer
has to give a placement for those blocks.
<a href="tools.html#ocp">OCP</a> then uses a simulated
annealing algorithm to find a placement
of all the netlist's cells, that minimized the length of nets.
The result is a physical symbolic layout file with physical connectors
and placed cells (<a href="tools.html#ap">AP</a> file format).
<br></li>
<li><a href="tools.html#nero">NERO</a>(previously OCR) is the overcell
router of Alliance. It loads a netlist and a
physical placement file. The designer can give other parameters such
as the number of metal layer he would like to use.
The result is a physical symbolic layout view where each net
of the netlist has been routed (<a href="tools.html#ap">AP</a> file format).
<br></li>
</ul>
</li>
<br>
<li>Pad ring place and route
<a id="ring" name="ring"></a>
<br><br><img src=place-route-ring.gif><br><br>
<ul>
<li><a href="tools.html#ring">RING</a> loads a netlist of pads
interconnected with a "core" block.
The designer can give a relative placement for those pads (RIN file format).
After loading the physical view of the pads and the core, <a
href="tools.html#ring">RING</a>
place and route them all together, with a special treatment for
the power supply nets.
The result is a physical symbolic layout
(<a href="tools.html#ap">AP</a> file format).
<br></li>
</ul>
</li>
<br>
<li>Place and route validation
<a id="lynx" name="lynx"></a>
<a id="cougar" name="cougar"></a>
<a id="lvx" name="lvx"></a>
<a id="druc" name="druc"></a>
<a id="graal" name="graal"></a>
<br><br><img src=place-route-valid.gif><br><br>
<ul>
<li><a href="tools.html#cougar">LYNX</a> (called now COUGAR) is a
hierarchical netlist extractor.
It loads a symbolic or real physical view and given a technological
file (RDS file format) it extracts a netlist
(<a href="tools.html#al">AL</a> file format).
<br></li>
<li><a href="tools.html#lvx">LVX</a> is simple a netlist comparator.
<br></li>
<li><a href="tools.html#druc">DRUC</a> is a hierarchical design rule checker.
It loads a symbolic physical view and given a technological
file (RDS file format) it verifies design rules.
<br></li>
<li><a href="tools.html#asimut">ASIMUT</a> is the Alliance's VHDL simulator.
<br></li>
<li><a href="tools.html#graal">GRAAL</a> is a hierarchical symbolic layout editor.
<br></li>
</ul>
</li>
<br>
<li>Symbolic layout to real layout
<a id="s2r" name="s2r"></a>
<a id="dreal" name="dreal"></a>
<br><br><img src=place-route-s2r.gif><br><br>
<ul>
<li>Given a technological file, <a href="tools.html#s2r">S2R</a> transforms
a symbolic layout (lambda) to a real equivalent layout (micron).
<br></li>
<li><a href="tools.html#dreal">DREAL</a> is the real layout editor of Alliance.
<br></li>
<li><a href="tools.html#cougar">LYNX</a> is the netlist extractor of Alliance.
<br></li>
</ul>
</li>
<br>
</ul>
</body>
|