1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
|
%%%%%%%%%%%%%%%%
% $Id: place_and_route.tex,v 1.8 2009/08/26 12:25:11 jpc Exp $
% $Log: place_and_route.tex,v $
% Revision 1.8 2009/08/26 12:25:11 jpc
% Some more adjustments for LaTeX: no more here.sty, rule thickness put
% after begin{document} for fancyhdr.
%
% Revision 1.7 2009/08/26 11:41:55 jpc
% Replacing fancyheaders by fancyhdr for newer LaTeX's versions.
%
% Revision 1.6 2007/12/26 12:46:15 xtof
% ged rid of obsolete packages
%
% Revision 1.5 2004/10/16 12:51:56 fred
% Erasing the psfig include from the file, changed the font to 10 pt
% instead of 12 (sparing trees and not being payed by the thickness of
% my production) and changing font to charter since I got tired of
% Palatino, sorry Herman!
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass{article}
\usepackage[dvips]{graphics}
\usepackage[english]{babel}
\usepackage{setspace}
\usepackage{epsf}
\usepackage{fancybox}
\usepackage{fancyhdr}
\usepackage{float}
\usepackage{graphicx}
%\usepackage{here}
%\usepackage{isolatin1}
\usepackage{charter}
\usepackage{picinpar}
\usepackage{rotate}
\usepackage{subfigure}
\usepackage{sverb}
\usepackage{t1enc}
\usepackage{wrapfig}
\setlength{\topmargin}{0cm}
\setlength{\headheight}{1cm}
\setlength{\textheight}{23cm}
\setlength{\textwidth}{16cm}
\setlength{\oddsidemargin}{0cm}
\setlength{\evensidemargin}{0cm}
\setlength{\columnsep}{0.125in}
\setlength{\columnseprule}{0.5pt}
\setlength{\footskip}{1cm}
\setstretch{1.2}
%--------------------------------- styles
%--------------------------------
%
% Setting the width of the verbatim parts according to 80 tt chars
% Since it is tt, any char is fine
%
\newlength{\verbatimbox}
\settowidth{\verbatimbox}{\scriptsize\tt
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
}
\newenvironment{sourcelisting}
{\VerbatimEnvironment\par\noindent\scriptsize
\begin{Sbox}\begin{minipage}{\verbatimbox}\begin{Verbatim}}%
{\end{Verbatim}\end{minipage}\end{Sbox}
\setlength{\fboxsep}{3mm}\center\shadowbox{\TheSbox}\normalsize\par\noindent}
\newenvironment{commandline}
{\VerbatimEnvironment\par\vspace*{2mm}\noindent\footnotesize
\begin{Sbox}\begin{minipage}{.979\textwidth}\begin{Verbatim}}%
{\end{Verbatim}\end{minipage}\end{Sbox}\setlength{\shadowsize}{2pt}%
\shadowbox{\TheSbox}\normalsize\par\noindent}
%--------------------------------- page style --------------------------------
\pagestyle{fancy} \rhead{Place and route}
\lhead{PART 3} \rfoot{\thepage} \lfoot{ALLIANCE TUTORIAL} \cfoot{}
%
%\begin{figure}[H]\centering
% \includegraphics[width=8cm,height=8cm]{.eps}
% \caption{}
% \label{Fig:}
%\end{figure}
%---------------------------------- document ---------------------------------
\begin{document}
\setlength{\footrulewidth}{0.6pt}
\title{
{\Huge ALLIANCE TUTORIAL \\}
{\large
Pierre \& Marie Curie University \\
2001 - 2004\\
}
\vspace{1cm}
{\huge
PART 3\\
place and route
}
}
\date{}
\author{
Frederic AK\hspace{2cm} Kai-shing LAM\\
Modified by LJ
}
\maketitle
\begin{figure}[H]\centering
\includegraphics[height=10cm]{amd2901.epsi}
\end{figure}
\thispagestyle{empty}
\def\myfbox#1{\vspace*{3mm}\fbox{#1}\vspace{3mm}}
\newpage
{\bf Contents}\\
\\
{1} {\bf Introduction}
\\
{2 }{\bf Inverter and buffer drawing using GRAAL}
{2.1} Introduction
\hspace{0.5cm} {2.1.1} Technological environment
\hspace{0.5cm} {2.1.2} GRAAL
\hspace{0.5cm} {2.1.3} COUGAR
\hspace{0.5cm} {2.1.5} PROOF
{2.2} inverter Diagram
{2.3} Buffer diagram
{2.4} sxlib gauge
{2.5} steps to follow
\hspace{0.5cm} {2.5.1} Create an inverter
\hspace{0.5cm} {2.5.2} Create a buffer
\\
{3} {\bf Place and Route}
{3.1} Amd2901 architecture
{3.2} Tools used
{3.3} Technological environment
{3.4} Beware of naming the files
{3.5} Data-path predefined placement
{3.6} heart Placement
{3.7} Route the heart
{3.8} pads placement
\\
{4} {\bf Annexes}
\newpage
{\huge
PART 3 : }
\vspace{1cm}
{\huge
Place and route
}
All the files used in this part are located under \\
\texttt{/tutorial/place\_and\_route/src} directory.\\
This directory contents three subdirectories and one Makefile :
\begin{itemize}\itemsep=-.8ex
\item Makefile
\item inv
\begin{itemize}\itemsep=-.8ex
\item Makefile
\item inv.vbe : behavioral description
\item inv\_x1.ap : inverter cell design using GRAAL
\end{itemize}
\item buffer
\begin{itemize}\itemsep=-.8ex
\item Makefile
\item buffer.vbe : behavioral description
\item buf\_x2.ap : buffer cell design using GRAAL
\end{itemize}
\item amd2901
\begin{itemize}\itemsep=-.8ex
\item Makefile
\item amd2901\_ctl.vbe : behavioral description of control
part
\item amd2901\_dpt.vbe : behavioral description of data-path
\item amd2901\_ctl.c : file .c of control part
\item amd2901\_dpt.c : file .c of data-path
\item amd2901\_core.c : file .c of heart
\item amd2901\_chip.c : file .c of the circuit with their
pads
\item pattern.pat : tests file
\end{itemize}
\end{itemize}
\newpage
\section{Introduction}
%---------------------
The goal of this tutorial is to present some ALLIANCE tools :
\begin{itemize}\itemsep=-.4ex
\item {\bf GRAAL} Graphic layout editor ;
\item {\bf DRUC} Design rule checker ;
\item {\bf COUGAR} Symbolic layout extractor ;
\item {\bf PROOF} Formal proof between two behavioral descriptions ;
\item {\bf OCP, OCR, NERO, RING} place and route tools .
\end{itemize}
The beginning of this tutorial will relate to the drawing under {
\bf GRAAL } of a inverter cell and a buffer.
The predefined cells concepts, model and
hierarchy will be introduced .\\
Then this tutorial contain the methodology used in Alliance to produce
the amd2901 physical layout that you conceived in Alliance Tutorial
PART 2 "Synthesis" (All the documents used will be provided to you).
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Inverter and buffer drawing under GRAAL}
%-----------------------------------------------
\subsection{Introduction}
%------------------------
The library can be enriched by new cells with {\bf GRAAL} editor .\\
{ \bf GRAAL } is an editor of \/{\underline{symbolic }} {\it
layout} integrating the drawing rules checker {\bf DRUC} and also
a net extractor.
The first part here aims to draw an inverter cell inv\_x1 in the shape
of a predefined cell of sxlib complyiant with provided
drawing rules.
\subsubsection{Technological environment}
%--------------------
Some tools of Alliance use a particular technological
environment. It is indicated by the environment variable {\bf
RDS\_TECHNO\_NAME} which must be set to
{\bf/alliance/etc/cmos.rds}
\subsubsection{GRAAL}
%--------------------
The {\it layout } editor \/handles six different objects types which we can create
with the menu { \bf CREATE }:
\begin{itemize}\itemsep=-.4ex
\item The ''instance'' (physical cells importation)
\item The abutment boxes which define the cell limits
\item Segments: DiffN, DiffP, Poly, Alu1, Alu2... CAluX is used to specify
a possible rectangle area for the connectors.
\item VIAs or contacts: ContDiffN, ContDiffP, ContPoly and
ViaMetal1/Metal2.
\item Big VIAs
\item Transistors: NMOS or PMOS
\end{itemize}
{\bf GRAAL} uses the environment variable {\bf
GRAAL\_TECHNO\_NAME}. It must be set to {\bf/alliance/etc/cmos.graal}.
Steps to follow to create a sxlib cell by respecting the sxlib gauge :
( cf 2.4 Sxlib gauge )
\begin{itemize}\itemsep=-.4ex
\item place the supply Vdd and Vss using the menu CREATE->Segment
\item place the VIAs using the menu CREATE->VIA
\item place the transistors PMOS and NMOS using the menu CREATE->Transistor
\item place the NWell body using the menu CREATE->Segment
\item place the input/output connectors using the menu CREATE->VIA
\item link the transistor P and the transistor N with the Poly segment using the menu CREATE->Segment
\item supply each transistor by linking them with Ndiff and Pdiff segments and VIAs contacts
\item define the cell limit with an abutment box using the menu CREATE->Abutment Box
\end{itemize}
\subsubsection{COUGAR}
%--------------------
The tool { \bf COUGAR } is able to extract the { \it netlist } from
a circuit to the format { \bf al } or { \bf spi } given a layout description
with the format { \bf ap }.
To extract a netlist at transistor level, use the following command :
\begin{commandline}
> cougar -t file1 file2
\end{commandline}
{ \bf COUGAR } uses the environment variables { \bf MBK\_IN\_PH }
and { \bf MBK\_OUT\_LO } according to the input and output formats.
For example to generate a SPICE netlist (with the format { \bf .spi })
starting from a layout description { \bf .ap } it is necessary to set
the following environment variables: \\
\begin{commandline}
> MBK_IN_PH = ap
> export MBK_IN_PH
> MBK_OUT_LO = spi
> export MBK_OUT_LO
\end{commandline}
\begin{commandline}
> cougar -t circuit circuit
\end{commandline}
The resulting spice netlist can be then simulated using a SPICE simulator and a given
model card for a dedicated technology.
The schematic of the transistor neltlist can also be displayed using {\bf XSCH} :
\begin{commandline}
> xsch -I spi -l circuit
\end{commandline}
\subsection{inverter Diagram}
%---------------------------------
The theoretical inverter diagram is presented at the following
figure:
\begin{figure}[H]\centering
\includegraphics[width=6cm]{inv_x1.eps}
\caption{transistors diagram of a C-MOS inverter}
\label{Fig:inv_x1}
\end{figure}
\subsection{Buffer diagram }
%---------------------------------
The theoretical buffer diagram is presented at the following
figure:
\begin{figure}[H]\centering
\includegraphics[width=8cm]{buff_x1.eps}
\caption{transistors diagram of a C-mos buffer}
\label{Fig:buff_x1}
\end{figure}
It uses two inverter according to the hierarchy:
\begin{figure}[H]\centering
\includegraphics[width=8cm]{hierarchie.eps}
\caption{C-mos buffer hierarchy}
\label{Fig:hier_x1}
`\end{figure}
\subsection{sxlib gauge}
%---------------------------------
\begin{itemize}\itemsep=-.4ex
\item The sxlib cells have whole 50 lambdas height and a multiple of 5 lambdas width.
\item The supply Vdd and Vss are carried out in Calu1; they have 6 lambdas width and are
horizontally placed in top and bottom of the cell.
\item The transistors P are placed close to the Vdd while transistors N are placed close
to the Vss.
\item Box N must have 24 lambdas height .
\item The special segments CAluX (CAlu1, Calu2, CAlu3...) form the cell interface (PORT\_MAP)
and play the role of ''flat'' connectors. They must be placed on a 5x5 grid and can be anywhere in the cell.
\item The special segments TAlux (TAlu1, TAlu2...) are used to indicate the obstacles for the
router. When you want to protect AluX segment, it is necessary to cover them
or surround them by corresponding TAlux (same layer). TAluX are placed on a grid
with 5 lambdas steps (figure \ref{Fig:gabarit2}).
\item The minimal width of CAlu1 is 2 lambda, plus 1 lambda for the extension (figure \ref{Fig:gabarit3}).
\item The boxes N and P must be polarized. { \bf It should be respectively connected to Vdd and Vss }.
\end{itemize}
You will find a summary of these constraints on the diagram
\ref{Fig:gabarit}:
\begin{figure}[H]\centering
\includegraphics[scale=0.8]{gabarit_sx.eps}
\caption{a cell model of the sxlib library }
\label{Fig:gabarit}
\end{figure}
\begin{figure}[H]\centering
\includegraphics[scale=0.8]{gabarit2_sx.eps}
\caption{Use the layer TAluX like protection}
\label{Fig:gabarit2}
\end{figure}
\begin{figure}[H]\centering
\includegraphics[scale=0.8]{gabarit3_sx.eps}
\caption{Low size of CAlu1}
\label{Fig:gabarit3}
\end{figure}
\subsection{steps to follow}
%---------------------------------
\subsubsection{Create an inverter}
%--------------------
\begin{itemize}\itemsep=-.4ex
\item describe the cell inverter behavior in a file { \bf .vbe } .
\item draw the inverter "stick-diagram" inv\_x1 whose transistors diagram
is represented on the figure \ref{Fig:inv_x1}.
\begin{figure}[H]\centering
\includegraphics[width=8cm]{stick.eps}
\caption{stick diagram}
\label{Fig:stick}
\end{figure}
\item draw the cell under {\bf GRAAL} by respecting the
gauge specified on the figure \ref{Fig:gabarit}.
\item validate the symbolic drawing rules by launching {\bf DRUC} under {\bf GRAAL}.
\item extract the { \it netlist } \/from the inverter to the format {\bf al} with {\bf COUGAR}.
\end{itemize}
\subsubsection{Create a buffer}
%--------------------
The buffer is produced under { \bf GRAAL } starting from the
instanciated of two inverters. The hierarchy thus created is
represented on the figure \ref{Fig:hier_x1}. The transistors
diagram is represented on the figure \ref{Fig:buff_x1}.
\begin{itemize}\itemsep=-.4ex
\item describe the cell buffer behavior in a file { \bf .vbe }.
\item draw the cell under {\bf GRAAL} by respecting the
gauge specified on the figure \ref{Fig:gabarit}.
You will use for that the instanciated function of { \bf GRAAL }.
The cell with instanciate is of course the inverter, which you will connect (will routing) manually.
\item validate the symbolic drawing rules by launching {\bf DRUC} under {\bf GRAAL}.
\item extract the { \it netlist } \/from the buffer to the format {\bf al} with {\bf COUGAR}.
\end{itemize}
Do not forget that { \it man } pages exist...
We provide you the cells behaviour description inv.vbe and buffer.vbe;
and the cells inverter and buffer drawn under { \bf GRAAL }.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Place and Route}
%-------------------
\subsection{Amd2901 architecture}
%---------------------------------
Am2901 breaks up into 2 blocks: the part controls which gathers
the logic `` glu '' (random logic) and the operative part (data-path).
\begin{figure}[H]\centering
\includegraphics[scale=0.8]{bloc.eps}
\caption{Amd decomposition in functional units}
\label{Fig:decomposition}
\end{figure}
\begin{itemize}\itemsep=-.4ex
\item The data-path contains the regular parts of Amd2901, the registers
and the arithmetic logic unit.
\item The control part contains irregular logic,
the instructions decoding and the `` flags '' computation.
\end{itemize}
The Hierarchy of descriptions is as follows:
\begin{figure}[H]\centering
\includegraphics[scale=0.8]{hier.eps}
\caption{Hierarchy used}
\label{Fig:hierarchie}
\end{figure}
\subsection{Tools used}
%---------------------------------
You will use place and route tools { \bf ocp } and {\bf nero },
thus all tools for checking seen in the first part of this Tutorial .\\
{\bf ocp} is the placer, {\bf nero} allows routing over the cell.
The data-path and the control part will be placed and routed together and not separately. \\
You will use also {\bf lvx}, the netlists comparator. When the
system is too complex it is difficult to use {\bf proof}, the
formal comparator (calculations too long). A netlists comparison
then is used. Test the two methods ({\bf proof} and {\bf
lvx}).
\subsection{Technological environment}
%---------------------------------
\begin{sourcelisting}
> VH_MAXERR = 10
> export VH_MAXERR
> MBK_WORK_LIB = .
> export MBK_WORK_LIB
> MBK_CATA_LIB = $ALLIANCE_TOP/cells/sxlib
> export MBK_CATA_LIB
> MBK_CATA_LIB = $MBK_CATA_LIB:$ALLIANCE_TOP/cells/dp_sxlib
> export MBK_CATA_LIB
> MBK_CATA_LIB = $MBK_CATA_LIB:$ALLIANCE_TOP/cells/padlib
> export MBK_CATA_LIB
> MBK_CATA_LIB $MBK_CATA_LIB:.
> export MBK_CATA_LIB
> MBK_CATAL_NAME = CATAL
> export MBK_CATAL_NAME
> MBK_IN_LO = vst
> export MBK_IN_LO
> MBK_OUT_LO = vst
> export MBK_OUT_LO
> MBK_IN_PH = ap
> export MBK_IN_PH
> MBK_OUT_PH = ap
> export MBK_OUT_PH
\end{sourcelisting}
\subsection{Beware of file naming}
%---------------------------------
Generally, the file describing a netlist must have the same
name as the one describing its physical layout
(but of course the file extention is not the same).
The file amd2901\_dpt.vst (LOFIG) must correspond to the file
amd2901\_dpt.ap (PHFIG). The same applies to the file
amd2901\_core. Be carefull not to overwrite a file by mistake !
\subsection{Data-path predefined placement}
%---------------------------------
For the moment, your file amd2901\_dpt.c describes only
the netlist.
eg you have a C file that contains the following lines: \\
\noindent GENLIB\_DEF\_LOFIG()\\
\noindent ...\\
\noindent GENLIB\_SAVE\_LOFIG()\\
This permits to generate a structural description in a { \bf
VST } file. At the same time, { \bf genlib } will generate
physical descriptions of each column in { \bf AP } files.
It is up to you to place these columns explicitly. \\
Edit again the file amd2901\_dpt.c and include the lines :\\
\noindent GENLIB\_DEF\_PHFIG()\\
\noindent /* add here you placement directives !! */ \\
\noindent GENLIB\_SAVE\_PHFIG()\\
For this placement task, you have the following {\bf GENLIB} functions :
\begin{itemize}\itemsep=-.4ex
\item GENLIB\_PLACE()
\item GENLIB\_PLACE\_RIGHT()
\item GENLIB\_PLACE\_TOP()
\item GENLIB\_PLACE\_LEFT()
\item GENLIB\_PLACE\_BOTTOM()
\item GENLIB\_PLACE\_ON()
\item GENLIB\_DEF\_AB()
\item ...
\end{itemize}
Use {\bf GENLIB} manual. The placement of the data-path columns
should not be done randomly. The routing feasibility and the quality
of the resulting layout depends on it !\\
Use genlib to generate all:
\begin{commandline}
>genlib amd2901_dpt
\end{commandline}
The figure \ref{Fig:preplacement} summarizes the followed process:
\begin{figure}[H]\centering
\includegraphics[scale=0.8]{preplacement.eps}
\caption{predefined placement}
\label{Fig:preplacement}
\end{figure}
\begin{figure}[H]\centering
\includegraphics[scale=0.8]{colonnes.eps}
\caption{predefined Columns before placement of the part controls }
\label{Fig:colonnes}
\end{figure}
Do not forget to include a abutment box!
\subsection{heart Placement}
%---------------------------------
In the same manner, edit agin the file amd2901\_core.c and insert
data-path explicitly. You should not place the part controls.
This one exists only in the form of a structural description.
It is the placer { \bf ocp } that will undertake some
(during the placement of the heart { \bf ocp } detects which are the
cells not placed and supplements the placement).
Nevertheless you should reserve enough space for the cells placement
{ \bf to the top } of the data-path.
Include the lines:\\
\noindent GENLIB\_DEF\_PHFIG()\\
\noindent /* add here placement directives for your data-path */\\
\noindent GENLIB\_SAVE\_PHFIG()\\
Space necessary to the placer to place the cells of the control part
will be determined by successive approximations. You will have to
adjust dimensions of the heart abutment box
(GENLIB\_DEF\_AB()).
Use the command:
\begin{commandline}
> genlib amd2901_core
\end{commandline}
and
\begin{commandline}
> ocp -partial amd2901_core -ioc amd2901_core amd2901_core amd2901_core_p
\end{commandline}
The option {\bf -- partial} indicates that you give a partial
placement of the data-path.
The option { \bf -- ioc } permits to specify a placement for external
connectors described in a .ioc file.
This file, amd2901\_core.ioc is provided to you (Modify it according
to your predefined placement.
The connectors must be in the north and in the south of your circuit).
The third argument is the netlist heart filename, the fourth is the
name of the { \bf .ap } resulting file.
The figure \ref{Fig:placement} summarize the followed process:
\begin{figure}[H]\centering
\includegraphics[scale=0.6]{placement.eps}
\caption{Placement}
\label{Fig:placement}
\end{figure}
\subsection{Route the heart}
%---------------------------------
Routing the heart by using { \bf NERO } in the following way:
\begin{commandline}
> nero -v -3 -p amd2901_core_p amd2901_core amd2901_core
\end{commandline}
%The option { \bf -- place } indicates that you transmit a placement, that of the heart.
%The third argument is the netlist heart, the fourth is the file { \bf AP } result. \\
%{\bf NOTA}:
%\begin{itemize}\itemsep=-.4ex
%\item Variable MBK\_CATA\_LIB should contain only once the access paths to the libraries.
%\item The file of error generated by { \bf ocr } is {\bf .log}.
%{ \bf THIS FILE MUST BE IMPERATIVELY CONSULTS } before beginning
%the following stages. Indeed, it is thanks to this file that the
%router informs you if it made a success of with routing all the
%signals or not...
%\end{itemize}
\subsection{pads placement}
%---------------------------------
The core of the AMD2001 is completed.
We focus now on the chip with pads description, placement and routing.
Those pads allow the connection of the inputs/outputs of the core with
the external nets of the chip.
The tool {\bf ring} instanciates pads that has been specified
in a {\bf vst} netlist, place them using a file { \bf .rin }
that specified a relative placement of those pads.
It then routes those pads with the core according to the input
netlist.
This syntax of the {\bf .rin} file:
\begin{sourcelisting}
> east ( pi1 pi0 )
> west ( pck pi4 )
> north ( pvdd pvss )
> south ( pvdde pvsse )
\end{sourcelisting}
Where pi1, pi0... are the name of instance pads.
Name it `` amd2902\_chip.rin '' and apply the command \\
\begin{commandline}
> ring amd2901_chip amd2901_chip
\end{commandline}
We will validate the work of {\bf ring} with the tools { \bf druc
}, { \bf lynx } and { \bf lvx }.\\
Validate the physical design rules:
\begin{commandline}
> druc amd2901_chip
\end{commandline}
Extract the netlist up to leave cells:
\begin{commandline}
> MBK_OUT_LO = al
> export MBK_OUT_LO
\end{commandline}
\begin{commandline}
> cougar -f amd2901_chip
\end{commandline}
Compare two netlists :
\begin{commandline}
> lvx vst al amd2901_chip amd2901_chip -f
\end{commandline}
\begin{commandline}
> MBK_OUT_LO = vst
> export MBK_OUT_LO
\end{commandline}
Simulated the extracted netlist with { \bf asimut }.
Pay attention to the file { \bf CATAL }!\\
To know the number of transistors, we carry out an extraction of
the circuit on the level transistor: \\
\begin{commandline}
> cougar -t amd2901_chip amd2901_chip
\end{commandline}
\\
If you want to see the amd2901 control part :
\begin{commandline}
> make view_ctl_logic
\end{commandline}
If you want to see the data-path physical layout:
\begin{commandline}
> make view_dpt_physic
\end{commandline}
note: you can see in red the critical path.
If you want to see the chip physical layout:
\begin{commandline}
> make view_chip_physic
\end{commandline}
If you want to see the different propagation times:
\begin{commandline}
> make view_chip_simulation
\end{commandline}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\newpage
%\section{Conclusion}
%-------------------
% This Tutorial enabled you to pass by the majority of the stages necessary to
% the design and the validation of a circuit carried out in precaracterized cells. \\
\newpage
\section{Annexes}
%-------------------
\begin{figure}[H]\centering
\includegraphics[scale=0.8]{dpt-all-1.eps}
\caption{data-path general view }
\label{Fig:dpt}
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%\cleardoublepage
\newpage
%\vfill
\newpage
%\vfill
\end{document}
|