1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
/*
* Amanda, The Advanced Maryland Automatic Network Disk Archiver
* Copyright (c) 2007-2012 Zmanda, Inc. All Rights Reserved.
* Copyright (c) 2013-2016 Carbonite, Inc. All Rights Reserved.
* All Rights Reserved.
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of U.M. not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. U.M. makes no representations about the
* suitability of this software for any purpose. It is provided "as is"
* without express or implied warranty.
*
* U.M. DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL U.M.
* BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Authors: the Amanda Development Team. Its members are listed in a
* file named AUTHORS, in the root directory of this distribution.
*/
#include <amanda.h>
#include <amutil.h>
#include <amcrc32chw.h>
#ifdef __SSE4_2__
gboolean compiled_with_sse4_2 = TRUE;
#define POLY 0x82F63B78
/* Multiply a matrix times a vector over the Galois field of two elements,
* GF(2). Each element is a bit in an unsigned integer. mat must have at
* least as many entries as the power of two for most significant one bit in
* vec. */
static inline uint32_t gf2_matrix_times(uint32_t *mat, uint32_t vec)
{
uint32_t sum;
sum = 0;
while (vec) {
if (vec & 1)
sum ^= *mat;
vec >>= 1;
mat++;
}
return sum;
}
/* Multiply a matrix by itself over GF(2). Both mat and square must have 32
* rows. */
static inline void gf2_matrix_square(uint32_t *square, uint32_t *mat)
{
int n;
for (n = 0; n < 32; n++)
square[n] = gf2_matrix_times(mat, mat[n]);
}
/* Construct an operator to apply len zeros to a crc. len must be a power of
* two. If len is not a power of two, then the result is the same as for the
* largest power of two less than len. The result for len == 0 is the same as
* for len == 1. A version of this routine could be easily written for any
* len, but that is not needed for this application. */
static void crc32c_zeros_op(uint32_t *even, size_t len)
{
int n;
uint32_t row;
uint32_t odd[32]; /* odd-power-of-two zeros operator */
/* put operator for one zero bit in odd */
odd[0] = POLY; /* CRC-32C polynomial */
row = 1;
for (n = 1; n < 32; n++) {
odd[n] = row;
row <<= 1;
}
/* put operator for two zero bits in even */
gf2_matrix_square(even, odd);
/* put operator for four zero bits in odd */
gf2_matrix_square(odd, even);
/* first square will put the operator for one zero byte (eight zero bits),
* in even -- next square puts operator for two zero bytes in odd, and so
* on, until len has been rotated down to zero */
do {
gf2_matrix_square(even, odd);
len >>= 1;
if (len == 0)
return;
gf2_matrix_square(odd, even);
len >>= 1;
} while (len);
/* answer ended up in odd -- copy to even */
for (n = 0; n < 32; n++)
even[n] = odd[n];
}
/* Take a length and build four lookup tables for applying the zeros operator
* for that length, byte-by-byte on the operand. */
static void crc32c_zeros(uint32_t zeros[][256], size_t len)
{
uint32_t n;
uint32_t op[32];
crc32c_zeros_op(op, len);
for (n = 0; n < 256; n++) {
zeros[0][n] = gf2_matrix_times(op, n);
zeros[1][n] = gf2_matrix_times(op, n << 8);
zeros[2][n] = gf2_matrix_times(op, n << 16);
zeros[3][n] = gf2_matrix_times(op, n << 24);
}
}
/* Apply the zeros operator table to crc. */
static inline uint32_t crc32c_shift(uint32_t zeros[][256], uint32_t crc)
{
uint32_t a=
zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24];
return a;
}
/* Block sizes for three-way parallel crc computation. LONG and SHORT must
* both be powers of two. The associated string constants must be set
* accordingly, for use in constructing the assembler instructions. */
#define LONG 8192
#define SHORT 256
#define LOW 128
/* Tables for hardware crc that shift a crc by LONG and SHORT zeros. */
static uint32_t crc32c_long[4][256];
static uint32_t crc32c_short[4][256];
static uint32_t crc32c_low[4][256];
/* Initialize tables for shifting crcs. */
void
crc32c_init_hw(void)
{
crc32c_zeros(crc32c_long, LONG);
crc32c_zeros(crc32c_short, SHORT);
crc32c_zeros(crc32c_low, LOW);
}
typedef struct {
union {
const uint8_t *b8;
const uint32_t *b32;
const uint64_t *b64;
} b;
} multi_b;
/* Compute CRC-32C using the Intel hardware instruction. */
void crc32c_add_hw(uint8_t *buf, size_t len, crc_t *crc)
{
multi_b next;
multi_b end;
uint32_t crc32_0;
#ifdef __x86_64__
uint64_t *next64_1;
uint64_t *next64_2;
uint64_t *next64_3;
uint64_t crc64_0, crc64_1, crc64_2, crc64_3; /* need to be 64 bits for crc32q */
#else
uint32_t *next32_1;
uint32_t *next32_2;
uint32_t *next32_3;
uint32_t crc32_1, crc32_2, crc32_3;
#endif
next.b.b8 = buf;
crc->size += len;
crc32_0 = (uint64_t)crc->crc;
/* pre-process the crc */
/* compute the crc for up to seven leading bytes to bring the data pointer
* to an eight-byte boundary */
while (len && ((uintptr_t)next.b.b8 & 7) != 0) {
crc32_0 = __builtin_ia32_crc32qi(crc32_0, *next.b.b8);
next.b.b8++;
len--;
}
#ifdef __x86_64__
/* compute the crc on sets of LONG*4 bytes, executing three independent crc
* instructions, each on LONG bytes -- this is optimized for the Nehalem,
* Westmere, Sandy Bridge, and Ivy Bridge architectures, which have a
* throughput of one crc per cycle, but a latency of three cycles */
crc64_0 = (uint64_t)crc32_0;
while (len >= LONG*4) {
crc64_1 = 0;
crc64_2 = 0;
crc64_3 = 0;
next64_1 = (uint64_t *)(next.b.b64+LONG/8);
next64_2 = (uint64_t *)(next.b.b64+(LONG/8)*2);
next64_3 = (uint64_t *)(next.b.b64+(LONG/8)*3);
end.b.b64 = next64_1;
do {
crc64_0 = __builtin_ia32_crc32di(crc64_0, *next.b.b64++);
crc64_1 = __builtin_ia32_crc32di(crc64_1, *next64_1++);
crc64_2 = __builtin_ia32_crc32di(crc64_2, *next64_2++);
crc64_3 = __builtin_ia32_crc32di(crc64_3, *next64_3++);
} while (next.b.b64 < end.b.b64);
crc64_0 = crc32c_shift(crc32c_long, (uint32_t)crc64_0) ^ crc64_1;
crc64_0 = crc32c_shift(crc32c_long, (uint32_t)crc64_0) ^ crc64_2;
crc64_0 = crc32c_shift(crc32c_long, (uint32_t)crc64_0) ^ crc64_3;
len -= LONG*4;
next.b.b64 = next64_3;
}
/* do the same thing, but now on SHORT*4 blocks for the remaining data less
* than a LONG*4 block */
while (len >= SHORT*4) {
crc64_1 = 0;
crc64_2 = 0;
crc64_3 = 0;
next64_1 = (uint64_t *)(next.b.b64+SHORT/8);
next64_2 = (uint64_t *)(next.b.b64+(SHORT/8)*2);
next64_3 = (uint64_t *)(next.b.b64+(SHORT/8)*3);
end.b.b64 = next64_1;
do {
crc64_0 = __builtin_ia32_crc32di(crc64_0, *next.b.b64++);
crc64_1 = __builtin_ia32_crc32di(crc64_1, *next64_1++);
crc64_2 = __builtin_ia32_crc32di(crc64_2, *next64_2++);
crc64_3 = __builtin_ia32_crc32di(crc64_3, *next64_3++);
} while (next.b.b64 < end.b.b64);
crc64_0 = crc32c_shift(crc32c_short, crc64_0) ^ crc64_1;
crc64_0 = crc32c_shift(crc32c_short, crc64_0) ^ crc64_2;
crc64_0 = crc32c_shift(crc32c_short, crc64_0) ^ crc64_3;
len -= SHORT*4;
next.b.b64 = next64_3;
}
/* compute the crc on the remaining eight-byte units less than a SHORT*3
* block */
end.b.b8 = next.b.b8 + (len - (len & 7));
while (next.b.b64 < end.b.b64) {
crc64_0 = __builtin_ia32_crc32di(crc64_0, *next.b.b64++);
}
len &= 7;
crc32_0 = (uint32_t)crc64_0;
#else
/* compute the crc on sets of LONG*4 bytes, executing three independent crc
* instructions, each on LONG bytes -- this is optimized for the Nehalem,
* Westmere, Sandy Bridge, and Ivy Bridge architectures, which have a
* throughput of one crc per cycle, but a latency of three cycles */
while (len >= LONG*4) {
crc32_1 = 0;
crc32_2 = 0;
crc32_3 = 0;
next32_1 = (uint32_t *)(next.b.b32+LONG/4);
next32_2 = (uint32_t *)(next.b.b32+(LONG/4)*2);
next32_3 = (uint32_t *)(next.b.b32+(LONG/4)*3);
end.b.b32 = next32_1;
do {
crc32_0 = __builtin_ia32_crc32si(crc32_0, *next.b.b32++);
crc32_1 = __builtin_ia32_crc32si(crc32_1, *next32_1++);
crc32_2 = __builtin_ia32_crc32si(crc32_2, *next32_2++);
crc32_3 = __builtin_ia32_crc32si(crc32_3, *next32_3++);
} while (next.b.b64 < end.b.b64);
crc32_0 = crc32c_shift(crc32c_long, crc32_0) ^ crc32_1;
crc32_0 = crc32c_shift(crc32c_long, crc32_0) ^ crc32_2;
crc32_0 = crc32c_shift(crc32c_long, crc32_0) ^ crc32_3;
len -= LONG*4;
next.b.b32 = next32_3;
}
/* do the same thing, but now on SHORT*4 blocks for the remaining data less
* than a LONG*4 block */
while (len >= SHORT*4) {
crc32_1 = 0;
crc32_2 = 0;
crc32_3 = 0;
next32_1 = (uint32_t *)(next.b.b32+SHORT/4);
next32_2 = (uint32_t *)(next.b.b32+(SHORT/4)*2);
next32_3 = (uint32_t *)(next.b.b32+(SHORT/4)*3);
end.b.b32 = next32_1;
do {
crc32_0 = __builtin_ia32_crc32si(crc32_0, *next.b.b32++);
crc32_1 = __builtin_ia32_crc32si(crc32_1, *next32_1++);
crc32_2 = __builtin_ia32_crc32si(crc32_2, *next32_2++);
crc32_3 = __builtin_ia32_crc32si(crc32_3, *next32_3++);
} while (next.b.b32 < end.b.b32);
crc32_0 = crc32c_shift(crc32c_short, crc32_0) ^ crc32_1;
crc32_0 = crc32c_shift(crc32c_short, crc32_0) ^ crc32_2;
crc32_0 = crc32c_shift(crc32c_short, crc32_0) ^ crc32_3;
len -= SHORT*4;
next.b.b32 = next32_3;
}
/* compute the crc on the remaining eight-byte units less than a SHORT*3
* block */
end.b.b8 = next.b.b8 + (len - (len & 7));
while (next.b.b32 < end.b.b32) {
crc32_0 = __builtin_ia32_crc32si(crc32_0, *next.b.b32++);
}
len &= 7;
#endif
/* compute the crc for up to seven trailing bytes */
crc->crc = crc32_0;
switch (len) {
case 7:
crc->crc = __builtin_ia32_crc32qi(crc->crc, *next.b.b8++);
// fall through
case 6:
crc->crc = __builtin_ia32_crc32hi(crc->crc, *(uint16_t*) next.b.b8);
next.b.b8 += 2;
// fall through
// case 5 is below: 4 + 1
case 4:
crc->crc = __builtin_ia32_crc32si(crc->crc, *(uint32_t*) next.b.b8);
break;
case 3:
crc->crc = __builtin_ia32_crc32qi(crc->crc, *next.b.b8++);
// fall through
case 2:
crc->crc = __builtin_ia32_crc32hi(crc->crc, *(uint16_t*) next.b.b8);
break;
case 5:
crc->crc = __builtin_ia32_crc32si(crc->crc, *(uint32_t*) next.b.b8);
next.b.b8 += 4;
// fall through
case 1:
crc->crc = __builtin_ia32_crc32qi(crc->crc, *next.b.b8);
break;
case 0:
break;
default:
// This should never happen; enable in debug code
//assert(false);
break;
}
}
#else
gboolean compiled_with_sse4_2 = FALSE;
void
crc32c_init_hw(void)
{
g_error("crc32c_init_hw is not defined");
}
void crc32c_add_hw(
uint8_t *buf G_GNUC_UNUSED,
size_t len G_GNUC_UNUSED,
crc_t *crc G_GNUC_UNUSED)
{
g_error("crc32c_add_hw is not defined");
}
#endif
|