1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
|
Using near null-space vectors
-----------------------------
Using near null-space vectors may greately improve the quality of the
aggregation AMG preconditioner. For the elasticity or structural problems the
near-null space vectors may be computed as rigid body modes from the
coordinates of the discretization grid nodes. In this tutorial we will use the
system obtained by discretization of a 3D elasticity problem modeling a
connecting rod:
.. figure:: ../../tutorial/5.Nullspace/displacements.png
:width: 90%
:name: connrod_msh
The connecting rod geometry with the computed displacements
The dataset was kindly provided by David Herrero Pérez (`@davidherreroperez
<https://github.com/davidherreroperez>`_) in the issue `#135
<https://github.com/ddemidov/amgcl/issues/135>`_ on Github and is
available for download at `doi:10.5281/zenodo.4299865
<https://doi.org/10.5281/zenodo.4299865>`_. The system matrix is symmetric, has
block structure with small :math:`3\times3` blocks, and
has 81,657 rows and 3,171,111 nonzero values (about 39 nonzero entries per row
on average). The matrix portrait is shown on the figure below:
.. figure:: ../../tutorial/5.Nullspace/matrix.png
:width: 90%
:name: connrod_mtx
The nonzero portrait of the connecting rod system.
It is possible to solve the system using the CG iterative solver preconditioned
with the smoothed aggregation AMG, but the convergence is not that great::
$ solver -A A.mtx -f b.mtx solver.type=cg solver.maxiter=1000
Solver
======
Type: CG
Unknowns: 81657
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 3
Operator complexity: 1.14
Grid complexity: 1.07
Memory footprint: 70.09 M
level unknowns nonzeros memory
---------------------------------------------
0 81657 3171111 62.49 M (87.98%)
1 5067 417837 7.16 M (11.59%)
2 305 15291 450.07 K ( 0.42%)
Iterations: 698
Error: 8.96391e-09
[Profile: 11.717 s] (100.00%)
[ reading: 2.123 s] ( 18.12%)
[ setup: 0.122 s] ( 1.04%)
[ solve: 9.472 s] ( 80.84%)
We can improve the solution time by taking the block structure of the system into
account in the aggregation algorithm::
$ solver -A A.mtx -f b.mtx solver.type=cg solver.maxiter=1000 \
precond.coarsening.aggr.block_size=3
Solver
======
Type: CG
Unknowns: 81657
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 3
Operator complexity: 1.29
Grid complexity: 1.10
Memory footprint: 92.40 M
level unknowns nonzeros memory
---------------------------------------------
0 81657 3171111 75.83 M (77.71%)
1 7773 858051 15.70 M (21.03%)
2 555 51327 890.16 K ( 1.26%)
Iterations: 197
Error: 8.76043e-09
[Profile: 5.525 s] (100.00%)
[ reading: 2.170 s] ( 39.28%)
[ setup: 0.173 s] ( 3.14%)
[ solve: 3.180 s] ( 57.56%)
.. _examples/solver: https://github.com/ddemidov/amgcl/blob/master/examples/solver.cpp
However, since this is an elasticity problem and we know the coordinates for
the discretization mesh, we can compute the rigid body modes and provide them
as the near null-space vectors for the smoothed aggregation AMG method. AMGCL
has a convenience function :cpp:func:`amgcl::coarsening::rigid_body_modes()`
that takes the 2D or 3D coordinates and converts them into the rigid body
modes. The `examples/solver`_ utility allows to specify the file containing the
coordinates on the command line::
$ solver -A A.mtx -f b.mtx solver.type=cg \
precond.coarsening.aggr.eps_strong=0 -C C.mtx
Solver
======
Type: CG
Unknowns: 81657
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 3
Operator complexity: 1.52
Grid complexity: 1.10
Memory footprint: 132.15 M
level unknowns nonzeros memory
---------------------------------------------
0 81657 3171111 102.70 M (65.77%)
1 7704 1640736 29.33 M (34.03%)
2 144 9576 122.07 K ( 0.20%)
Iterations: 63
Error: 8.4604e-09
[Profile: 3.764 s] (100.00%)
[ reading: 2.217 s] ( 58.89%)
[ setup: 0.350 s] ( 9.30%)
[ solve: 1.196 s] ( 31.78%)
In the 3D case we get 6 near null-space vectors corresponding to the rigid body
modes. Note that this makes the preconditioner more expensive memory-wise: the
memory footprint of the preconditioner has increased to 132M from 70M in the
simplest case and 92M in the case using the block structure of the matrix. But
this pays up in terms of performance: the number of iterations dropped from 197
to 63 and the solution time decreased from 3.2 seconds to 1.2 seconds.
.. _examples/ns_search.cpp: https://github.com/ddemidov/amgcl/blob/master/examples/ns_search.cpp
In principle, it is also possible to approximate the near null-space vectors by
solving the homogeneous system :math:`Ax=0`, starting with a random initial
solution :math:`x`. We may use the computed :math:`x` as a near-null space
vector, solve the homogeneous system again from a different random start, and
do this until we have enough near null-space vectors. The
`examples/ns_search.cpp`_ example shows how to do this. However, this process
is quite expensive, because we need to solve the system multiple times,
starting with a badly tuned solver at that. It is probably only worth the time
in case one needs to solve the same system efficiently for multiple right-hand
side vectors. Below is an example of searching for the 6 near null-space
vectors::
$ ns_search -A A.mtx -f b.mtx solver.type=cg solver.maxiter=1000 \
precond.coarsening.aggr.eps_strong=0 -n6 -o N6.mtx
-------------------------
-- Searching for vector 0
-------------------------
Solver
======
Type: CG
Unknowns: 81657
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 2
Operator complexity: 1.01
Grid complexity: 1.02
Memory footprint: 62.79 M
level unknowns nonzeros memory
---------------------------------------------
0 81657 3171111 60.56 M (98.58%)
1 1284 45576 2.24 M ( 1.42%)
Iterations: 932
Error: 8.66233e-09
-------------------------
-- Searching for vector 1
-------------------------
Solver
======
Type: CG
Unknowns: 81657
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 2
Operator complexity: 1.01
Grid complexity: 1.02
Memory footprint: 62.79 M
level unknowns nonzeros memory
---------------------------------------------
0 81657 3171111 60.56 M (98.58%)
1 1284 45576 2.24 M ( 1.42%)
Iterations: 750
Error: 9.83476e-09
-------------------------
-- Searching for vector 2
-------------------------
Solver
======
Type: CG
Unknowns: 81657
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 2
Operator complexity: 1.06
Grid complexity: 1.03
Memory footprint: 76.72 M
level unknowns nonzeros memory
---------------------------------------------
0 81657 3171111 68.98 M (94.56%)
1 2568 182304 7.74 M ( 5.44%)
Iterations: 528
Error: 8.74633e-09
-------------------------
-- Searching for vector 3
-------------------------
Solver
======
Type: CG
Unknowns: 81657
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 3
Operator complexity: 1.13
Grid complexity: 1.05
Memory footprint: 84.87 M
level unknowns nonzeros memory
---------------------------------------------
0 81657 3171111 77.41 M (88.49%)
1 3852 410184 7.42 M (11.45%)
2 72 2394 31.36 K ( 0.07%)
Iterations: 391
Error: 9.04425e-09
-------------------------
-- Searching for vector 4
-------------------------
Solver
======
Type: CG
Unknowns: 81657
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 3
Operator complexity: 1.23
Grid complexity: 1.06
Memory footprint: 99.01 M
level unknowns nonzeros memory
---------------------------------------------
0 81657 3171111 85.84 M (81.22%)
1 5136 729216 13.11 M (18.68%)
2 96 4256 55.00 K ( 0.11%)
Iterations: 238
Error: 9.51092e-09
-------------------------
-- Searching for vector 5
-------------------------
Solver
======
Type: CG
Unknowns: 81657
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 3
Operator complexity: 1.36
Grid complexity: 1.08
Memory footprint: 114.78 M
level unknowns nonzeros memory
---------------------------------------------
0 81657 3171111 94.27 M (73.45%)
1 6420 1139400 20.42 M (26.39%)
2 120 6650 85.24 K ( 0.15%)
Iterations: 175
Error: 9.43207e-09
-------------------------
-- Solving the system
-------------------------
Solver
======
Type: CG
Unknowns: 81657
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 3
Operator complexity: 1.52
Grid complexity: 1.10
Memory footprint: 132.15 M
level unknowns nonzeros memory
---------------------------------------------
0 81657 3171111 102.70 M (65.77%)
1 7704 1640736 29.33 M (34.03%)
2 144 9576 122.07 K ( 0.20%)
Iterations: 100
Error: 8.14427e-09
[Profile: 48.503 s] (100.00%)
[ apply: 2.373 s] ( 4.89%)
[ setup: 0.422 s] ( 0.87%)
[ solve: 1.949 s] ( 4.02%)
[ read: 2.113 s] ( 4.36%)
[ search: 43.713 s] ( 90.12%)
[ vector 0: 12.437 s] ( 25.64%)
[ setup: 0.101 s] ( 0.21%)
[ solve: 12.335 s] ( 25.43%)
[ vector 1: 9.661 s] ( 19.92%)
[ setup: 0.115 s] ( 0.24%)
[ solve: 9.545 s] ( 19.68%)
[ vector 2: 7.584 s] ( 15.64%)
[ setup: 0.217 s] ( 0.45%)
[ solve: 7.365 s] ( 15.18%)
[ vector 3: 6.137 s] ( 12.65%)
[ setup: 0.180 s] ( 0.37%)
[ solve: 5.954 s] ( 12.28%)
[ vector 4: 4.353 s] ( 8.97%)
[ setup: 0.246 s] ( 0.51%)
[ solve: 4.100 s] ( 8.45%)
[ vector 5: 3.541 s] ( 7.30%)
[ setup: 0.337 s] ( 0.69%)
[ solve: 3.200 s] ( 6.60%)
[ write: 0.303 s] ( 0.63%)
Note that the number of iterations required to find the next vector is
gradually decreasing, as the quality of the solver increases. The 6
orthogonalized vectors are saved to the output file ``N6.mtx`` and are also
used to solve the original system. We can also use the file with the
`examples/solver`_::
$ solver -A A.mtx -f b.mtx solver.type=cg \
precond.coarsening.aggr.eps_strong=0 -N N6.mtx
Solver
======
Type: CG
Unknowns: 81657
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 3
Operator complexity: 1.52
Grid complexity: 1.10
Memory footprint: 132.15 M
level unknowns nonzeros memory
---------------------------------------------
0 81657 3171111 102.70 M (65.77%)
1 7704 1640736 29.33 M (34.03%)
2 144 9576 122.07 K ( 0.20%)
Iterations: 100
Error: 8.14427e-09
[Profile: 4.736 s] (100.00%)
[ reading: 2.407 s] ( 50.83%)
[ setup: 0.354 s] ( 7.47%)
[ solve: 1.974 s] ( 41.69%)
This is an improvement with respect to the version that only uses the blockwize
structure of the matrix, but is about 50% less effective than the version using
the grid coordinates in order to compute the rigid body modes.
The listing below shows the complete source code computing the near null-space
vectors from the mesh coordinates and using the vectors in order to improve the
quality of the preconditioner. We include the
``<amgcl/coarsening/rigid_body_modes.hpp>`` header to bring the definition of
the :cpp:func:`amgcl::coarsening::rigid_body_modes()` function in line 9, and
use the function to convert the 3D coordinates into the 6 near null-space
vectors (rigid body modes) in lines 65--66. In lines 37--38 we check that the
coordinate file has the correct dimensions (since each grid node has three
displacement components associated with the node, the coordinate file should
have three times less rows than the system matrix). The rest of the code should
be quite familiar.
.. _scalar:
.. literalinclude:: ../../tutorial/5.Nullspace/nullspace.cpp
:caption: The solution of the connecting rod problem using the near null-space vectors.
:language: cpp
:linenos:
:emphasize-lines: 9,37-38,65-66
.. _tutorial/5.Nullspace/nullspace.cpp: https://github.com/ddemidov/amgcl/blob/master/tutorial/5.Nullspace/nullspace.cpp
The output of the compiled program is shown below::
$ ./nullspace A.mtx b.mtx C.mtx
Matrix A.mtx: 81657x81657
RHS b.mtx: 81657x1
Coords C.mtx: 27219x3
Solver
======
Type: CG
Unknowns: 81657
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 3
Operator complexity: 1.52
Grid complexity: 1.10
Memory footprint: 98.76 M
level unknowns nonzeros memory
---------------------------------------------
0 81657 3171111 76.73 M (65.77%)
1 7704 1640736 21.97 M (34.03%)
2 144 9576 61.60 K ( 0.20%)
Iters: 63
Error: 8.46024e-09
[Nullspace: 3.653 s] (100.00%)
[ read: 2.173 s] ( 59.48%)
[ setup: 0.326 s] ( 8.94%)
[ solve: 1.150 s] ( 31.48%)
As was noted above, using the near null-space vectors makes the preconditioner
less memory-efficient: since the 6 rigid-body modes are used as null-space
vectors, every fine-grid aggregate is converted to 6 unknowns on the coarser
level. The following figure shows the structure of the system matrix on the
second level of the hierarchy, and it is obvious that the matrix has
:math:`6\times6` block structure:
.. figure:: ../../tutorial/5.Nullspace/matrix_coarse.png
:width: 90%
:name: connrod_coarse_mtx
The nonzero portrait of the system matrix on the second level of the AMG
hierarchy.
It should be possible to represent both the initial matrix and the matrices on
each level of the hiearachy using the :math:`3\times3` block value type, as we
did in the :doc:`Structural problem <Serena>` example. Unfortunaltely, AMGCL is
not yet able to utilize near null-space vectors with block-valued backends.
One possible solution to this problem, suggested by Piotr Hellstein (`@dokotor
<https://github.com/dokotor>`_) in GitHub issue `#215
<https://github.com/ddemidov/amgcl/issues/215>`_, is to convert the matrices to
the block-wise storage format after the hiearchy has been constructed. This has
been implemented in form of the :doc:`hybrid OpenMP and VexCL backends
</components/backends>`.
The listing below shows an example of using the hybrid OpenMP backend
(`tutorial/5.Nullspace/nullspace_hybrid.cpp`_). The only difference with the
scalar_ code is the definition of the block value type and the use of the
hybrid backend (lines 46--49).
.. _tutorial/5.Nullspace/nullspace_hybrid.cpp: https://github.com/ddemidov/amgcl/blob/master/tutorial/5.Nullspace/nullspace_hybrid.cpp
.. literalinclude:: ../../tutorial/5.Nullspace/nullspace_hybrid.cpp
:caption: Using hybrid OpenMP backend while providing near null-space vectors.
:language: cpp
:linenos:
:emphasize-lines: 5,46-49
This results in the following output. Note that the memory footprint of the
preconditioner dropped from 98M to 41M (by 58%), and the solution time dropped
from 1.150s to 0.707s (by 38%)::
$ ./nullspace_hybrid A.mtx b.mtx C.mtx
Matrix A.mtx: 81657x81657
RHS b.mtx: 81657x1
Coords C.mtx: 27219x3
Solver
======
Type: CG
Unknowns: 81657
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 3
Operator complexity: 1.52
Grid complexity: 1.10
Memory footprint: 40.98 M
level unknowns nonzeros memory
---------------------------------------------
0 81657 3171111 31.90 M (65.77%)
1 7704 1640736 9.01 M (34.03%)
2 144 9576 61.60 K ( 0.20%)
Iters: 63
Error: 8.4562e-09
[Nullspace: 3.304 s] (100.00%)
[ self: 0.003 s] ( 0.10%)
[ read: 2.245 s] ( 67.94%)
[ setup: 0.349 s] ( 10.57%)
[ solve: 0.707 s] ( 21.38%)
Another possible solution is to use a block-valued backend both for constructing
the hierarchy and for the solution phase. In order to allow for the coarsening
scheme to use the near null-space vectors, the
:cpp:class:`amgcl::coarsening::as_scalar` coarsening wrapper may be used. The
wrapper converts the input matrix to scalar format, applies the base coarsening
strategy to the scalar matrix, and converts the computed transfer operators
back to block format. This approach results in faster setup times, since every
other operation besides coarsening is performed using block arithmetics.
The listing below shows an example of using the :cpp:class:`amgcl::coarsening::as_scalar`
wrapper (`tutorial/5.Nullspace/nullspace_block.cpp`_). The system matrix is
converted to block format in line 78 in the same way it was done in the
:doc:`Structural problem <Serena>` tutorial. The RHS and the solution vectors are
reinterpreted to contain block values in lines 94-95. The SPAI0 relaxation here
resulted in the increased number of interations, so we used the ILU(0)
relaxaion.
.. _tutorial/5.Nullspace/nullspace_block.cpp: https://github.com/ddemidov/amgcl/blob/master/tutorial/5.Nullspace/nullspace_block.cpp
.. literalinclude:: ../../tutorial/5.Nullspace/nullspace_block.cpp
:caption: Using `amgcl::coarsening::as_scalar` coarsening wrapper with a block-valued backend.
:language: cpp
:emphasize-lines: 7,12-13,48-51,56-58,78,94-95,98
:linenos:
This results are presented below. Note that even though the more advanced ILU(0)
smoother was used, the setup time has been reduced, since ILU(0) was
constructed using block arithmetics.::
$ ./nullspace_block A.mtx b.mtx C.mtx
Matrix A.mtx: 81657x81657
RHS b.mtx: 81657x1
Coords C.mtx: 27219x3
Solver
======
Type: CG
Unknowns: 27219
Memory footprint: 2.49 M
Preconditioner
==============
Number of levels: 3
Operator complexity: 1.52
Grid complexity: 1.10
Memory footprint: 63.24 M
level unknowns nonzeros memory
---------------------------------------------
0 27219 352371 46.45 M (65.77%)
1 2568 182304 16.73 M (34.03%)
2 48 1064 60.85 K ( 0.20%)
Iters: 32
Error: 7.96226e-09
[Nullspace: 2.885 s] (100.00%)
[ read: 2.160 s] ( 74.87%)
[ setup: 0.249 s] ( 8.64%)
[ solve: 0.473 s] ( 16.39%)
|