File: poisson3Db.cpp

package info (click to toggle)
amgcl 1.4.4-1
  • links: PTS, VCS
  • area: contrib
  • in suites: sid
  • size: 5,676 kB
  • sloc: cpp: 34,043; python: 747; pascal: 258; f90: 196; makefile: 20
file content (84 lines) | stat: -rw-r--r-- 2,577 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#include <vector>
#include <iostream>

#include <amgcl/backend/builtin.hpp>
#include <amgcl/adapter/crs_tuple.hpp>
#include <amgcl/make_solver.hpp>
#include <amgcl/amg.hpp>
#include <amgcl/coarsening/smoothed_aggregation.hpp>
#include <amgcl/relaxation/spai0.hpp>
#include <amgcl/solver/bicgstab.hpp>

#include <amgcl/io/mm.hpp>
#include <amgcl/profiler.hpp>

int main(int argc, char *argv[]) {
    // The matrix and the RHS file names should be in the command line options:
    if (argc < 3) {
        std::cerr << "Usage: " << argv[0] << " <matrix.mtx> <rhs.mtx>" << std::endl;
        return 1;
    }

    // The profiler:
    amgcl::profiler<> prof("poisson3Db");

    // Read the system matrix and the RHS:
    ptrdiff_t rows, cols;
    std::vector<ptrdiff_t> ptr, col;
    std::vector<double> val, rhs;

    prof.tic("read");
    std::tie(rows, cols) = amgcl::io::mm_reader(argv[1])(ptr, col, val);
    std::cout << "Matrix " << argv[1] << ": " << rows << "x" << cols << std::endl;

    std::tie(rows, cols) = amgcl::io::mm_reader(argv[2])(rhs);
    std::cout << "RHS " << argv[2] << ": " << rows << "x" << cols << std::endl;
    prof.toc("read");

    // We use the tuple of CRS arrays to represent the system matrix.
    // Note that std::tie creates a tuple of references, so no data is actually
    // copied here:
    auto A = std::tie(rows, ptr, col, val);

    // Compose the solver type
    //   the solver backend:
    typedef amgcl::backend::builtin<double> SBackend;
    //   the preconditioner backend:
#ifdef MIXED_PRECISION
    typedef amgcl::backend::builtin<float> PBackend;
#else
    typedef amgcl::backend::builtin<double> PBackend;
#endif
    
    typedef amgcl::make_solver<
        amgcl::amg<
            PBackend,
            amgcl::coarsening::smoothed_aggregation,
            amgcl::relaxation::spai0
            >,
        amgcl::solver::bicgstab<SBackend>
        > Solver;

    // Initialize the solver with the system matrix:
    prof.tic("setup");
    Solver solve(A);
    prof.toc("setup");

    // Show the mini-report on the constructed solver:
    std::cout << solve << std::endl;

    // Solve the system with the zero initial approximation:
    int iters;
    double error;
    std::vector<double> x(rows, 0.0);

    prof.tic("solve");
    std::tie(iters, error) = solve(A, rhs, x);
    prof.toc("solve");

    // Output the number of iterations, the relative error,
    // and the profiling data:
    std::cout << "Iters: " << iters << std::endl
              << "Error: " << error << std::endl
              << prof << std::endl;
}