1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
#include <vector>
#include <iostream>
#include <amgcl/backend/builtin.hpp>
#include <amgcl/value_type/static_matrix.hpp>
#include <amgcl/adapter/crs_tuple.hpp>
#include <amgcl/adapter/block_matrix.hpp>
#include <amgcl/make_solver.hpp>
#include <amgcl/amg.hpp>
#include <amgcl/coarsening/smoothed_aggregation.hpp>
#include <amgcl/coarsening/rigid_body_modes.hpp>
#include <amgcl/coarsening/as_scalar.hpp>
#include <amgcl/relaxation/ilu0.hpp>
#include <amgcl/solver/cg.hpp>
#include <amgcl/io/mm.hpp>
#include <amgcl/profiler.hpp>
int main(int argc, char *argv[]) {
// The command line should contain the matrix, the RHS, and the coordinate files:
if (argc < 4) {
std::cerr << "Usage: " << argv[0] << " <A.mtx> <b.mtx> <coo.mtx>" << std::endl;
return 1;
}
// The profiler:
amgcl::profiler<> prof("Nullspace");
// Read the system matrix, the RHS, and the coordinates:
ptrdiff_t rows, cols, ndim, ncoo;
std::vector<ptrdiff_t> ptr, col;
std::vector<double> val, rhs, coo;
prof.tic("read");
std::tie(rows, rows) = amgcl::io::mm_reader(argv[1])(ptr, col, val);
std::tie(rows, cols) = amgcl::io::mm_reader(argv[2])(rhs);
std::tie(ncoo, ndim) = amgcl::io::mm_reader(argv[3])(coo);
prof.toc("read");
amgcl::precondition(ncoo * ndim == rows && (ndim == 2 || ndim == 3),
"The coordinate file has wrong dimensions");
std::cout << "Matrix " << argv[1] << ": " << rows << "x" << rows << std::endl;
std::cout << "RHS " << argv[2] << ": " << rows << "x" << cols << std::endl;
std::cout << "Coords " << argv[3] << ": " << ncoo << "x" << ndim << std::endl;
// Declare the solver type
typedef amgcl::static_matrix<double, 3, 3> DBlock;
typedef amgcl::static_matrix<float, 3, 3> FBlock;
typedef amgcl::backend::builtin<DBlock> SBackend; // the solver backend
typedef amgcl::backend::builtin<FBlock> PBackend; // the preconditioner backend
typedef amgcl::make_solver<
amgcl::amg<
PBackend,
amgcl::coarsening::as_scalar<
amgcl::coarsening::smoothed_aggregation
>::type,
amgcl::relaxation::ilu0
>,
amgcl::solver::cg<SBackend>
> Solver;
// Solver parameters:
Solver::params prm;
prm.solver.maxiter = 500;
prm.precond.coarsening.aggr.eps_strong = 0;
// Convert the coordinates to the rigid body modes.
// The function returns the number of near null-space vectors
// (3 in 2D case, 6 in 3D case) and writes the vectors to the
// std::vector<double> specified as the last argument:
prm.precond.coarsening.nullspace.cols = amgcl::coarsening::rigid_body_modes(
ndim, coo, prm.precond.coarsening.nullspace.B);
// We use the tuple of CRS arrays to represent the system matrix.
auto A = std::tie(rows, ptr, col, val);
auto Ab = amgcl::adapter::block_matrix<DBlock>(A);
// Initialize the solver with the system matrix.
prof.tic("setup");
Solver solve(Ab, prm);
prof.toc("setup");
// Show the mini-report on the constructed solver:
std::cout << solve << std::endl;
// Solve the system with the zero initial approximation:
int iters;
double error;
std::vector<double> x(rows, 0.0);
// Reinterpret both the RHS and the solution vectors as block-valued:
auto F = amgcl::backend::reinterpret_as_rhs<DBlock>(rhs);
auto X = amgcl::backend::reinterpret_as_rhs<DBlock>(x);
prof.tic("solve");
std::tie(iters, error) = solve(Ab, F, X);
prof.toc("solve");
// Output the number of iterations, the relative error,
// and the profiling data:
std::cout << "Iters: " << iters << std::endl
<< "Error: " << error << std::endl
<< prof << std::endl;
}
|