File: gaussian.rst

package info (click to toggle)
amp 0.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster
  • size: 8,396 kB
  • sloc: python: 9,629; f90: 3,195; makefile: 58
file content (34 lines) | stat: -rw-r--r-- 1,343 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
.. _Gaussian:


Gaussian descriptor
===================

Custom parameters
-----------------

The Gaussian descriptor creates feature vectors based on the Behler scheme, and defaults to values used in Nano Letters 14:2670, 2014. You can specify custom parameters for the elements of the feature vectors as listed in the documentation of the :class:`~amp.descriptor.gaussian.Gaussian` class.

There is also a helper function :func:`~amp.descriptor.gaussian.make_symmetry_functions` within the :mod:`amp.descriptor.gaussian` module to assist with this. An example of making a custom fingerprint is given below for a two-element system.

.. code-block:: python

 import numpy as np
 from amp import Amp
 from amp.descriptor.gaussian import Gaussian, make_symmetry_functions
 from amp.model.neuralnetwork import NeuralNetwork

 elements = ['Cu', 'Pt']
 G = make_symmetry_functions(elements=elements, type='G2',
                             etas=np.logspace(np.log10(0.05), np.log10(80.),
                                              num=4))
 G += make_symmetry_functions(elements=elements, type='G4',
                              etas=[0.005],
                              zetas=[1., 4.],
                              gammas=[+1., -1.])

 G = {'Cu': G,
      'Pt': G}
 calc = Amp(descriptor=Gaussian(Gs=G),
            model=NeuralNetwork())