File: BruteForceRNC1Encoder.cpp

package info (click to toggle)
ancient 2.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,216 kB
  • sloc: cpp: 16,037; makefile: 225; sh: 31
file content (549 lines) | stat: -rw-r--r-- 15,731 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
/* Copyright (C) Teemu Suutari */

// This is really quick and dirty. Works though

#include <memory>

#include <cstdint>
#include <cstring>

#include <fstream>
#include <vector>
#include <string>
#include <algorithm>
#include <functional>

#include <cstdio>
#include <dirent.h>
#include <sys/stat.h>

#include "common/Buffer.hpp"
#include "common/SubBuffer.hpp"

#define FUZZY_BLOCK_CUT_THRESHOLD (256)

namespace ancient::internal
{

class VectorBuffer : public Buffer
{
public:
	VectorBuffer();

	virtual ~VectorBuffer() override final;

	virtual const uint8_t *data() const noexcept override final;
	virtual uint8_t *data() override final;
	virtual size_t size() const noexcept override final;

	virtual bool isResizable() const noexcept override final;
	virtual void resize(size_t newSize) override final;

private:
	std::vector<uint8_t>  _data;
};

VectorBuffer::VectorBuffer()
{
	// nothing needed
}

VectorBuffer::~VectorBuffer()
{
	// nothing needed
}

const uint8_t *VectorBuffer::data() const noexcept
{
	return _data.data();
}

uint8_t *VectorBuffer::data()
{
	return _data.data();
}

size_t VectorBuffer::size() const noexcept
{
	return _data.size();
}

bool VectorBuffer::isResizable() const noexcept
{
	return true;
}

void VectorBuffer::resize(size_t newSize) 
{
	return _data.resize(newSize);
}

std::unique_ptr<Buffer> readFile(const std::string &fileName)
{

	std::unique_ptr<Buffer> ret=std::make_unique<VectorBuffer>();
	std::ifstream file(fileName.c_str(),std::ios::in|std::ios::binary);
	bool success=false;
	if (file.is_open())
	{
		file.seekg(0,std::ios::end);
		size_t length=size_t(file.tellg());
		file.seekg(0,std::ios::beg);
		ret->resize(length);
		file.read(reinterpret_cast<char*>(ret->data()),length);
		success=bool(file);
		if (!success) ret->resize(0);
		file.close();
	}
	if (!success)
	{
		fprintf(stderr,"Could not read file %s\n",fileName.c_str());
	}
	return ret;
}

bool writeFile(const std::string &fileName,const Buffer &content)
{
	bool ret=false;
	std::ofstream file(fileName.c_str(),std::ios::out|std::ios::binary|std::ios::trunc);
	if (file.is_open()) {
		file.write(reinterpret_cast<const char*>(content.data()),content.size());
		ret=bool(file);
		file.close();
	}
	if (!ret)
	{
		fprintf(stderr,"Could not write file %s\n",fileName.c_str());
	}
	return ret;
}

uint16_t RNCCRC(const uint8_t *buffer,size_t len)
{
	// bit reversed 16bit CRC with 0x8005 polynomial
	static const uint16_t CRCTable[256]={
		0x0000,0xc0c1,0xc181,0x0140,0xc301,0x03c0,0x0280,0xc241,0xc601,0x06c0,0x0780,0xc741,0x0500,0xc5c1,0xc481,0x0440,
		0xcc01,0x0cc0,0x0d80,0xcd41,0x0f00,0xcfc1,0xce81,0x0e40,0x0a00,0xcac1,0xcb81,0x0b40,0xc901,0x09c0,0x0880,0xc841,
		0xd801,0x18c0,0x1980,0xd941,0x1b00,0xdbc1,0xda81,0x1a40,0x1e00,0xdec1,0xdf81,0x1f40,0xdd01,0x1dc0,0x1c80,0xdc41,
		0x1400,0xd4c1,0xd581,0x1540,0xd701,0x17c0,0x1680,0xd641,0xd201,0x12c0,0x1380,0xd341,0x1100,0xd1c1,0xd081,0x1040,
		0xf001,0x30c0,0x3180,0xf141,0x3300,0xf3c1,0xf281,0x3240,0x3600,0xf6c1,0xf781,0x3740,0xf501,0x35c0,0x3480,0xf441,
		0x3c00,0xfcc1,0xfd81,0x3d40,0xff01,0x3fc0,0x3e80,0xfe41,0xfa01,0x3ac0,0x3b80,0xfb41,0x3900,0xf9c1,0xf881,0x3840,
		0x2800,0xe8c1,0xe981,0x2940,0xeb01,0x2bc0,0x2a80,0xea41,0xee01,0x2ec0,0x2f80,0xef41,0x2d00,0xedc1,0xec81,0x2c40,
		0xe401,0x24c0,0x2580,0xe541,0x2700,0xe7c1,0xe681,0x2640,0x2200,0xe2c1,0xe381,0x2340,0xe101,0x21c0,0x2080,0xe041,
		0xa001,0x60c0,0x6180,0xa141,0x6300,0xa3c1,0xa281,0x6240,0x6600,0xa6c1,0xa781,0x6740,0xa501,0x65c0,0x6480,0xa441,
		0x6c00,0xacc1,0xad81,0x6d40,0xaf01,0x6fc0,0x6e80,0xae41,0xaa01,0x6ac0,0x6b80,0xab41,0x6900,0xa9c1,0xa881,0x6840,
		0x7800,0xb8c1,0xb981,0x7940,0xbb01,0x7bc0,0x7a80,0xba41,0xbe01,0x7ec0,0x7f80,0xbf41,0x7d00,0xbdc1,0xbc81,0x7c40,
		0xb401,0x74c0,0x7580,0xb541,0x7700,0xb7c1,0xb681,0x7640,0x7200,0xb2c1,0xb381,0x7340,0xb101,0x71c0,0x7080,0xb041,
		0x5000,0x90c1,0x9181,0x5140,0x9301,0x53c0,0x5280,0x9241,0x9601,0x56c0,0x5780,0x9741,0x5500,0x95c1,0x9481,0x5440,
		0x9c01,0x5cc0,0x5d80,0x9d41,0x5f00,0x9fc1,0x9e81,0x5e40,0x5a00,0x9ac1,0x9b81,0x5b40,0x9901,0x59c0,0x5880,0x9841,
		0x8801,0x48c0,0x4980,0x8941,0x4b00,0x8bc1,0x8a81,0x4a40,0x4e00,0x8ec1,0x8f81,0x4f40,0x8d01,0x4dc0,0x4c80,0x8c41,
		0x4400,0x84c1,0x8581,0x4540,0x8701,0x47c0,0x4680,0x8641,0x8201,0x42c0,0x4380,0x8341,0x4100,0x81c1,0x8081,0x4040};

	uint16_t retValue=0;
	for (size_t i=0;i<len;i++)
		retValue=(retValue>>8)^CRCTable[(retValue&0xff)^buffer[i]];
	return retValue;
}

// this is really really quick 'n dirty
// leeway is suspicious. I can't see it from the official RNC ProPack, but seems to be present elsewhere...
void packRNC(Buffer &dest,const Buffer &source,uint32_t chunkSize)
{
	if (!chunkSize) chunkSize=32768;		// seems to be a good default
	if (chunkSize>65536) chunkSize=65536;
	if (chunkSize<4096) chunkSize=4096;

	std::vector<uint8_t> stream(20);
	stream[0]='R';
	stream[1]='N';
	stream[2]='C';
	stream[3]=1;

	stream[4]=uint8_t(source.size()>>24);
	stream[5]=uint8_t(source.size()>>16);
	stream[6]=uint8_t(source.size()>>8);
	stream[7]=uint8_t(source.size());

	stream[8]=stream[9]=stream[10]=stream[11]=0;	

	uint16_t rawCrc=RNCCRC(source.data(),source.size());
	stream[12]=uint8_t(rawCrc>>8);
	stream[13]=uint8_t(rawCrc);

	stream[14]=stream[15]=stream[16]=stream[17]=0;

	stream[18]=stream[19]=0;
	uint32_t bitStreamPosition=18;
	uint32_t bitAccumContent=0;
	uint32_t bitAccumCount=2;


	uint32_t offset=0;
	uint32_t chunkCount=0;
	uint32_t leeway=0;
	while (offset!=source.size())
	{
		auto bitLength=[](uint32_t value)->uint32_t
		{
			uint32_t ret=0;
			while (value)
			{
				value>>=1;
				ret++;
			}
			return ret;
		};

		// returns code, extra bits, value
		auto packValue=[&](uint32_t value)->std::tuple<uint32_t,uint32_t,uint32_t>
		{
			if (value<2)
				return std::tuple<uint32_t,uint32_t,uint32_t>{value,0,0};
			uint32_t bits=bitLength(value)-1;
			value&=(1<<bits)-1;
			return std::tuple<uint32_t,uint32_t,uint32_t>{bits+1,bits,value};
		};

		// bruteforce!!!
		// returns length,offset
		auto findLongestRepeat=[&](const uint8_t *buf,uint32_t offset,uint32_t length)->std::pair<uint32_t,uint32_t>
		{
			auto comparablePackedSize=[&](uint32_t value)->uint32_t
			{
				if (value<2) return 1;
				// fuzzy cost addition for longer codes
				return bitLength(value)+(bitLength(bitLength(value))<<1U);
			};

			std::pair<uint32_t,uint32_t> best{0,0};

			uint32_t distance=1;
			while (distance<=offset && distance<=chunkSize)
			{
				uint32_t i=0;
				while (offset+i<length && buf[offset+i]==buf[offset+i-distance])
					i++;
				if (i>=2 && (comparablePackedSize(i-2)+comparablePackedSize(distance-1)+best.first*8<comparablePackedSize(best.first-2)+comparablePackedSize(best.second-1)+i*8)
					// fuzzy cost addition for shorter blocks (extra literal turnaround)
					&& (comparablePackedSize(i-2)+comparablePackedSize(distance-1))+5<i*8 )
				{
					best=std::make_pair(i,distance);
				}
				distance+=1;
			}
			return best;
		};

		std::vector<uint32_t> litFrequencies(32,0);
		std::vector<uint32_t> distanceFrequencies(32,0);
		std::vector<uint32_t> lengthFrequencies(32,0);

		// this is what makes this implementation even more bruteforce
		// table index (lit=0,distance=1,length=2,byte=3,bits=4), code, extra bits, value
		std::vector<std::tuple<uint32_t,uint32_t,uint32_t,uint32_t>> rawChunk;
	
		uint32_t litCountOffset=0;
		bool litActive=false;

		// sub count
		rawChunk.push_back(std::tuple<uint32_t,uint32_t,uint32_t,uint32_t>{4,0,16,0});

		auto packLit=[&]()
		{
			auto pack=packValue(std::get<3>(rawChunk[litCountOffset]));
			std::get<1>(rawChunk[litCountOffset])=std::get<0>(pack);
			std::get<2>(rawChunk[litCountOffset])=std::get<1>(pack);
			std::get<3>(rawChunk[litCountOffset])=std::get<2>(pack);
			litFrequencies[std::get<0>(pack)]+=1;
		};

		uint32_t foundLength=1;
		uint32_t currentChunkSize=std::min(uint32_t(source.size())-offset,chunkSize);
		for (uint32_t i=offset;i<currentChunkSize+offset;i+=foundLength)
		{
			auto fuzzyBreak=[&]()->bool
			{
				if (i+FUZZY_BLOCK_CUT_THRESHOLD>=currentChunkSize+offset)
				{
					currentChunkSize=i+foundLength-offset;
					return true;
				}
				return false;
			};

			if (!litActive)
			{
				// literal count
				litCountOffset=uint32_t(rawChunk.size());
				rawChunk.push_back(std::tuple<uint32_t,uint32_t,uint32_t,uint32_t>{0,0,0,0});
				litActive=true;

				std::get<3>(rawChunk[0])+=1;
			}

			auto repeat=findLongestRepeat(source.data(),i,currentChunkSize+offset);
			if (repeat.first)
			{
				packLit();
				litActive=false;
				auto dist=packValue(repeat.second-1);
				rawChunk.push_back(std::tuple<uint32_t,uint32_t,uint32_t,uint32_t>{1,std::get<0>(dist),std::get<1>(dist),std::get<2>(dist)});
				distanceFrequencies[std::get<0>(dist)]+=1;
				auto count=packValue(repeat.first-2);
				rawChunk.push_back(std::tuple<uint32_t,uint32_t,uint32_t,uint32_t>{2,std::get<0>(count),std::get<1>(count),std::get<2>(count)});
				lengthFrequencies[std::get<0>(count)]+=1;
				foundLength=repeat.first;
			} else {
				rawChunk.push_back(std::tuple<uint32_t,uint32_t,uint32_t,uint32_t>{3,source.data()[i],0,0});
				std::get<3>(rawChunk[litCountOffset])+=1;
				foundLength=1;
				if (/*std::get<3>(rawChunk[litCountOffset])==1 &&*/ fuzzyBreak()) break;
			}
		}
		if (litActive)
		{
			packLit();
		} else {
			litCountOffset=uint32_t(rawChunk.size());
			rawChunk.push_back(std::tuple<uint32_t,uint32_t,uint32_t,uint32_t>{0,0,0,0});
			packLit();

			std::get<3>(rawChunk[0])+=1;
		}
		offset+=currentChunkSize;
		chunkCount++;

		std::function<void(uint32_t,uint32_t)> writeBits=[&](uint32_t bitCount,uint32_t bits)
		{
			if (!bitCount) return;
			if (bitCount+bitAccumCount>16)
			{
				uint32_t bitsToWrite=16-bitAccumCount;
				writeBits(bitsToWrite,bits&((1<<bitsToWrite)-1));
				bits>>=bitsToWrite;
				bitCount-=bitsToWrite;
			}
			if (!bitAccumCount)
			{
				bitStreamPosition=uint32_t(stream.size());
				stream.push_back(0);
				stream.push_back(0);
			}
			bitAccumContent|=bits<<bitAccumCount;
			bitAccumCount+=bitCount;
			if (bitAccumCount==16)
			{
				stream[bitStreamPosition]=bitAccumContent;
				stream[bitStreamPosition+1]=bitAccumContent>>8;
				bitAccumContent=0;
				bitAccumCount=0;
			}
		};

		auto writeByte=[&](uint8_t byte)
		{
			stream.push_back(byte);
		};

		// also writes table to stream
		// result vector is code, length pairs
		auto createHuffmanCodeTable=[&](std::vector<std::pair<uint32_t,uint32_t>> &codes,const std::vector<uint32_t> &frequencies)
		{
			std::vector<std::pair<uint32_t,uint32_t>> sortedList;
			uint32_t totalCount=0;
			uint32_t totalFreq=0;
			for (uint32_t i=0;i<frequencies.size();i++)
			{
				totalFreq+=frequencies[i];
				if (frequencies[i])
				{
					totalCount=i+1;
					sortedList.push_back(std::make_pair(i,frequencies[i]));
				}
			}
			writeBits(5,totalCount);
			if (!totalCount) return;
			std::sort(sortedList.begin(),sortedList.end(),[&](const auto &a,const auto &b){return a.second>b.second||(a.second==b.second&&a.first<b.first);});

			// convert frequencies to bit length
			const uint32_t initialNorm=1<<30;
			uint32_t totalUsed=0;
			uint32_t sortedFrequencies[totalCount];
			for (uint32_t i=0;i<sortedList.size();i++)
			{
				uint32_t bitCount=1;	// extra +1 for later tuning
				uint32_t tmp=sortedList[i].second;
				sortedFrequencies[i]=tmp;
				while (tmp<totalFreq)
				{
					tmp<<=1;
					bitCount++;
				}
				sortedList[i].second=bitCount;
				totalUsed+=initialNorm>>bitCount;
			}

			// use the full range
			while (totalUsed!=initialNorm)
			{
				uint32_t bestIndex=totalCount;
				uint32_t bestImprovement=0;

				for (uint32_t i=0;i<sortedList.size();i++)
				{
					if (totalUsed+(initialNorm>>sortedList[i].second)<=initialNorm)
					{
						// adding cost factor here too
						uint32_t improvement=sortedFrequencies[i]<<sortedList[i].second;
						if (improvement>bestImprovement)
						{
							bestIndex=i;
							bestImprovement=improvement;
						}
					}
				}
				if (bestIndex==totalCount) break;
				totalUsed+=initialNorm>>sortedList[bestIndex].second;
				sortedList[bestIndex].second-=1;
			}

			// using the full range will sometimes result out-of-order indexes
			std::sort(sortedList.begin(),sortedList.end(),[&](const auto &a,const auto &b){return a.second<b.second||(a.second==b.second&&a.first<b.first);});

			uint32_t maxDepth=0;
			for (uint32_t i=0;i<sortedList.size();i++)
				maxDepth=std::max(maxDepth,sortedList[i].second);

			uint32_t value=0;
			for (uint32_t i=0;i<sortedList.size();i++)
			{
				auto reverseBits=[](uint32_t bitCount,uint32_t bits)->uint32_t
				{
					uint32_t ret=0;
					while (bitCount--)
					{
						ret<<=1;
						ret|=bits&1;
						bits>>=1;
					}
					return ret;
				};

				uint32_t code=sortedList[i].first;
				codes[code].first=reverseBits(maxDepth,value);
				codes[code].second=sortedList[i].second;
				value+=1<<(maxDepth-sortedList[i].second);
			}
			for (uint32_t i=0;i<totalCount;i++) writeBits(4,codes[i].second);
		};
		
		// code, length pairs
		std::vector<std::pair<uint32_t,uint32_t>> litCodes(32,std::make_pair(0,0));
		std::vector<std::pair<uint32_t,uint32_t>> distanceCodes(32,std::make_pair(0,0));
		std::vector<std::pair<uint32_t,uint32_t>> lengthCodes(32,std::make_pair(0,0));

		uint32_t streamStart=uint32_t(stream.size());
		createHuffmanCodeTable(litCodes,litFrequencies);
		createHuffmanCodeTable(distanceCodes,distanceFrequencies);
		createHuffmanCodeTable(lengthCodes,lengthFrequencies);

		for (uint32_t i=0;i<uint32_t(rawChunk.size());i++)
		{
			switch (std::get<0>(rawChunk[i]))
			{
				// literal
				case 0:
				writeBits(litCodes[std::get<1>(rawChunk[i])].second,litCodes[std::get<1>(rawChunk[i])].first);
				writeBits(std::get<2>(rawChunk[i]),std::get<3>(rawChunk[i]));
				break;

				// distance
				case 1:
				writeBits(distanceCodes[std::get<1>(rawChunk[i])].second,distanceCodes[std::get<1>(rawChunk[i])].first);
				writeBits(std::get<2>(rawChunk[i]),std::get<3>(rawChunk[i]));
				break;

				// length
				case 2:
				writeBits(lengthCodes[std::get<1>(rawChunk[i])].second,lengthCodes[std::get<1>(rawChunk[i])].first);
				writeBits(std::get<2>(rawChunk[i]),std::get<3>(rawChunk[i]));
				break;

				// bytes
				case 3:
				writeByte(std::get<1>(rawChunk[i]));
				break;

				// bits
				case 4:
				writeBits(std::get<2>(rawChunk[i]),std::get<3>(rawChunk[i]));
				break;

				default:
				break;
			}
		}
		uint32_t outputLength=uint32_t(stream.size())-streamStart;
		if (currentChunkSize>outputLength && outputLength-outputLength>leeway)
			leeway=outputLength-outputLength;
	}

	if (bitAccumCount)
	{
		stream[bitStreamPosition]=bitAccumContent;
		stream[bitStreamPosition+1]=bitAccumContent>>8;
		if (bitStreamPosition==stream.size()-2 && bitAccumCount<=8)
			stream.pop_back();
	}

	uint32_t packedSize=uint32_t(stream.size()-18);
	stream[8]=uint8_t(packedSize>>24);
	stream[9]=uint8_t(packedSize>>16);
	stream[10]=uint8_t(packedSize>>8);
	stream[11]=uint8_t(packedSize);

	uint16_t packedCrc=RNCCRC(stream.data()+18,packedSize);
	stream[14]=uint8_t(packedCrc>>8);
	stream[15]=uint8_t(packedCrc);

	if (leeway>255)
	{
		fprintf(stderr,"Leeway larger than 255\n");
		exit(-1);
	}

	stream[16]=leeway;
	stream[17]=chunkCount;

	dest.resize(stream.size());
	std::memcpy(dest.data(),stream.data(),stream.size());
}

int main(int argc,char **argv)
{
	auto usage=[]()
	{
		fprintf(stderr,"Usage: <prog> input_raw output_packed [chunk_size]\n");
	};

	if (argc<3)
	{
		usage();
		return -1;
	}

	auto raw{readFile(argv[1])};

	VectorBuffer packed;
	packRNC(packed,*raw,(argc>=4)?atoi(argv[3]):0);

	writeFile(argv[2],packed);
	return 0;
}

}

int main(int argc,char **argv)
{
	return ancient::internal::main(argc,argv);
}