File: result.h

package info (click to toggle)
android-cuttlefish 1.0.1-0~exp2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 7,192 kB
  • sloc: cpp: 39,149; sh: 2,523; javascript: 242; exp: 152; python: 125; makefile: 88
file content (447 lines) | stat: -rw-r--r-- 15,115 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// Result<T, E> is the type that is used to pass a success value of type T or an error code of type
// E, optionally together with an error message. T and E can be any type. If E is omitted it
// defaults to int, which is useful when errno(3) is used as the error code.
//
// Passing a success value or an error value:
//
// Result<std::string> readFile() {
//   std::string content;
//   if (base::ReadFileToString("path", &content)) {
//     return content; // ok case
//   } else {
//     return ErrnoError() << "failed to read"; // error case
//   }
// }
//
// Checking the result and then unwrapping the value or propagating the error:
//
// Result<bool> hasAWord() {
//   auto content = readFile();
//   if (!content.ok()) {
//     return Error() << "failed to process: " << content.error();
//   }
//   return (*content.find("happy") != std::string::npos);
// }
//
// Using custom error code type:
//
// enum class MyError { A, B }; // assume that this is the error code you already have
//
// // To use the error code with Result, define a wrapper class that provides the following
// operations and use the wrapper class as the second type parameter (E) when instantiating
// Result<T, E>
//
// 1. default constructor
// 2. copy constructor / and move constructor if copying is expensive
// 3. conversion operator to the error code type
// 4. value() function that return the error code value
// 5. print() function that gives a string representation of the error ode value
//
// struct MyErrorWrapper {
//   MyError val_;
//   MyErrorWrapper() : val_(/* reasonable default value */) {}
//   MyErrorWrapper(MyError&& e) : val_(std:forward<MyError>(e)) {}
//   operator const MyError&() const { return val_; }
//   MyError value() const { return val_; }
//   std::string print() const {
//     switch(val_) {
//       MyError::A: return "A";
//       MyError::B: return "B";
//     }
//   }
// };
//
// #define NewMyError(e) Error<MyErrorWrapper>(MyError::e)
//
// Result<T, MyError> val = NewMyError(A) << "some message";
//
// Formatting the error message using fmtlib:
//
// Errorf("{} errors", num); // equivalent to Error() << num << " errors";
// ErrnoErrorf("{} errors", num); // equivalent to ErrnoError() << num << " errors";
//
// Returning success or failure, but not the value:
//
// Result<void> doSomething() {
//   if (success) return {};
//   else return Error() << "error occurred";
// }
//
// Extracting error code:
//
// Result<T> val = Error(3) << "some error occurred";
// assert(3 == val.error().code());
//

#pragma once

#include <assert.h>
#include <errno.h>

#include <sstream>
#include <string>
#include <type_traits>

#include "android-base/errors.h"
#include "android-base/expected.h"
#include "android-base/format.h"

namespace android {
namespace base {

// Errno is a wrapper class for errno(3). Use this type instead of `int` when instantiating
// `Result<T, E>` and `Error<E>` template classes. This is required to distinguish errno from other
// integer-based error code types like `status_t`.
struct Errno {
  Errno() : val_(0) {}
  Errno(int e) : val_(e) {}
  int value() const { return val_; }
  operator int() const { return value(); }
  std::string print() const { return strerror(value()); }

  int val_;

  // TODO(b/209929099): remove this conversion operator. This currently is needed to not break
  // existing places where error().code() is used to construct enum values.
  template <typename E, typename = std::enable_if_t<std::is_enum_v<E>>>
  operator E() const {
    return E(val_);
  }
};

template <typename E = Errno, bool include_message = true>
struct ResultError {
  template <typename T, typename P, typename = std::enable_if_t<std::is_convertible_v<P, E>>>
  ResultError(T&& message, P&& code)
      : message_(std::forward<T>(message)), code_(E(std::forward<P>(code))) {}

  template <typename T>
  // NOLINTNEXTLINE(google-explicit-constructor)
  operator android::base::expected<T, ResultError<E>>() const {
    return android::base::unexpected(ResultError<E>(message_, code_));
  }

  const std::string& message() const { return message_; }
  const E& code() const { return code_; }

 private:
  std::string message_;
  E code_;
};

template <typename E>
struct ResultError<E, /* include_message */ false> {
  template <typename P, typename = std::enable_if_t<std::is_convertible_v<P, E>>>
  ResultError(P&& code) : code_(E(std::forward<P>(code))) {}

  template <typename T>
  operator android::base::expected<T, ResultError<E, false>>() const {
    return android::base::unexpected(ResultError<E, false>(code_));
  }

  const E& code() const { return code_; }

 private:
  E code_;
};

template <typename E>
inline bool operator==(const ResultError<E>& lhs, const ResultError<E>& rhs) {
  return lhs.message() == rhs.message() && lhs.code() == rhs.code();
}

template <typename E>
inline bool operator!=(const ResultError<E>& lhs, const ResultError<E>& rhs) {
  return !(lhs == rhs);
}

template <typename E>
inline std::ostream& operator<<(std::ostream& os, const ResultError<E>& t) {
  os << t.message();
  return os;
}

namespace internal {
// Stream class that does nothing and is has zero (actually 1) size. It is used instead of
// std::stringstream when include_message is false so that we use less on stack.
// sizeof(std::stringstream) is 280 on arm64.
struct DoNothingStream {
  template <typename T>
  DoNothingStream& operator<<(T&&) {
    return *this;
  }

  std::string str() const { return ""; }
};
}  // namespace internal

template <typename E = Errno, bool include_message = true,
          typename = std::enable_if_t<!std::is_same_v<E, int>>>
class Error {
 public:
  Error() : code_(0), has_code_(false) {}
  template <typename P, typename = std::enable_if_t<std::is_convertible_v<P, E>>>
  // NOLINTNEXTLINE(google-explicit-constructor)
  Error(P&& code) : code_(std::forward<P>(code)), has_code_(true) {}

  template <typename T, typename P, typename = std::enable_if_t<std::is_convertible_v<E, P>>>
  // NOLINTNEXTLINE(google-explicit-constructor)
  operator android::base::expected<T, ResultError<P>>() const {
    return android::base::unexpected(ResultError<P>(str(), static_cast<P>(code_)));
  }

  template <typename T, typename P, typename = std::enable_if_t<std::is_convertible_v<E, P>>>
  // NOLINTNEXTLINE(google-explicit-constructor)
  operator android::base::expected<T, ResultError<P, false>>() const {
    return android::base::unexpected(ResultError<P, false>(static_cast<P>(code_)));
  }

  template <typename T>
  Error& operator<<(T&& t) {
    static_assert(include_message, "<< not supported when include_message = false");
    // NOLINTNEXTLINE(bugprone-suspicious-semicolon)
    if constexpr (std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>, ResultError<E>>) {
      if (!has_code_) {
        code_ = t.code();
      }
      return (*this) << t.message();
    }
    int saved = errno;
    ss_ << t;
    errno = saved;
    return *this;
  }

  const std::string str() const {
    static_assert(include_message, "str() not supported when include_message = false");
    std::string str = ss_.str();
    if (has_code_) {
      if (str.empty()) {
        return code_.print();
      }
      return std::move(str) + ": " + code_.print();
    }
    return str;
  }

  Error(const Error&) = delete;
  Error(Error&&) = delete;
  Error& operator=(const Error&) = delete;
  Error& operator=(Error&&) = delete;

  template <typename T, typename... Args>
  friend Error ErrorfImpl(const T&& fmt, const Args&... args);

  template <typename T, typename... Args>
  friend Error ErrnoErrorfImpl(const T&& fmt, const Args&... args);

 private:
  Error(bool has_code, E code, const std::string& message) : code_(code), has_code_(has_code) {
    (*this) << message;
  }

  std::conditional_t<include_message, std::stringstream, internal::DoNothingStream> ss_;
  E code_;
  const bool has_code_;
};

inline Error<Errno> ErrnoError() {
  return Error<Errno>(Errno{errno});
}

template <typename E>
inline E ErrorCode(E code) {
  return code;
}

// Return the error code of the last ResultError object, if any.
// Otherwise, return `code` as it is.
template <typename T, typename E, typename... Args>
inline E ErrorCode(E code, T&& t, const Args&... args) {
  if constexpr (std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>, ResultError<E>>) {
    return ErrorCode(t.code(), args...);
  }
  return ErrorCode(code, args...);
}

template <typename T, typename... Args>
inline Error<Errno> ErrorfImpl(const T&& fmt, const Args&... args) {
  return Error(false, ErrorCode(Errno{}, args...), fmt::format(fmt, args...));
}

template <typename T, typename... Args>
inline Error<Errno> ErrnoErrorfImpl(const T&& fmt, const Args&... args) {
  return Error<Errno>(true, Errno{errno}, fmt::format(fmt, args...));
}

#define Errorf(fmt, ...) android::base::ErrorfImpl(FMT_STRING(fmt), ##__VA_ARGS__)
#define ErrnoErrorf(fmt, ...) android::base::ErrnoErrorfImpl(FMT_STRING(fmt), ##__VA_ARGS__)

template <typename T, typename E = Errno, bool include_message = true>
using Result = android::base::expected<T, ResultError<E, include_message>>;

// Specialization of android::base::OkOrFail<V> for V = Result<T, E>. See android-base/errors.h
// for the contract.

namespace impl {
template <typename U>
using Code = std::decay_t<decltype(std::declval<U>().error().code())>;

template <typename U>
using ErrorType = std::decay_t<decltype(std::declval<U>().error())>;

template <typename U>
constexpr bool IsNumeric = std::is_integral_v<U> || std::is_floating_point_v<U> ||
                           (std::is_enum_v<U> && std::is_convertible_v<U, size_t>);

// This base class exists to take advantage of shadowing
// We include the conversion in this base class so that if the conversion in NumericConversions
// overlaps, we (arbitrarily) choose the implementation in NumericConversions due to shadowing.
template <typename T>
struct ConversionBase {
  ErrorType<T> error_;
  // T is a expected<U, ErrorType<T>>.
  operator const T() const && {
    return unexpected(std::move(error_));
  }

  operator const Code<T>() const && {
    return error_.code();
  }

};

// User defined conversions can be followed by numeric conversions
// Although we template specialize for the exact code type, we need
// specializations for conversions to all numeric types to avoid an
// ambiguous conversion sequence.
template <typename T, typename = void>
struct NumericConversions : public ConversionBase<T> {};
template <typename T>
struct NumericConversions<T,
    std::enable_if_t<impl::IsNumeric<impl::Code<T>>>
    > : public ConversionBase<T>
{
#pragma push_macro("SPECIALIZED_CONVERSION")
#define SPECIALIZED_CONVERSION(type)\
  operator const expected<type, ErrorType<T>>() const &&\
  { return unexpected(std::move(this->error_));}

  SPECIALIZED_CONVERSION(int)
  SPECIALIZED_CONVERSION(short int)
  SPECIALIZED_CONVERSION(unsigned short int)
  SPECIALIZED_CONVERSION(unsigned int)
  SPECIALIZED_CONVERSION(long int)
  SPECIALIZED_CONVERSION(unsigned long int)
  SPECIALIZED_CONVERSION(long long int)
  SPECIALIZED_CONVERSION(unsigned long long int)
  SPECIALIZED_CONVERSION(bool)
  SPECIALIZED_CONVERSION(char)
  SPECIALIZED_CONVERSION(unsigned char)
  SPECIALIZED_CONVERSION(signed char)
  SPECIALIZED_CONVERSION(wchar_t)
  SPECIALIZED_CONVERSION(char16_t)
  SPECIALIZED_CONVERSION(char32_t)
  SPECIALIZED_CONVERSION(float)
  SPECIALIZED_CONVERSION(double)
  SPECIALIZED_CONVERSION(long double)

#undef SPECIALIZED_CONVERSION
#pragma pop_macro("SPECIALIZED_CONVERSION")
  // For debugging purposes
  using IsNumericT = std::true_type;
};

#ifdef __cpp_concepts
template <class U>
// Define a concept which **any** type matches to
concept Universal = std::is_same_v<U, U>;
#endif
} // namespace impl

template <typename T, typename E, bool include_message>
struct OkOrFail<Result<T, E, include_message>>
    : public impl::NumericConversions<Result<T, E, include_message>> {
  using V = Result<T, E, include_message>;
  using Err = impl::ErrorType<V>;
  using C = impl::Code<V>;
private:
   OkOrFail(Err&& v): impl::NumericConversions<V>{std::move(v)} {}
   OkOrFail(const OkOrFail& other) = delete;
   OkOrFail(const OkOrFail&& other) = delete;
public:
  // Checks if V is ok or fail
  static bool IsOk(const V& val) { return val.ok(); }

  // Turns V into a success value
  static T Unwrap(V&& val) {
    if constexpr (std::is_same_v<T, void>) {
      assert(IsOk(val));
      return;
    } else {
      return std::move(val.value());
    }
  }

  // Consumes V when it's a fail value
  static const OkOrFail<V> Fail(V&& v) {
    assert(!IsOk(v));
    return OkOrFail<V>{std::move(v.error())};
  }

  // We specialize as much as possible to avoid ambiguous conversion with
  // templated expected ctor
  operator const Result<C, E, include_message>() const && {
    return unexpected(std::move(this->error_));
  }
#ifdef __cpp_concepts
  // The idea here is to match this template method to any type (not simply trivial types).
  // The reason for including a constraint is to take advantage of the fact that a constrained
  // method always has strictly lower precedence than a non-constrained method in template
  // specialization rules (thus avoiding ambiguity). So we use a universally matching constraint to
  // mark this function as less preferable (but still accepting of all types).
  template <impl::Universal U>
#else
  template <typename U>
#endif
  operator const Result<U, E, include_message>() const&& {
    return unexpected(std::move(this->error_));
  }

  static std::string ErrorMessage(const V& val) { return val.error().message(); }
};

// Macros for testing the results of functions that return android::base::Result.
// These also work with base::android::expected.
// For advanced matchers and customized error messages, see result-gtest.h.

#define ASSERT_RESULT_OK(stmt)                            \
  if (const auto& tmp = (stmt); !tmp.ok())                \
  FAIL() << "Value of: " << #stmt << "\n"                 \
         << "  Actual: " << tmp.error().message() << "\n" \
         << "Expected: is ok\n"

#define EXPECT_RESULT_OK(stmt)                                   \
  if (const auto& tmp = (stmt); !tmp.ok())                       \
  ADD_FAILURE() << "Value of: " << #stmt << "\n"                 \
                << "  Actual: " << tmp.error().message() << "\n" \
                << "Expected: is ok\n"

}  // namespace base
}  // namespace android