1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "image_space.h"
#include <sys/statvfs.h>
#include <sys/types.h>
#include <unistd.h>
#include <random>
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#include "arch/instruction_set.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/array_ref.h"
#include "base/bit_memory_region.h"
#include "base/callee_save_type.h"
#include "base/enums.h"
#include "base/file_utils.h"
#include "base/macros.h"
#include "base/os.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "base/utils.h"
#include "class_root.h"
#include "dex/art_dex_file_loader.h"
#include "dex/dex_file_loader.h"
#include "exec_utils.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/task_processor.h"
#include "image-inl.h"
#include "image_space_fs.h"
#include "intern_table-inl.h"
#include "mirror/class-inl.h"
#include "mirror/executable-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object-refvisitor-inl.h"
#include "oat_file.h"
#include "runtime.h"
#include "space-inl.h"
namespace art {
namespace gc {
namespace space {
using android::base::StringAppendF;
using android::base::StringPrintf;
Atomic<uint32_t> ImageSpace::bitmap_index_(0);
ImageSpace::ImageSpace(const std::string& image_filename,
const char* image_location,
MemMap&& mem_map,
std::unique_ptr<accounting::ContinuousSpaceBitmap> live_bitmap,
uint8_t* end)
: MemMapSpace(image_filename,
std::move(mem_map),
mem_map.Begin(),
end,
end,
kGcRetentionPolicyNeverCollect),
live_bitmap_(std::move(live_bitmap)),
oat_file_non_owned_(nullptr),
image_location_(image_location) {
DCHECK(live_bitmap_ != nullptr);
}
static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
CHECK_ALIGNED(min_delta, kPageSize);
CHECK_ALIGNED(max_delta, kPageSize);
CHECK_LT(min_delta, max_delta);
int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
if (r % 2 == 0) {
r = RoundUp(r, kPageSize);
} else {
r = RoundDown(r, kPageSize);
}
CHECK_LE(min_delta, r);
CHECK_GE(max_delta, r);
CHECK_ALIGNED(r, kPageSize);
return r;
}
static int32_t ChooseRelocationOffsetDelta() {
return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
}
static bool GenerateImage(const std::string& image_filename,
InstructionSet image_isa,
std::string* error_msg) {
Runtime* runtime = Runtime::Current();
const std::vector<std::string>& boot_class_path = runtime->GetBootClassPath();
if (boot_class_path.empty()) {
*error_msg = "Failed to generate image because no boot class path specified";
return false;
}
// We should clean up so we are more likely to have room for the image.
if (Runtime::Current()->IsZygote()) {
LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
PruneDalvikCache(image_isa);
}
std::vector<std::string> arg_vector;
std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
arg_vector.push_back(dex2oat);
char* dex2oat_bcp = getenv("DEX2OATBOOTCLASSPATH");
std::vector<std::string> dex2oat_bcp_vector;
if (dex2oat_bcp != nullptr) {
arg_vector.push_back("--runtime-arg");
arg_vector.push_back(StringPrintf("-Xbootclasspath:%s", dex2oat_bcp));
Split(dex2oat_bcp, ':', &dex2oat_bcp_vector);
}
std::string image_option_string("--image=");
image_option_string += image_filename;
arg_vector.push_back(image_option_string);
if (!dex2oat_bcp_vector.empty()) {
for (size_t i = 0u; i < dex2oat_bcp_vector.size(); i++) {
arg_vector.push_back(std::string("--dex-file=") + dex2oat_bcp_vector[i]);
arg_vector.push_back(std::string("--dex-location=") + dex2oat_bcp_vector[i]);
}
} else {
const std::vector<std::string>& boot_class_path_locations =
runtime->GetBootClassPathLocations();
DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size());
for (size_t i = 0u; i < boot_class_path.size(); i++) {
arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
arg_vector.push_back(std::string("--dex-location=") + boot_class_path_locations[i]);
}
}
std::string oat_file_option_string("--oat-file=");
oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
arg_vector.push_back(oat_file_option_string);
// Note: we do not generate a fully debuggable boot image so we do not pass the
// compiler flag --debuggable here.
Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
CHECK_EQ(image_isa, kRuntimeISA)
<< "We should always be generating an image for the current isa.";
int32_t base_offset = ChooseRelocationOffsetDelta();
LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
<< "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
if (!kIsTargetBuild) {
arg_vector.push_back("--host");
}
const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
for (size_t i = 0; i < compiler_options.size(); ++i) {
arg_vector.push_back(compiler_options[i].c_str());
}
std::string command_line(android::base::Join(arg_vector, ' '));
LOG(INFO) << "GenerateImage: " << command_line;
return Exec(arg_vector, error_msg);
}
static bool FindImageFilenameImpl(const char* image_location,
const InstructionSet image_isa,
bool* has_system,
std::string* system_filename,
bool* dalvik_cache_exists,
std::string* dalvik_cache,
bool* is_global_cache,
bool* has_cache,
std::string* cache_filename) {
DCHECK(dalvik_cache != nullptr);
*has_system = false;
*has_cache = false;
// image_location = /system/framework/boot.art
// system_image_location = /system/framework/<image_isa>/boot.art
std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
if (OS::FileExists(system_image_filename.c_str())) {
*system_filename = system_image_filename;
*has_system = true;
}
bool have_android_data = false;
*dalvik_cache_exists = false;
GetDalvikCache(GetInstructionSetString(image_isa),
/*create_if_absent=*/ true,
dalvik_cache,
&have_android_data,
dalvik_cache_exists,
is_global_cache);
if (*dalvik_cache_exists) {
DCHECK(have_android_data);
// Always set output location even if it does not exist,
// so that the caller knows where to create the image.
//
// image_location = /system/framework/boot.art
// *image_filename = /data/dalvik-cache/<image_isa>/system@framework@boot.art
std::string error_msg;
if (!GetDalvikCacheFilename(image_location,
dalvik_cache->c_str(),
cache_filename,
&error_msg)) {
LOG(WARNING) << error_msg;
return *has_system;
}
*has_cache = OS::FileExists(cache_filename->c_str());
}
return *has_system || *has_cache;
}
bool ImageSpace::FindImageFilename(const char* image_location,
const InstructionSet image_isa,
std::string* system_filename,
bool* has_system,
std::string* cache_filename,
bool* dalvik_cache_exists,
bool* has_cache,
bool* is_global_cache) {
std::string dalvik_cache_unused;
return FindImageFilenameImpl(image_location,
image_isa,
has_system,
system_filename,
dalvik_cache_exists,
&dalvik_cache_unused,
is_global_cache,
has_cache,
cache_filename);
}
static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
if (image_file.get() == nullptr) {
return false;
}
const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
if (!success || !image_header->IsValid()) {
return false;
}
return true;
}
static std::unique_ptr<ImageHeader> ReadSpecificImageHeader(const char* filename,
std::string* error_msg) {
std::unique_ptr<ImageHeader> hdr(new ImageHeader);
if (!ReadSpecificImageHeader(filename, hdr.get())) {
*error_msg = StringPrintf("Unable to read image header for %s", filename);
return nullptr;
}
return hdr;
}
std::unique_ptr<ImageHeader> ImageSpace::ReadImageHeader(const char* image_location,
const InstructionSet image_isa,
ImageSpaceLoadingOrder order,
std::string* error_msg) {
std::string system_filename;
bool has_system = false;
std::string cache_filename;
bool has_cache = false;
bool dalvik_cache_exists = false;
bool is_global_cache = false;
if (FindImageFilename(image_location,
image_isa,
&system_filename,
&has_system,
&cache_filename,
&dalvik_cache_exists,
&has_cache,
&is_global_cache)) {
if (order == ImageSpaceLoadingOrder::kSystemFirst) {
if (has_system) {
return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
}
if (has_cache) {
return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
}
} else {
if (has_cache) {
return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
}
if (has_system) {
return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
}
}
}
*error_msg = StringPrintf("Unable to find image file for %s", image_location);
return nullptr;
}
static bool CanWriteToDalvikCache(const InstructionSet isa) {
const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa));
if (access(dalvik_cache.c_str(), O_RDWR) == 0) {
return true;
} else if (errno != EACCES) {
PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES";
}
return false;
}
static bool ImageCreationAllowed(bool is_global_cache,
const InstructionSet isa,
bool is_zygote,
std::string* error_msg) {
// Anyone can write into a "local" cache.
if (!is_global_cache) {
return true;
}
// Only the zygote running as root is allowed to create the global boot image.
// If the zygote is running as non-root (and cannot write to the dalvik-cache),
// then image creation is not allowed..
if (is_zygote) {
return CanWriteToDalvikCache(isa);
}
*error_msg = "Only the zygote can create the global boot image.";
return false;
}
void ImageSpace::VerifyImageAllocations() {
uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
while (current < End()) {
CHECK_ALIGNED(current, kObjectAlignment);
auto* obj = reinterpret_cast<mirror::Object*>(current);
CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf();
if (kUseBakerReadBarrier) {
obj->AssertReadBarrierState();
}
current += RoundUp(obj->SizeOf(), kObjectAlignment);
}
}
// Helper class for relocating from one range of memory to another.
class RelocationRange {
public:
RelocationRange() = default;
RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
: source_(source),
dest_(dest),
length_(length) {}
bool InSource(uintptr_t address) const {
return address - source_ < length_;
}
bool InDest(const void* dest) const {
return InDest(reinterpret_cast<uintptr_t>(dest));
}
bool InDest(uintptr_t address) const {
return address - dest_ < length_;
}
// Translate a source address to the destination space.
uintptr_t ToDest(uintptr_t address) const {
DCHECK(InSource(address));
return address + Delta();
}
// Returns the delta between the dest from the source.
uintptr_t Delta() const {
return dest_ - source_;
}
uintptr_t Source() const {
return source_;
}
uintptr_t Dest() const {
return dest_;
}
uintptr_t Length() const {
return length_;
}
private:
const uintptr_t source_;
const uintptr_t dest_;
const uintptr_t length_;
};
std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
<< reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
<< reinterpret_cast<const void*>(reloc.Dest()) << "-"
<< reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
}
template <PointerSize kPointerSize, typename HeapVisitor, typename NativeVisitor>
class ImageSpace::PatchObjectVisitor final {
public:
explicit PatchObjectVisitor(HeapVisitor heap_visitor, NativeVisitor native_visitor)
: heap_visitor_(heap_visitor), native_visitor_(native_visitor) {}
void VisitClass(mirror::Class* klass) REQUIRES_SHARED(Locks::mutator_lock_) {
// A mirror::Class object consists of
// - instance fields inherited from j.l.Object,
// - instance fields inherited from j.l.Class,
// - embedded tables (vtable, interface method table),
// - static fields of the class itself.
// The reference fields are at the start of each field section (this is how the
// ClassLinker orders fields; except when that would create a gap between superclass
// fields and the first reference of the subclass due to alignment, it can be filled
// with smaller fields - but that's not the case for j.l.Object and j.l.Class).
DCHECK_ALIGNED(klass, kObjectAlignment);
static_assert(IsAligned<kHeapReferenceSize>(kObjectAlignment), "Object alignment check.");
// First, patch the `klass->klass_`, known to be a reference to the j.l.Class.class.
// This should be the only reference field in j.l.Object and we assert that below.
PatchReferenceField</*kMayBeNull=*/ false>(klass, mirror::Object::ClassOffset());
// Then patch the reference instance fields described by j.l.Class.class.
// Use the sizeof(Object) to determine where these reference fields start;
// this is the same as `class_class->GetFirstReferenceInstanceFieldOffset()`
// after patching but the j.l.Class may not have been patched yet.
mirror::Class* class_class = klass->GetClass<kVerifyNone, kWithoutReadBarrier>();
size_t num_reference_instance_fields = class_class->NumReferenceInstanceFields<kVerifyNone>();
DCHECK_NE(num_reference_instance_fields, 0u);
static_assert(IsAligned<kHeapReferenceSize>(sizeof(mirror::Object)), "Size alignment check.");
MemberOffset instance_field_offset(sizeof(mirror::Object));
for (size_t i = 0; i != num_reference_instance_fields; ++i) {
PatchReferenceField(klass, instance_field_offset);
static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
"Heap reference sizes equality check.");
instance_field_offset =
MemberOffset(instance_field_offset.Uint32Value() + kHeapReferenceSize);
}
// Now that we have patched the `super_class_`, if this is the j.l.Class.class,
// we can get a reference to j.l.Object.class and assert that it has only one
// reference instance field (the `klass_` patched above).
if (kIsDebugBuild && klass == class_class) {
ObjPtr<mirror::Class> object_class =
klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
CHECK_EQ(object_class->NumReferenceInstanceFields<kVerifyNone>(), 1u);
}
// Then patch static fields.
size_t num_reference_static_fields = klass->NumReferenceStaticFields<kVerifyNone>();
if (num_reference_static_fields != 0u) {
MemberOffset static_field_offset =
klass->GetFirstReferenceStaticFieldOffset<kVerifyNone>(kPointerSize);
for (size_t i = 0; i != num_reference_static_fields; ++i) {
PatchReferenceField(klass, static_field_offset);
static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
"Heap reference sizes equality check.");
static_field_offset =
MemberOffset(static_field_offset.Uint32Value() + kHeapReferenceSize);
}
}
// Then patch native pointers.
klass->FixupNativePointers<kVerifyNone>(klass, kPointerSize, *this);
}
template <typename T>
T* operator()(T* ptr, void** dest_addr ATTRIBUTE_UNUSED) const {
return (ptr != nullptr) ? native_visitor_(ptr) : nullptr;
}
void VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Fully patch the pointer array, including the `klass_` field.
PatchReferenceField</*kMayBeNull=*/ false>(pointer_array, mirror::Object::ClassOffset());
int32_t length = pointer_array->GetLength<kVerifyNone>();
for (int32_t i = 0; i != length; ++i) {
ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(
pointer_array->ElementAddress<kVerifyNone>(i, kPointerSize));
PatchNativePointer</*kMayBeNull=*/ false>(method_entry);
}
}
void VisitObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) {
// Visit all reference fields.
object->VisitReferences</*kVisitNativeRoots=*/ false,
kVerifyNone,
kWithoutReadBarrier>(*this, *this);
// This function should not be called for classes.
DCHECK(!object->IsClass<kVerifyNone>());
}
// Visitor for VisitReferences().
ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
MemberOffset field_offset,
bool is_static)
const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(!is_static);
PatchReferenceField(object, field_offset);
}
// Visitor for VisitReferences(), java.lang.ref.Reference case.
ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(klass->IsTypeOfReferenceClass());
this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
}
// Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
const {}
void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
void VisitDexCacheArrays(ObjPtr<mirror::DexCache> dex_cache)
REQUIRES_SHARED(Locks::mutator_lock_) {
FixupDexCacheArray<mirror::StringDexCacheType>(dex_cache,
mirror::DexCache::StringsOffset(),
dex_cache->NumStrings<kVerifyNone>());
FixupDexCacheArray<mirror::TypeDexCacheType>(dex_cache,
mirror::DexCache::ResolvedTypesOffset(),
dex_cache->NumResolvedTypes<kVerifyNone>());
FixupDexCacheArray<mirror::MethodDexCacheType>(dex_cache,
mirror::DexCache::ResolvedMethodsOffset(),
dex_cache->NumResolvedMethods<kVerifyNone>());
FixupDexCacheArray<mirror::FieldDexCacheType>(dex_cache,
mirror::DexCache::ResolvedFieldsOffset(),
dex_cache->NumResolvedFields<kVerifyNone>());
FixupDexCacheArray<mirror::MethodTypeDexCacheType>(
dex_cache,
mirror::DexCache::ResolvedMethodTypesOffset(),
dex_cache->NumResolvedMethodTypes<kVerifyNone>());
FixupDexCacheArray<GcRoot<mirror::CallSite>>(
dex_cache,
mirror::DexCache::ResolvedCallSitesOffset(),
dex_cache->NumResolvedCallSites<kVerifyNone>());
FixupDexCacheArray<GcRoot<mirror::String>>(
dex_cache,
mirror::DexCache::PreResolvedStringsOffset(),
dex_cache->NumPreResolvedStrings<kVerifyNone>());
}
template <bool kMayBeNull = true, typename T>
ALWAYS_INLINE void PatchGcRoot(/*inout*/GcRoot<T>* root) const
REQUIRES_SHARED(Locks::mutator_lock_) {
static_assert(sizeof(GcRoot<mirror::Class*>) == sizeof(uint32_t), "GcRoot size check");
T* old_value = root->template Read<kWithoutReadBarrier>();
DCHECK(kMayBeNull || old_value != nullptr);
if (!kMayBeNull || old_value != nullptr) {
*root = GcRoot<T>(heap_visitor_(old_value));
}
}
template <bool kMayBeNull = true, typename T>
ALWAYS_INLINE void PatchNativePointer(/*inout*/T** entry) const {
if (kPointerSize == PointerSize::k64) {
uint64_t* raw_entry = reinterpret_cast<uint64_t*>(entry);
T* old_value = reinterpret_cast64<T*>(*raw_entry);
DCHECK(kMayBeNull || old_value != nullptr);
if (!kMayBeNull || old_value != nullptr) {
T* new_value = native_visitor_(old_value);
*raw_entry = reinterpret_cast64<uint64_t>(new_value);
}
} else {
uint32_t* raw_entry = reinterpret_cast<uint32_t*>(entry);
T* old_value = reinterpret_cast32<T*>(*raw_entry);
DCHECK(kMayBeNull || old_value != nullptr);
if (!kMayBeNull || old_value != nullptr) {
T* new_value = native_visitor_(old_value);
*raw_entry = reinterpret_cast32<uint32_t>(new_value);
}
}
}
template <bool kMayBeNull = true>
ALWAYS_INLINE void PatchReferenceField(ObjPtr<mirror::Object> object, MemberOffset offset) const
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::Object> old_value =
object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
DCHECK(kMayBeNull || old_value != nullptr);
if (!kMayBeNull || old_value != nullptr) {
ObjPtr<mirror::Object> new_value = heap_visitor_(old_value.Ptr());
object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
/*kCheckTransaction=*/ true,
kVerifyNone>(offset, new_value);
}
}
template <typename T>
void FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>>* array, uint32_t index)
REQUIRES_SHARED(Locks::mutator_lock_) {
static_assert(sizeof(std::atomic<mirror::DexCachePair<T>>) == sizeof(mirror::DexCachePair<T>),
"Size check for removing std::atomic<>.");
PatchGcRoot(&(reinterpret_cast<mirror::DexCachePair<T>*>(array)[index].object));
}
template <typename T>
void FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>>* array, uint32_t index)
REQUIRES_SHARED(Locks::mutator_lock_) {
static_assert(sizeof(std::atomic<mirror::NativeDexCachePair<T>>) ==
sizeof(mirror::NativeDexCachePair<T>),
"Size check for removing std::atomic<>.");
mirror::NativeDexCachePair<T> pair =
mirror::DexCache::GetNativePairPtrSize(array, index, kPointerSize);
if (pair.object != nullptr) {
pair.object = native_visitor_(pair.object);
mirror::DexCache::SetNativePairPtrSize(array, index, pair, kPointerSize);
}
}
void FixupDexCacheArrayEntry(GcRoot<mirror::CallSite>* array, uint32_t index)
REQUIRES_SHARED(Locks::mutator_lock_) {
PatchGcRoot(&array[index]);
}
void FixupDexCacheArrayEntry(GcRoot<mirror::String>* array, uint32_t index)
REQUIRES_SHARED(Locks::mutator_lock_) {
PatchGcRoot(&array[index]);
}
template <typename EntryType>
void FixupDexCacheArray(ObjPtr<mirror::DexCache> dex_cache,
MemberOffset array_offset,
uint32_t size) REQUIRES_SHARED(Locks::mutator_lock_) {
EntryType* old_array =
reinterpret_cast64<EntryType*>(dex_cache->GetField64<kVerifyNone>(array_offset));
DCHECK_EQ(old_array != nullptr, size != 0u);
if (old_array != nullptr) {
EntryType* new_array = native_visitor_(old_array);
dex_cache->SetField64<kVerifyNone>(array_offset, reinterpret_cast64<uint64_t>(new_array));
for (uint32_t i = 0; i != size; ++i) {
FixupDexCacheArrayEntry(new_array, i);
}
}
}
private:
// Heap objects visitor.
HeapVisitor heap_visitor_;
// Native objects visitor.
NativeVisitor native_visitor_;
};
template <typename ReferenceVisitor>
class ImageSpace::ClassTableVisitor final {
public:
explicit ClassTableVisitor(const ReferenceVisitor& reference_visitor)
: reference_visitor_(reference_visitor) {}
void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(root->AsMirrorPtr() != nullptr);
root->Assign(reference_visitor_(root->AsMirrorPtr()));
}
private:
ReferenceVisitor reference_visitor_;
};
// Helper class encapsulating loading, so we can access private ImageSpace members (this is a
// nested class), but not declare functions in the header.
class ImageSpace::Loader {
public:
static std::unique_ptr<ImageSpace> InitAppImage(const char* image_filename,
const char* image_location,
const OatFile* oat_file,
/*inout*/MemMap* image_reservation,
/*out*/std::string* error_msg)
REQUIRES_SHARED(Locks::mutator_lock_) {
TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
std::unique_ptr<ImageSpace> space = Init(image_filename,
image_location,
oat_file,
&logger,
image_reservation,
error_msg);
if (space != nullptr) {
uint32_t expected_reservation_size =
RoundUp(space->GetImageHeader().GetImageSize(), kPageSize);
if (!CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
!CheckImageComponentCount(*space, /*expected_component_count=*/ 1u, error_msg)) {
return nullptr;
}
TimingLogger::ScopedTiming timing("RelocateImage", &logger);
ImageHeader* image_header = reinterpret_cast<ImageHeader*>(space->GetMemMap()->Begin());
const PointerSize pointer_size = image_header->GetPointerSize();
bool result;
if (pointer_size == PointerSize::k64) {
result = RelocateInPlace<PointerSize::k64>(*image_header,
space->GetMemMap()->Begin(),
space->GetLiveBitmap(),
oat_file,
error_msg);
} else {
result = RelocateInPlace<PointerSize::k32>(*image_header,
space->GetMemMap()->Begin(),
space->GetLiveBitmap(),
oat_file,
error_msg);
}
if (!result) {
return nullptr;
}
Runtime* runtime = Runtime::Current();
CHECK_EQ(runtime->GetResolutionMethod(),
image_header->GetImageMethod(ImageHeader::kResolutionMethod));
CHECK_EQ(runtime->GetImtConflictMethod(),
image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
CHECK_EQ(runtime->GetImtUnimplementedMethod(),
image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves),
image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly),
image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs),
image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything),
image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit),
image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck),
image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck));
VLOG(image) << "ImageSpace::Loader::InitAppImage exiting " << *space.get();
}
if (VLOG_IS_ON(image)) {
logger.Dump(LOG_STREAM(INFO));
}
return space;
}
static std::unique_ptr<ImageSpace> Init(const char* image_filename,
const char* image_location,
const OatFile* oat_file,
TimingLogger* logger,
/*inout*/MemMap* image_reservation,
/*out*/std::string* error_msg)
REQUIRES_SHARED(Locks::mutator_lock_) {
CHECK(image_filename != nullptr);
CHECK(image_location != nullptr);
VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
std::unique_ptr<File> file;
{
TimingLogger::ScopedTiming timing("OpenImageFile", logger);
file.reset(OS::OpenFileForReading(image_filename));
if (file == nullptr) {
*error_msg = StringPrintf("Failed to open '%s'", image_filename);
return nullptr;
}
}
ImageHeader temp_image_header;
ImageHeader* image_header = &temp_image_header;
{
TimingLogger::ScopedTiming timing("ReadImageHeader", logger);
bool success = file->ReadFully(image_header, sizeof(*image_header));
if (!success || !image_header->IsValid()) {
*error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
return nullptr;
}
}
// Check that the file is larger or equal to the header size + data size.
const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
*error_msg = StringPrintf(
"Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
image_file_size,
static_cast<uint64_t>(sizeof(ImageHeader) + image_header->GetDataSize()));
return nullptr;
}
if (oat_file != nullptr) {
// If we have an oat file (i.e. for app image), check the oat file checksum.
// Otherwise, we open the oat file after the image and check the checksum there.
const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
const uint32_t image_oat_checksum = image_header->GetOatChecksum();
if (oat_checksum != image_oat_checksum) {
*error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
oat_checksum,
image_oat_checksum,
image_filename);
return nullptr;
}
}
if (VLOG_IS_ON(startup)) {
LOG(INFO) << "Dumping image sections";
for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
auto& section = image_header->GetImageSection(section_idx);
LOG(INFO) << section_idx << " start="
<< reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
<< section;
}
}
const auto& bitmap_section = image_header->GetImageBitmapSection();
// The location we want to map from is the first aligned page after the end of the stored
// (possibly compressed) data.
const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
kPageSize);
const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
if (end_of_bitmap != image_file_size) {
*error_msg = StringPrintf(
"Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.",
image_file_size,
end_of_bitmap);
return nullptr;
}
// GetImageBegin is the preferred address to map the image. If we manage to map the
// image at the image begin, the amount of fixup work required is minimized.
// If it is pic we will retry with error_msg for the2 failure case. Pass a null error_msg to
// avoid reading proc maps for a mapping failure and slowing everything down.
// For the boot image, we have already reserved the memory and we load the image
// into the `image_reservation`.
MemMap map = LoadImageFile(
image_filename,
image_location,
*image_header,
file->Fd(),
logger,
image_reservation,
error_msg);
if (!map.IsValid()) {
DCHECK(!error_msg->empty());
return nullptr;
}
DCHECK_EQ(0, memcmp(image_header, map.Begin(), sizeof(ImageHeader)));
MemMap image_bitmap_map = MemMap::MapFile(bitmap_section.Size(),
PROT_READ,
MAP_PRIVATE,
file->Fd(),
image_bitmap_offset,
/*low_4gb=*/ false,
image_filename,
error_msg);
if (!image_bitmap_map.IsValid()) {
*error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
return nullptr;
}
// Loaded the map, use the image header from the file now in case we patch it with
// RelocateInPlace.
image_header = reinterpret_cast<ImageHeader*>(map.Begin());
const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1);
std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
image_filename,
bitmap_index));
// Bitmap only needs to cover until the end of the mirror objects section.
const ImageSection& image_objects = image_header->GetObjectsSection();
// We only want the mirror object, not the ArtFields and ArtMethods.
uint8_t* const image_end = map.Begin() + image_objects.End();
std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
{
TimingLogger::ScopedTiming timing("CreateImageBitmap", logger);
bitmap.reset(
accounting::ContinuousSpaceBitmap::CreateFromMemMap(
bitmap_name,
std::move(image_bitmap_map),
reinterpret_cast<uint8_t*>(map.Begin()),
// Make sure the bitmap is aligned to card size instead of just bitmap word size.
RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize)));
if (bitmap == nullptr) {
*error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
return nullptr;
}
}
// We only want the mirror object, not the ArtFields and ArtMethods.
std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
image_location,
std::move(map),
std::move(bitmap),
image_end));
space->oat_file_non_owned_ = oat_file;
return space;
}
static bool CheckImageComponentCount(const ImageSpace& space,
uint32_t expected_component_count,
/*out*/std::string* error_msg) {
const ImageHeader& header = space.GetImageHeader();
if (header.GetComponentCount() != expected_component_count) {
*error_msg = StringPrintf("Unexpected component count in %s, received %u, expected %u",
space.GetImageFilename().c_str(),
header.GetComponentCount(),
expected_component_count);
return false;
}
return true;
}
static bool CheckImageReservationSize(const ImageSpace& space,
uint32_t expected_reservation_size,
/*out*/std::string* error_msg) {
const ImageHeader& header = space.GetImageHeader();
if (header.GetImageReservationSize() != expected_reservation_size) {
*error_msg = StringPrintf("Unexpected reservation size in %s, received %u, expected %u",
space.GetImageFilename().c_str(),
header.GetImageReservationSize(),
expected_reservation_size);
return false;
}
return true;
}
private:
static MemMap LoadImageFile(const char* image_filename,
const char* image_location,
const ImageHeader& image_header,
int fd,
TimingLogger* logger,
/*inout*/MemMap* image_reservation,
/*out*/std::string* error_msg)
REQUIRES_SHARED(Locks::mutator_lock_) {
TimingLogger::ScopedTiming timing("MapImageFile", logger);
std::string temp_error_msg;
const bool is_compressed = image_header.HasCompressedBlock();
if (!is_compressed) {
uint8_t* address = (image_reservation != nullptr) ? image_reservation->Begin() : nullptr;
return MemMap::MapFileAtAddress(address,
image_header.GetImageSize(),
PROT_READ | PROT_WRITE,
MAP_PRIVATE,
fd,
/*start=*/ 0,
/*low_4gb=*/ true,
image_filename,
/*reuse=*/ false,
image_reservation,
error_msg);
}
// Reserve output and decompress into it.
MemMap map = MemMap::MapAnonymous(image_location,
image_header.GetImageSize(),
PROT_READ | PROT_WRITE,
/*low_4gb=*/ true,
image_reservation,
error_msg);
if (map.IsValid()) {
const size_t stored_size = image_header.GetDataSize();
MemMap temp_map = MemMap::MapFile(sizeof(ImageHeader) + stored_size,
PROT_READ,
MAP_PRIVATE,
fd,
/*start=*/ 0,
/*low_4gb=*/ false,
image_filename,
error_msg);
if (!temp_map.IsValid()) {
DCHECK(error_msg == nullptr || !error_msg->empty());
return MemMap::Invalid();
}
memcpy(map.Begin(), &image_header, sizeof(ImageHeader));
Runtime::ScopedThreadPoolUsage stpu;
ThreadPool* const pool = stpu.GetThreadPool();
const uint64_t start = NanoTime();
Thread* const self = Thread::Current();
static constexpr size_t kMinBlocks = 2u;
const bool use_parallel = pool != nullptr && image_header.GetBlockCount() >= kMinBlocks;
for (const ImageHeader::Block& block : image_header.GetBlocks(temp_map.Begin())) {
auto function = [&](Thread*) {
const uint64_t start2 = NanoTime();
ScopedTrace trace("LZ4 decompress block");
bool result = block.Decompress(/*out_ptr=*/map.Begin(),
/*in_ptr=*/temp_map.Begin(),
error_msg);
if (!result && error_msg != nullptr) {
*error_msg = "Failed to decompress image block " + *error_msg;
}
VLOG(image) << "Decompress block " << block.GetDataSize() << " -> "
<< block.GetImageSize() << " in " << PrettyDuration(NanoTime() - start2);
};
if (use_parallel) {
pool->AddTask(self, new FunctionTask(std::move(function)));
} else {
function(self);
}
}
if (use_parallel) {
ScopedTrace trace("Waiting for workers");
// Go to native since we don't want to suspend while holding the mutator lock.
ScopedThreadSuspension sts(Thread::Current(), kNative);
pool->Wait(self, true, false);
}
const uint64_t time = NanoTime() - start;
// Add one 1 ns to prevent possible divide by 0.
VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
<< PrettySize(static_cast<uint64_t>(map.Size()) * MsToNs(1000) / (time + 1))
<< "/s)";
}
return map;
}
class EmptyRange {
public:
ALWAYS_INLINE bool InSource(uintptr_t) const { return false; }
ALWAYS_INLINE bool InDest(uintptr_t) const { return false; }
ALWAYS_INLINE uintptr_t ToDest(uintptr_t) const { UNREACHABLE(); }
};
template <typename Range0, typename Range1 = EmptyRange, typename Range2 = EmptyRange>
class ForwardAddress {
public:
ForwardAddress(const Range0& range0 = Range0(),
const Range1& range1 = Range1(),
const Range2& range2 = Range2())
: range0_(range0), range1_(range1), range2_(range2) {}
// Return the relocated address of a heap object.
// Null checks must be performed in the caller (for performance reasons).
template <typename T>
ALWAYS_INLINE T* operator()(T* src) const {
DCHECK(src != nullptr);
const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
if (range2_.InSource(uint_src)) {
return reinterpret_cast<T*>(range2_.ToDest(uint_src));
}
if (range1_.InSource(uint_src)) {
return reinterpret_cast<T*>(range1_.ToDest(uint_src));
}
CHECK(range0_.InSource(uint_src))
<< reinterpret_cast<const void*>(src) << " not in "
<< reinterpret_cast<const void*>(range0_.Source()) << "-"
<< reinterpret_cast<const void*>(range0_.Source() + range0_.Length());
return reinterpret_cast<T*>(range0_.ToDest(uint_src));
}
private:
const Range0 range0_;
const Range1 range1_;
const Range2 range2_;
};
template <typename Forward>
class FixupRootVisitor {
public:
template<typename... Args>
explicit FixupRootVisitor(Args... args) : forward_(args...) {}
ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!root->IsNull()) {
VisitRoot(root);
}
}
ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* ref = root->AsMirrorPtr();
mirror::Object* new_ref = forward_(ref);
if (ref != new_ref) {
root->Assign(new_ref);
}
}
private:
Forward forward_;
};
template <typename Forward>
class FixupObjectVisitor {
public:
explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
const Forward& forward)
: visited_(visited), forward_(forward) {}
// Fix up separately since we also need to fix up method entrypoints.
ALWAYS_INLINE void VisitRootIfNonNull(
mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
const {}
ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
MemberOffset offset,
bool is_static ATTRIBUTE_UNUSED) const
NO_THREAD_SAFETY_ANALYSIS {
// Space is not yet added to the heap, don't do a read barrier.
mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
offset);
if (ref != nullptr) {
// Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
// image.
obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, forward_(ref));
}
}
// java.lang.ref.Reference visitor.
void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
ObjPtr<mirror::Reference> ref) const
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
if (obj != nullptr) {
ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
mirror::Reference::ReferentOffset(),
forward_(obj));
}
}
void operator()(mirror::Object* obj) const
NO_THREAD_SAFETY_ANALYSIS {
if (!visited_->Set(obj)) {
// Not already visited.
obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
*this,
*this);
CHECK(!obj->IsClass());
}
}
private:
gc::accounting::ContinuousSpaceBitmap* const visited_;
Forward forward_;
};
// Relocate an image space mapped at target_base which possibly used to be at a different base
// address. In place means modifying a single ImageSpace in place rather than relocating from
// one ImageSpace to another.
template <PointerSize kPointerSize>
static bool RelocateInPlace(ImageHeader& image_header,
uint8_t* target_base,
accounting::ContinuousSpaceBitmap* bitmap,
const OatFile* app_oat_file,
std::string* error_msg) {
DCHECK(error_msg != nullptr);
// Set up sections.
uint32_t boot_image_begin = 0;
uint32_t boot_image_end = 0;
uint32_t boot_oat_begin = 0;
uint32_t boot_oat_end = 0;
gc::Heap* const heap = Runtime::Current()->GetHeap();
heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
if (boot_image_begin == boot_image_end) {
*error_msg = "Can not relocate app image without boot image space";
return false;
}
if (boot_oat_begin == boot_oat_end) {
*error_msg = "Can not relocate app image without boot oat file";
return false;
}
const uint32_t boot_image_size = boot_oat_end - boot_image_begin;
const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
if (boot_image_size != image_header_boot_image_size) {
*error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
PRIu64,
static_cast<uint64_t>(boot_image_size),
static_cast<uint64_t>(image_header_boot_image_size));
return false;
}
const ImageSection& objects_section = image_header.GetObjectsSection();
// Where the app image objects are mapped to.
uint8_t* objects_location = target_base + objects_section.Offset();
TimingLogger logger(__FUNCTION__, true, false);
RelocationRange boot_image(image_header.GetBootImageBegin(),
boot_image_begin,
boot_image_size);
// Metadata is everything after the objects section, use exclusion to be safe.
RelocationRange app_image_metadata(
reinterpret_cast<uintptr_t>(image_header.GetImageBegin()) + objects_section.End(),
reinterpret_cast<uintptr_t>(target_base) + objects_section.End(),
image_header.GetImageSize() - objects_section.End());
// App image heap objects, may be mapped in the heap.
RelocationRange app_image_objects(
reinterpret_cast<uintptr_t>(image_header.GetImageBegin()) + objects_section.Offset(),
reinterpret_cast<uintptr_t>(objects_location),
objects_section.Size());
// Use the oat data section since this is where the OatFile::Begin is.
RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
// Not necessarily in low 4GB.
reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
VLOG(image) << "App image metadata " << app_image_metadata;
VLOG(image) << "App image objects " << app_image_objects;
VLOG(image) << "App oat " << app_oat;
VLOG(image) << "Boot image " << boot_image;
// True if we need to fixup any heap pointers.
const bool fixup_image = boot_image.Delta() != 0 || app_image_metadata.Delta() != 0 ||
app_image_objects.Delta() != 0;
if (!fixup_image) {
// Nothing to fix up.
return true;
}
ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
using ForwardObject = ForwardAddress<RelocationRange, RelocationRange>;
ForwardObject forward_object(boot_image, app_image_objects);
ForwardObject forward_metadata(boot_image, app_image_metadata);
using ForwardCode = ForwardAddress<RelocationRange, RelocationRange>;
ForwardCode forward_code(boot_image, app_oat);
PatchObjectVisitor<kPointerSize, ForwardObject, ForwardCode> patch_object_visitor(
forward_object,
forward_metadata);
if (fixup_image) {
// Two pass approach, fix up all classes first, then fix up non class-objects.
// The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
target_base,
image_header.GetImageSize()));
{
TimingLogger::ScopedTiming timing("Fixup classes", &logger);
const auto& class_table_section = image_header.GetClassTableSection();
if (class_table_section.Size() > 0u) {
ScopedObjectAccess soa(Thread::Current());
ClassTableVisitor class_table_visitor(forward_object);
size_t read_count = 0u;
const uint8_t* data = target_base + class_table_section.Offset();
// We avoid making a copy of the data since we want modifications to be propagated to the
// memory map.
ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
for (ClassTable::TableSlot& slot : temp_set) {
slot.VisitRoot(class_table_visitor);
mirror::Class* klass = slot.Read<kWithoutReadBarrier>();
if (!app_image_objects.InDest(klass)) {
continue;
}
const bool already_marked = visited_bitmap->Set(klass);
CHECK(!already_marked) << "App image class already visited";
patch_object_visitor.VisitClass(klass);
// Then patch the non-embedded vtable and iftable.
ObjPtr<mirror::PointerArray> vtable =
klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
if (vtable != nullptr &&
app_image_objects.InDest(vtable.Ptr()) &&
!visited_bitmap->Set(vtable.Ptr())) {
patch_object_visitor.VisitPointerArray(vtable);
}
ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
if (iftable != nullptr && app_image_objects.InDest(iftable.Ptr())) {
// Avoid processing the fields of iftable since we will process them later anyways
// below.
int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
for (int32_t i = 0; i != ifcount; ++i) {
ObjPtr<mirror::PointerArray> unpatched_ifarray =
iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
if (unpatched_ifarray != nullptr) {
// The iftable has not been patched, so we need to explicitly adjust the pointer.
ObjPtr<mirror::PointerArray> ifarray = forward_object(unpatched_ifarray.Ptr());
if (app_image_objects.InDest(ifarray.Ptr()) &&
!visited_bitmap->Set(ifarray.Ptr())) {
patch_object_visitor.VisitPointerArray(ifarray);
}
}
}
}
}
}
}
// Fixup objects may read fields in the boot image, use the mutator lock here for sanity.
// Though its probably not required.
TimingLogger::ScopedTiming timing("Fixup objects", &logger);
ScopedObjectAccess soa(Thread::Current());
// Need to update the image to be at the target base.
uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
FixupObjectVisitor<ForwardObject> fixup_object_visitor(visited_bitmap.get(), forward_object);
bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
// Fixup image roots.
CHECK(app_image_objects.InSource(reinterpret_cast<uintptr_t>(
image_header.GetImageRoots<kWithoutReadBarrier>().Ptr())));
image_header.RelocateImageObjects(app_image_objects.Delta());
CHECK_EQ(image_header.GetImageBegin(), target_base);
// Fix up dex cache DexFile pointers.
ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)
->AsObjectArray<mirror::DexCache, kVerifyNone>();
for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
CHECK(dex_cache != nullptr);
patch_object_visitor.VisitDexCacheArrays(dex_cache);
}
}
{
// Only touches objects in the app image, no need for mutator lock.
TimingLogger::ScopedTiming timing("Fixup methods", &logger);
image_header.VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS {
// TODO: Consider a separate visitor for runtime vs normal methods.
if (UNLIKELY(method.IsRuntimeMethod())) {
ImtConflictTable* table = method.GetImtConflictTable(kPointerSize);
if (table != nullptr) {
ImtConflictTable* new_table = forward_metadata(table);
if (table != new_table) {
method.SetImtConflictTable(new_table, kPointerSize);
}
}
const void* old_code = method.GetEntryPointFromQuickCompiledCodePtrSize(kPointerSize);
const void* new_code = forward_code(old_code);
if (old_code != new_code) {
method.SetEntryPointFromQuickCompiledCodePtrSize(new_code, kPointerSize);
}
} else {
method.UpdateObjectsForImageRelocation(forward_object);
method.UpdateEntrypoints(forward_code, kPointerSize);
}
}, target_base, kPointerSize);
}
if (fixup_image) {
{
// Only touches objects in the app image, no need for mutator lock.
TimingLogger::ScopedTiming timing("Fixup fields", &logger);
image_header.VisitPackedArtFields([&](ArtField& field) NO_THREAD_SAFETY_ANALYSIS {
field.UpdateObjects(forward_object);
}, target_base);
}
{
TimingLogger::ScopedTiming timing("Fixup imt", &logger);
image_header.VisitPackedImTables(forward_metadata, target_base, kPointerSize);
}
{
TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
image_header.VisitPackedImtConflictTables(forward_metadata, target_base, kPointerSize);
}
// In the app image case, the image methods are actually in the boot image.
image_header.RelocateImageMethods(boot_image.Delta());
// Fix up the intern table.
const auto& intern_table_section = image_header.GetInternedStringsSection();
if (intern_table_section.Size() > 0u) {
TimingLogger::ScopedTiming timing("Fixup intern table", &logger);
ScopedObjectAccess soa(Thread::Current());
// Fixup the pointers in the newly written intern table to contain image addresses.
InternTable temp_intern_table;
// Note that we require that ReadFromMemory does not make an internal copy of the elements
// so that the VisitRoots() will update the memory directly rather than the copies.
temp_intern_table.AddTableFromMemory(target_base + intern_table_section.Offset(),
[&](InternTable::UnorderedSet& strings)
REQUIRES_SHARED(Locks::mutator_lock_) {
for (GcRoot<mirror::String>& root : strings) {
root = GcRoot<mirror::String>(forward_object(root.Read<kWithoutReadBarrier>()));
}
}, /*is_boot_image=*/ false);
}
}
if (VLOG_IS_ON(image)) {
logger.Dump(LOG_STREAM(INFO));
}
return true;
}
};
class ImageSpace::BootImageLoader {
public:
BootImageLoader(const std::vector<std::string>& boot_class_path,
const std::vector<std::string>& boot_class_path_locations,
const std::string& image_location,
InstructionSet image_isa,
bool relocate,
bool executable,
bool is_zygote)
: boot_class_path_(boot_class_path),
boot_class_path_locations_(boot_class_path_locations),
image_location_(image_location),
image_isa_(image_isa),
relocate_(relocate),
executable_(executable),
is_zygote_(is_zygote),
has_system_(false),
has_cache_(false),
is_global_cache_(true),
dalvik_cache_exists_(false),
dalvik_cache_(),
cache_filename_() {
}
bool IsZygote() const { return is_zygote_; }
void FindImageFiles() {
std::string system_filename;
bool found_image = FindImageFilenameImpl(image_location_.c_str(),
image_isa_,
&has_system_,
&system_filename,
&dalvik_cache_exists_,
&dalvik_cache_,
&is_global_cache_,
&has_cache_,
&cache_filename_);
DCHECK(!dalvik_cache_exists_ || !dalvik_cache_.empty());
DCHECK_EQ(found_image, has_system_ || has_cache_);
}
bool HasSystem() const { return has_system_; }
bool HasCache() const { return has_cache_; }
bool DalvikCacheExists() const { return dalvik_cache_exists_; }
bool IsGlobalCache() const { return is_global_cache_; }
const std::string& GetDalvikCache() const {
return dalvik_cache_;
}
const std::string& GetCacheFilename() const {
return cache_filename_;
}
bool LoadFromSystem(bool validate_oat_file,
size_t extra_reservation_size,
/*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
/*out*/MemMap* extra_reservation,
/*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
std::string filename = GetSystemImageFilename(image_location_.c_str(), image_isa_);
if (!LoadFromFile(filename,
validate_oat_file,
extra_reservation_size,
&logger,
boot_image_spaces,
extra_reservation,
error_msg)) {
return false;
}
if (VLOG_IS_ON(image)) {
LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting "
<< *boot_image_spaces->front();
logger.Dump(LOG_STREAM(INFO));
}
return true;
}
bool LoadFromDalvikCache(
bool validate_oat_file,
size_t extra_reservation_size,
/*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
/*out*/MemMap* extra_reservation,
/*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
DCHECK(DalvikCacheExists());
if (!LoadFromFile(cache_filename_,
validate_oat_file,
extra_reservation_size,
&logger,
boot_image_spaces,
extra_reservation,
error_msg)) {
return false;
}
if (VLOG_IS_ON(image)) {
LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromDalvikCache exiting "
<< *boot_image_spaces->front();
logger.Dump(LOG_STREAM(INFO));
}
return true;
}
private:
bool LoadFromFile(
const std::string& filename,
bool validate_oat_file,
size_t extra_reservation_size,
TimingLogger* logger,
/*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
/*out*/MemMap* extra_reservation,
/*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
ImageHeader system_hdr;
if (!ReadSpecificImageHeader(filename.c_str(), &system_hdr)) {
*error_msg = StringPrintf("Cannot read header of %s", filename.c_str());
return false;
}
if (system_hdr.GetComponentCount() == 0u ||
system_hdr.GetComponentCount() > boot_class_path_.size()) {
*error_msg = StringPrintf("Unexpected component count in %s, received %u, "
"expected non-zero and <= %zu",
filename.c_str(),
system_hdr.GetComponentCount(),
boot_class_path_.size());
return false;
}
MemMap image_reservation;
MemMap local_extra_reservation;
if (!ReserveBootImageMemory(system_hdr.GetImageReservationSize(),
reinterpret_cast32<uint32_t>(system_hdr.GetImageBegin()),
extra_reservation_size,
&image_reservation,
&local_extra_reservation,
error_msg)) {
return false;
}
ArrayRef<const std::string> provided_locations(boot_class_path_locations_.data(),
system_hdr.GetComponentCount());
std::vector<std::string> locations =
ExpandMultiImageLocations(provided_locations, image_location_);
std::vector<std::string> filenames =
ExpandMultiImageLocations(provided_locations, filename);
DCHECK_EQ(locations.size(), filenames.size());
std::vector<std::unique_ptr<ImageSpace>> spaces;
spaces.reserve(locations.size());
for (std::size_t i = 0u, size = locations.size(); i != size; ++i) {
spaces.push_back(Load(locations[i], filenames[i], logger, &image_reservation, error_msg));
const ImageSpace* space = spaces.back().get();
if (space == nullptr) {
return false;
}
uint32_t expected_component_count = (i == 0u) ? system_hdr.GetComponentCount() : 0u;
uint32_t expected_reservation_size = (i == 0u) ? system_hdr.GetImageReservationSize() : 0u;
if (!Loader::CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
!Loader::CheckImageComponentCount(*space, expected_component_count, error_msg)) {
return false;
}
}
for (size_t i = 0u, size = spaces.size(); i != size; ++i) {
std::string expected_boot_class_path =
(i == 0u) ? android::base::Join(provided_locations, ':') : std::string();
if (!OpenOatFile(spaces[i].get(),
boot_class_path_[i],
expected_boot_class_path,
validate_oat_file,
logger,
&image_reservation,
error_msg)) {
return false;
}
}
if (!CheckReservationExhausted(image_reservation, error_msg)) {
return false;
}
MaybeRelocateSpaces(spaces, logger);
boot_image_spaces->swap(spaces);
*extra_reservation = std::move(local_extra_reservation);
return true;
}
private:
class RelocateVisitor {
public:
explicit RelocateVisitor(uint32_t diff) : diff_(diff) {}
template <typename T>
ALWAYS_INLINE T* operator()(T* src) const {
DCHECK(src != nullptr);
return reinterpret_cast32<T*>(reinterpret_cast32<uint32_t>(src) + diff_);
}
private:
const uint32_t diff_;
};
static void** PointerAddress(ArtMethod* method, MemberOffset offset) {
return reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(method) + offset.Uint32Value());
}
template <PointerSize kPointerSize>
static void DoRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
uint32_t diff) REQUIRES_SHARED(Locks::mutator_lock_) {
std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> patched_objects(
gc::accounting::ContinuousSpaceBitmap::Create(
"Marked objects",
spaces.front()->Begin(),
spaces.back()->End() - spaces.front()->Begin()));
using PatchRelocateVisitor = PatchObjectVisitor<kPointerSize, RelocateVisitor, RelocateVisitor>;
RelocateVisitor relocate_visitor(diff);
PatchRelocateVisitor patch_object_visitor(relocate_visitor, relocate_visitor);
mirror::Class* dcheck_class_class = nullptr; // Used only for a DCHECK().
for (const std::unique_ptr<ImageSpace>& space : spaces) {
// First patch the image header. The `diff` is OK for patching 32-bit fields but
// the 64-bit method fields in the ImageHeader may need a negative `delta`.
reinterpret_cast<ImageHeader*>(space->Begin())->RelocateImage(
(reinterpret_cast32<uint32_t>(space->Begin()) >= -diff) // Would `begin+diff` overflow?
? -static_cast<int64_t>(-diff) : static_cast<int64_t>(diff));
// Patch fields and methods.
const ImageHeader& image_header = space->GetImageHeader();
image_header.VisitPackedArtFields([&](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) {
patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
&field.DeclaringClassRoot());
}, space->Begin());
image_header.VisitPackedArtMethods([&](ArtMethod& method)
REQUIRES_SHARED(Locks::mutator_lock_) {
patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
void** data_address = PointerAddress(&method, ArtMethod::DataOffset(kPointerSize));
patch_object_visitor.PatchNativePointer(data_address);
void** entrypoint_address =
PointerAddress(&method, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kPointerSize));
patch_object_visitor.PatchNativePointer(entrypoint_address);
}, space->Begin(), kPointerSize);
auto method_table_visitor = [&](ArtMethod* method) {
DCHECK(method != nullptr);
return relocate_visitor(method);
};
image_header.VisitPackedImTables(method_table_visitor, space->Begin(), kPointerSize);
image_header.VisitPackedImtConflictTables(method_table_visitor, space->Begin(), kPointerSize);
// Patch the intern table.
if (image_header.GetInternedStringsSection().Size() != 0u) {
const uint8_t* data = space->Begin() + image_header.GetInternedStringsSection().Offset();
size_t read_count;
InternTable::UnorderedSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
for (GcRoot<mirror::String>& slot : temp_set) {
patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(&slot);
}
}
// Patch the class table and classes, so that we can traverse class hierarchy to
// determine the types of other objects when we visit them later.
if (image_header.GetClassTableSection().Size() != 0u) {
uint8_t* data = space->Begin() + image_header.GetClassTableSection().Offset();
size_t read_count;
ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
DCHECK(!temp_set.empty());
ClassTableVisitor class_table_visitor(relocate_visitor);
for (ClassTable::TableSlot& slot : temp_set) {
slot.VisitRoot(class_table_visitor);
mirror::Class* klass = slot.Read<kWithoutReadBarrier>();
DCHECK(klass != nullptr);
patched_objects->Set(klass);
patch_object_visitor.VisitClass(klass);
if (kIsDebugBuild) {
mirror::Class* class_class = klass->GetClass<kVerifyNone, kWithoutReadBarrier>();
if (dcheck_class_class == nullptr) {
dcheck_class_class = class_class;
} else {
CHECK_EQ(class_class, dcheck_class_class);
}
}
// Then patch the non-embedded vtable and iftable.
ObjPtr<mirror::PointerArray> vtable =
klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
if (vtable != nullptr && !patched_objects->Set(vtable.Ptr())) {
patch_object_visitor.VisitPointerArray(vtable);
}
ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
if (iftable != nullptr) {
int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
for (int32_t i = 0; i != ifcount; ++i) {
ObjPtr<mirror::PointerArray> unpatched_ifarray =
iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
if (unpatched_ifarray != nullptr) {
// The iftable has not been patched, so we need to explicitly adjust the pointer.
ObjPtr<mirror::PointerArray> ifarray = relocate_visitor(unpatched_ifarray.Ptr());
if (!patched_objects->Set(ifarray.Ptr())) {
patch_object_visitor.VisitPointerArray(ifarray);
}
}
}
}
}
}
}
// Patch class roots now, so that we can recognize mirror::Method and mirror::Constructor.
ObjPtr<mirror::Class> method_class;
ObjPtr<mirror::Class> constructor_class;
{
const ImageSpace* space = spaces.front().get();
const ImageHeader& image_header = space->GetImageHeader();
ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots =
image_header.GetImageRoots<kWithoutReadBarrier>();
patched_objects->Set(image_roots.Ptr());
patch_object_visitor.VisitObject(image_roots.Ptr());
ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(
image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kClassRoots));
patched_objects->Set(class_roots.Ptr());
patch_object_visitor.VisitObject(class_roots.Ptr());
method_class = GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots);
constructor_class = GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots);
}
for (size_t s = 0u, size = spaces.size(); s != size; ++s) {
const ImageSpace* space = spaces[s].get();
const ImageHeader& image_header = space->GetImageHeader();
static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
uint32_t objects_end = image_header.GetObjectsSection().Size();
DCHECK_ALIGNED(objects_end, kObjectAlignment);
for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
mirror::Object* object = reinterpret_cast<mirror::Object*>(space->Begin() + pos);
if (!patched_objects->Test(object)) {
// This is the last pass over objects, so we do not need to Set().
patch_object_visitor.VisitObject(object);
ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
if (klass->IsDexCacheClass<kVerifyNone>()) {
// Patch dex cache array pointers and elements.
ObjPtr<mirror::DexCache> dex_cache =
object->AsDexCache<kVerifyNone, kWithoutReadBarrier>();
patch_object_visitor.VisitDexCacheArrays(dex_cache);
} else if (klass == method_class || klass == constructor_class) {
// Patch the ArtMethod* in the mirror::Executable subobject.
ObjPtr<mirror::Executable> as_executable =
ObjPtr<mirror::Executable>::DownCast(object);
ArtMethod* unpatched_method = as_executable->GetArtMethod<kVerifyNone>();
ArtMethod* patched_method = relocate_visitor(unpatched_method);
as_executable->SetArtMethod</*kTransactionActive=*/ false,
/*kCheckTransaction=*/ true,
kVerifyNone>(patched_method);
}
}
pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
}
}
}
void MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
TimingLogger* logger)
REQUIRES_SHARED(Locks::mutator_lock_) {
TimingLogger::ScopedTiming timing("MaybeRelocateSpaces", logger);
ImageSpace* first_space = spaces.front().get();
const ImageHeader& first_space_header = first_space->GetImageHeader();
uint32_t diff =
static_cast<uint32_t>(first_space->Begin() - first_space_header.GetImageBegin());
if (!relocate_) {
DCHECK_EQ(diff, 0u);
return;
}
PointerSize pointer_size = first_space_header.GetPointerSize();
if (pointer_size == PointerSize::k64) {
DoRelocateSpaces<PointerSize::k64>(spaces, diff);
} else {
DoRelocateSpaces<PointerSize::k32>(spaces, diff);
}
}
std::unique_ptr<ImageSpace> Load(const std::string& image_location,
const std::string& image_filename,
TimingLogger* logger,
/*inout*/MemMap* image_reservation,
/*out*/std::string* error_msg)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Should this be a RDWR lock? This is only a defensive measure, as at
// this point the image should exist.
// However, only the zygote can write into the global dalvik-cache, so
// restrict to zygote processes, or any process that isn't using
// /data/dalvik-cache (which we assume to be allowed to write there).
const bool rw_lock = is_zygote_ || !is_global_cache_;
// Note that we must not use the file descriptor associated with
// ScopedFlock::GetFile to Init the image file. We want the file
// descriptor (and the associated exclusive lock) to be released when
// we leave Create.
ScopedFlock image = LockedFile::Open(image_filename.c_str(),
/*flags=*/ rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY,
/*block=*/ true,
error_msg);
VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
<< image_location;
// If we are in /system we can assume the image is good. We can also
// assume this if we are using a relocated image (i.e. image checksum
// matches) since this is only different by the offset. We need this to
// make sure that host tests continue to work.
// Since we are the boot image, pass null since we load the oat file from the boot image oat
// file name.
return Loader::Init(image_filename.c_str(),
image_location.c_str(),
/*oat_file=*/ nullptr,
logger,
image_reservation,
error_msg);
}
bool OpenOatFile(ImageSpace* space,
const std::string& dex_filename,
const std::string& expected_boot_class_path,
bool validate_oat_file,
TimingLogger* logger,
/*inout*/MemMap* image_reservation,
/*out*/std::string* error_msg) {
// VerifyImageAllocations() will be called later in Runtime::Init()
// as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
// and ArtField::java_lang_reflect_ArtField_, which are used from
// Object::SizeOf() which VerifyImageAllocations() calls, are not
// set yet at this point.
DCHECK(image_reservation != nullptr);
std::unique_ptr<OatFile> oat_file;
{
TimingLogger::ScopedTiming timing("OpenOatFile", logger);
std::string oat_filename =
ImageHeader::GetOatLocationFromImageLocation(space->GetImageFilename());
std::string oat_location =
ImageHeader::GetOatLocationFromImageLocation(space->GetImageLocation());
oat_file.reset(OatFile::Open(/*zip_fd=*/ -1,
oat_filename,
oat_location,
executable_,
/*low_4gb=*/ false,
/*abs_dex_location=*/ dex_filename.c_str(),
image_reservation,
error_msg));
if (oat_file == nullptr) {
*error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
oat_filename.c_str(),
space->GetName(),
error_msg->c_str());
return false;
}
const ImageHeader& image_header = space->GetImageHeader();
uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
uint32_t image_oat_checksum = image_header.GetOatChecksum();
if (oat_checksum != image_oat_checksum) {
*error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum"
" 0x%x in image %s",
oat_checksum,
image_oat_checksum,
space->GetName());
return false;
}
const char* oat_boot_class_path =
oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathKey);
oat_boot_class_path = (oat_boot_class_path != nullptr) ? oat_boot_class_path : "";
if (expected_boot_class_path != oat_boot_class_path) {
*error_msg = StringPrintf("Failed to match oat boot class path %s to expected "
"boot class path %s in image %s",
oat_boot_class_path,
expected_boot_class_path.c_str(),
space->GetName());
return false;
}
ptrdiff_t relocation_diff = space->Begin() - image_header.GetImageBegin();
CHECK(image_header.GetOatDataBegin() != nullptr);
uint8_t* oat_data_begin = image_header.GetOatDataBegin() + relocation_diff;
if (oat_file->Begin() != oat_data_begin) {
*error_msg = StringPrintf("Oat file '%s' referenced from image %s has unexpected begin"
" %p v. %p",
oat_filename.c_str(),
space->GetName(),
oat_file->Begin(),
oat_data_begin);
return false;
}
}
if (validate_oat_file) {
TimingLogger::ScopedTiming timing("ValidateOatFile", logger);
if (!ImageSpace::ValidateOatFile(*oat_file, error_msg)) {
DCHECK(!error_msg->empty());
return false;
}
}
space->oat_file_ = std::move(oat_file);
space->oat_file_non_owned_ = space->oat_file_.get();
return true;
}
bool ReserveBootImageMemory(uint32_t reservation_size,
uint32_t image_start,
size_t extra_reservation_size,
/*out*/MemMap* image_reservation,
/*out*/MemMap* extra_reservation,
/*out*/std::string* error_msg) {
DCHECK_ALIGNED(reservation_size, kPageSize);
DCHECK_ALIGNED(image_start, kPageSize);
DCHECK(!image_reservation->IsValid());
DCHECK_LT(extra_reservation_size, std::numeric_limits<uint32_t>::max() - reservation_size);
size_t total_size = reservation_size + extra_reservation_size;
// If relocating, choose a random address for ALSR.
uint32_t addr = relocate_ ? ART_BASE_ADDRESS + ChooseRelocationOffsetDelta() : image_start;
*image_reservation =
MemMap::MapAnonymous("Boot image reservation",
reinterpret_cast32<uint8_t*>(addr),
total_size,
PROT_NONE,
/*low_4gb=*/ true,
/*reuse=*/ false,
/*reservation=*/ nullptr,
error_msg);
if (!image_reservation->IsValid()) {
return false;
}
DCHECK(!extra_reservation->IsValid());
if (extra_reservation_size != 0u) {
DCHECK_ALIGNED(extra_reservation_size, kPageSize);
DCHECK_LT(extra_reservation_size, image_reservation->Size());
uint8_t* split = image_reservation->End() - extra_reservation_size;
*extra_reservation = image_reservation->RemapAtEnd(split,
"Boot image extra reservation",
PROT_NONE,
error_msg);
if (!extra_reservation->IsValid()) {
return false;
}
}
return true;
}
bool CheckReservationExhausted(const MemMap& image_reservation, /*out*/std::string* error_msg) {
if (image_reservation.IsValid()) {
*error_msg = StringPrintf("Excessive image reservation after loading boot image: %p-%p",
image_reservation.Begin(),
image_reservation.End());
return false;
}
return true;
}
const std::vector<std::string>& boot_class_path_;
const std::vector<std::string>& boot_class_path_locations_;
const std::string& image_location_;
InstructionSet image_isa_;
bool relocate_;
bool executable_;
bool is_zygote_;
bool has_system_;
bool has_cache_;
bool is_global_cache_;
bool dalvik_cache_exists_;
std::string dalvik_cache_;
std::string cache_filename_;
};
static constexpr uint64_t kLowSpaceValue = 50 * MB;
static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
// Read the free space of the cache partition and make a decision whether to keep the generated
// image. This is to try to mitigate situations where the system might run out of space later.
static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
// Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
struct statvfs buf;
int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
if (res != 0) {
// Could not stat. Conservatively tell the system to delete the image.
*error_msg = "Could not stat the filesystem, assuming low-memory situation.";
return false;
}
uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
// Zygote is privileged, but other things are not. Use bavail.
uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
// Take the overall size as an indicator for a tmpfs, which is being used for the decryption
// environment. We do not want to fail quickening the boot image there, as it is beneficial
// for time-to-UI.
if (fs_overall_size > kTmpFsSentinelValue) {
if (fs_free_size < kLowSpaceValue) {
*error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at "
"least %" PRIu64 ".",
static_cast<double>(fs_free_size) / MB,
kLowSpaceValue / MB);
return false;
}
}
return true;
}
bool ImageSpace::LoadBootImage(
const std::vector<std::string>& boot_class_path,
const std::vector<std::string>& boot_class_path_locations,
const std::string& image_location,
const InstructionSet image_isa,
ImageSpaceLoadingOrder order,
bool relocate,
bool executable,
bool is_zygote,
size_t extra_reservation_size,
/*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
/*out*/MemMap* extra_reservation) {
ScopedTrace trace(__FUNCTION__);
DCHECK(boot_image_spaces != nullptr);
DCHECK(boot_image_spaces->empty());
DCHECK_ALIGNED(extra_reservation_size, kPageSize);
DCHECK(extra_reservation != nullptr);
DCHECK_NE(image_isa, InstructionSet::kNone);
if (image_location.empty()) {
return false;
}
BootImageLoader loader(boot_class_path,
boot_class_path_locations,
image_location,
image_isa,
relocate,
executable,
is_zygote);
// Step 0: Extra zygote work.
// Step 0.a: If we're the zygote, mark boot.
if (loader.IsZygote() && CanWriteToDalvikCache(image_isa)) {
MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
}
loader.FindImageFiles();
// Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively,
// if necessary. While the runtime may be fine (it is pretty tolerant to
// out-of-disk-space situations), other parts of the platform are not.
//
// The advantage of doing this proactively is that the later steps are simplified,
// i.e., we do not need to code retries.
bool low_space = false;
if (loader.IsZygote() && loader.DalvikCacheExists()) {
// Extra checks for the zygote. These only apply when loading the first image, explained below.
const std::string& dalvik_cache = loader.GetDalvikCache();
DCHECK(!dalvik_cache.empty());
std::string local_error_msg;
bool check_space = CheckSpace(dalvik_cache, &local_error_msg);
if (!check_space) {
LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache.";
PruneDalvikCache(image_isa);
// Re-evaluate the image.
loader.FindImageFiles();
// Disable compilation/patching - we do not want to fill up the space again.
low_space = true;
}
}
// Collect all the errors.
std::vector<std::string> error_msgs;
auto try_load_from = [&](auto has_fn, auto load_fn, bool validate_oat_file) {
if ((loader.*has_fn)()) {
std::string local_error_msg;
if ((loader.*load_fn)(validate_oat_file,
extra_reservation_size,
boot_image_spaces,
extra_reservation,
&local_error_msg)) {
return true;
}
error_msgs.push_back(local_error_msg);
}
return false;
};
auto try_load_from_system = [&]() {
return try_load_from(&BootImageLoader::HasSystem, &BootImageLoader::LoadFromSystem, false);
};
auto try_load_from_cache = [&]() {
return try_load_from(&BootImageLoader::HasCache, &BootImageLoader::LoadFromDalvikCache, true);
};
auto invoke_sequentially = [](auto first, auto second) {
return first() || second();
};
// Step 1+2: Check system and cache images in the asked-for order.
if (order == ImageSpaceLoadingOrder::kSystemFirst) {
if (invoke_sequentially(try_load_from_system, try_load_from_cache)) {
return true;
}
} else {
if (invoke_sequentially(try_load_from_cache, try_load_from_system)) {
return true;
}
}
// Step 3: We do not have an existing image in /system,
// so generate an image into the dalvik cache.
if (!loader.HasSystem() && loader.DalvikCacheExists()) {
std::string local_error_msg;
if (low_space || !Runtime::Current()->IsImageDex2OatEnabled()) {
local_error_msg = "Image compilation disabled.";
} else if (ImageCreationAllowed(loader.IsGlobalCache(),
image_isa,
is_zygote,
&local_error_msg)) {
bool compilation_success =
GenerateImage(loader.GetCacheFilename(), image_isa, &local_error_msg);
if (compilation_success) {
if (loader.LoadFromDalvikCache(/*validate_oat_file=*/ false,
extra_reservation_size,
boot_image_spaces,
extra_reservation,
&local_error_msg)) {
return true;
}
}
}
error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s",
loader.GetCacheFilename().c_str(),
local_error_msg.c_str()));
}
// We failed. Prune the cache the free up space, create a compound error message
// and return false.
if (loader.DalvikCacheExists()) {
PruneDalvikCache(image_isa);
}
std::ostringstream oss;
bool first = true;
for (const auto& msg : error_msgs) {
if (!first) {
oss << "\n ";
}
oss << msg;
}
LOG(ERROR) << "Could not create image space with image file '" << image_location << "'. "
<< "Attempting to fall back to imageless running. Error was: " << oss.str();
return false;
}
ImageSpace::~ImageSpace() {
// Everything done by member destructors. Classes forward-declared in header are now defined.
}
std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
const OatFile* oat_file,
std::string* error_msg) {
// Note: The oat file has already been validated.
return Loader::InitAppImage(image,
image,
oat_file,
/*image_reservation=*/ nullptr,
error_msg);
}
const OatFile* ImageSpace::GetOatFile() const {
return oat_file_non_owned_;
}
std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
CHECK(oat_file_ != nullptr);
return std::move(oat_file_);
}
void ImageSpace::Dump(std::ostream& os) const {
os << GetType()
<< " begin=" << reinterpret_cast<void*>(Begin())
<< ",end=" << reinterpret_cast<void*>(End())
<< ",size=" << PrettySize(Size())
<< ",name=\"" << GetName() << "\"]";
}
bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
const ArtDexFileLoader dex_file_loader;
for (const OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
// Skip multidex locations - These will be checked when we visit their
// corresponding primary non-multidex location.
if (DexFileLoader::IsMultiDexLocation(dex_file_location.c_str())) {
continue;
}
std::vector<uint32_t> checksums;
if (!dex_file_loader.GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) {
*error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
"referenced by oat file %s: %s",
dex_file_location.c_str(),
oat_file.GetLocation().c_str(),
error_msg->c_str());
return false;
}
CHECK(!checksums.empty());
if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
*error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
"'%s' and dex file '%s' (0x%x != 0x%x)",
oat_file.GetLocation().c_str(),
dex_file_location.c_str(),
oat_dex_file->GetDexFileLocationChecksum(),
checksums[0]);
return false;
}
// Verify checksums for any related multidex entries.
for (size_t i = 1; i < checksums.size(); i++) {
std::string multi_dex_location = DexFileLoader::GetMultiDexLocation(
i,
dex_file_location.c_str());
const OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
nullptr,
error_msg);
if (multi_dex == nullptr) {
*error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
oat_file.GetLocation().c_str(),
multi_dex_location.c_str());
return false;
}
if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
*error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
"'%s' and dex file '%s' (0x%x != 0x%x)",
oat_file.GetLocation().c_str(),
multi_dex_location.c_str(),
multi_dex->GetDexFileLocationChecksum(),
checksums[i]);
return false;
}
}
}
return true;
}
std::string ImageSpace::GetBootClassPathChecksums(ArrayRef<const std::string> boot_class_path,
const std::string& image_location,
InstructionSet image_isa,
ImageSpaceLoadingOrder order,
/*out*/std::string* error_msg) {
std::string system_filename;
bool has_system = false;
std::string cache_filename;
bool has_cache = false;
bool dalvik_cache_exists = false;
bool is_global_cache = false;
if (!FindImageFilename(image_location.c_str(),
image_isa,
&system_filename,
&has_system,
&cache_filename,
&dalvik_cache_exists,
&has_cache,
&is_global_cache)) {
*error_msg = StringPrintf("Unable to find image file for %s and %s",
image_location.c_str(),
GetInstructionSetString(image_isa));
return std::string();
}
DCHECK(has_system || has_cache);
const std::string& filename = (order == ImageSpaceLoadingOrder::kSystemFirst)
? (has_system ? system_filename : cache_filename)
: (has_cache ? cache_filename : system_filename);
std::unique_ptr<ImageHeader> header = ReadSpecificImageHeader(filename.c_str(), error_msg);
if (header == nullptr) {
return std::string();
}
if (header->GetComponentCount() == 0u || header->GetComponentCount() > boot_class_path.size()) {
*error_msg = StringPrintf("Unexpected component count in %s, received %u, "
"expected non-zero and <= %zu",
filename.c_str(),
header->GetComponentCount(),
boot_class_path.size());
return std::string();
}
std::string boot_image_checksum =
StringPrintf("i;%d/%08x", header->GetComponentCount(), header->GetImageChecksum());
ArrayRef<const std::string> boot_class_path_tail =
ArrayRef<const std::string>(boot_class_path).SubArray(header->GetComponentCount());
for (const std::string& bcp_filename : boot_class_path_tail) {
std::vector<std::unique_ptr<const DexFile>> dex_files;
const ArtDexFileLoader dex_file_loader;
if (!dex_file_loader.Open(bcp_filename.c_str(),
bcp_filename, // The location does not matter here.
/*verify=*/ false,
/*verify_checksum=*/ false,
error_msg,
&dex_files)) {
return std::string();
}
DCHECK(!dex_files.empty());
StringAppendF(&boot_image_checksum, ":d");
for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum());
}
}
return boot_image_checksum;
}
std::string ImageSpace::GetBootClassPathChecksums(
const std::vector<ImageSpace*>& image_spaces,
const std::vector<const DexFile*>& boot_class_path) {
size_t pos = 0u;
std::string boot_image_checksum;
if (!image_spaces.empty()) {
const ImageHeader& primary_header = image_spaces.front()->GetImageHeader();
uint32_t component_count = primary_header.GetComponentCount();
DCHECK_EQ(component_count, image_spaces.size());
boot_image_checksum =
StringPrintf("i;%d/%08x", component_count, primary_header.GetImageChecksum());
for (const ImageSpace* space : image_spaces) {
size_t num_dex_files = space->oat_file_non_owned_->GetOatDexFiles().size();
if (kIsDebugBuild) {
CHECK_NE(num_dex_files, 0u);
CHECK_LE(space->oat_file_non_owned_->GetOatDexFiles().size(), boot_class_path.size() - pos);
for (size_t i = 0; i != num_dex_files; ++i) {
CHECK_EQ(space->oat_file_non_owned_->GetOatDexFiles()[i]->GetDexFileLocation(),
boot_class_path[pos + i]->GetLocation());
}
}
pos += num_dex_files;
}
}
ArrayRef<const DexFile* const> boot_class_path_tail =
ArrayRef<const DexFile* const>(boot_class_path).SubArray(pos);
DCHECK(boot_class_path_tail.empty() ||
!DexFileLoader::IsMultiDexLocation(boot_class_path_tail.front()->GetLocation().c_str()));
for (const DexFile* dex_file : boot_class_path_tail) {
if (!DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str())) {
StringAppendF(&boot_image_checksum, boot_image_checksum.empty() ? "d" : ":d");
}
StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum());
}
return boot_image_checksum;
}
std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
const std::vector<std::string>& dex_locations,
const std::string& image_location) {
return ExpandMultiImageLocations(ArrayRef<const std::string>(dex_locations), image_location);
}
std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
ArrayRef<const std::string> dex_locations,
const std::string& image_location) {
DCHECK(!dex_locations.empty());
// Find the path.
size_t last_slash = image_location.rfind('/');
CHECK_NE(last_slash, std::string::npos);
// We also need to honor path components that were encoded through '@'. Otherwise the loading
// code won't be able to find the images.
if (image_location.find('@', last_slash) != std::string::npos) {
last_slash = image_location.rfind('@');
}
// Find the dot separating the primary image name from the extension.
size_t last_dot = image_location.rfind('.');
// Extract the extension and base (the path and primary image name).
std::string extension;
std::string base = image_location;
if (last_dot != std::string::npos && last_dot > last_slash) {
extension = image_location.substr(last_dot); // Including the dot.
base.resize(last_dot);
}
// For non-empty primary image name, add '-' to the `base`.
if (last_slash + 1u != base.size()) {
base += '-';
}
std::vector<std::string> locations;
locations.reserve(dex_locations.size());
locations.push_back(image_location);
// Now create the other names. Use a counted loop to skip the first one.
for (size_t i = 1u; i < dex_locations.size(); ++i) {
// Replace path with `base` (i.e. image path and prefix) and replace the original
// extension (if any) with `extension`.
std::string name = dex_locations[i];
size_t last_dex_slash = name.rfind('/');
if (last_dex_slash != std::string::npos) {
name = name.substr(last_dex_slash + 1);
}
size_t last_dex_dot = name.rfind('.');
if (last_dex_dot != std::string::npos) {
name.resize(last_dex_dot);
}
locations.push_back(base + name + extension);
}
return locations;
}
void ImageSpace::DumpSections(std::ostream& os) const {
const uint8_t* base = Begin();
const ImageHeader& header = GetImageHeader();
for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
auto section_type = static_cast<ImageHeader::ImageSections>(i);
const ImageSection& section = header.GetImageSection(section_type);
os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
<< "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
}
}
void ImageSpace::DisablePreResolvedStrings() {
// Clear dex cache pointers.
ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
GetImageHeader().GetImageRoot(ImageHeader::kDexCaches)->AsObjectArray<mirror::DexCache>();
for (size_t len = dex_caches->GetLength(), i = 0; i < len; ++i) {
ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
dex_cache->ClearPreResolvedStrings();
}
}
void ImageSpace::ReleaseMetadata() {
const ImageSection& metadata = GetImageHeader().GetMetadataSection();
VLOG(image) << "Releasing " << metadata.Size() << " image metadata bytes";
// In the case where new app images may have been added around the checkpoint, ensure that we
// don't madvise the cache for these.
ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
GetImageHeader().GetImageRoot(ImageHeader::kDexCaches)->AsObjectArray<mirror::DexCache>();
bool have_startup_cache = false;
for (size_t len = dex_caches->GetLength(), i = 0; i < len; ++i) {
ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
if (dex_cache->NumPreResolvedStrings() != 0u) {
have_startup_cache = true;
}
}
// Only safe to do for images that have their preresolved strings caches disabled. This is because
// uncompressed images madvise to the original unrelocated image contents.
if (!have_startup_cache) {
// Avoid using ZeroAndReleasePages since the zero fill might not be word atomic.
uint8_t* const page_begin = AlignUp(Begin() + metadata.Offset(), kPageSize);
uint8_t* const page_end = AlignDown(Begin() + metadata.End(), kPageSize);
if (page_begin < page_end) {
CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed";
}
}
}
} // namespace space
} // namespace gc
} // namespace art
|