File: image_space.cc

package info (click to toggle)
android-platform-art 10.0.0%2Br36-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,308 kB
  • sloc: cpp: 488,455; java: 151,268; asm: 29,126; python: 9,122; sh: 5,840; ansic: 4,161; xml: 2,846; perl: 77; makefile: 57
file content (2422 lines) | stat: -rw-r--r-- 106,273 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "image_space.h"

#include <sys/statvfs.h>
#include <sys/types.h>
#include <unistd.h>

#include <random>

#include "android-base/stringprintf.h"
#include "android-base/strings.h"

#include "arch/instruction_set.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/array_ref.h"
#include "base/bit_memory_region.h"
#include "base/callee_save_type.h"
#include "base/enums.h"
#include "base/file_utils.h"
#include "base/macros.h"
#include "base/os.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "base/utils.h"
#include "class_root.h"
#include "dex/art_dex_file_loader.h"
#include "dex/dex_file_loader.h"
#include "exec_utils.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/task_processor.h"
#include "image-inl.h"
#include "image_space_fs.h"
#include "intern_table-inl.h"
#include "mirror/class-inl.h"
#include "mirror/executable-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object-refvisitor-inl.h"
#include "oat_file.h"
#include "runtime.h"
#include "space-inl.h"

namespace art {
namespace gc {
namespace space {

using android::base::StringAppendF;
using android::base::StringPrintf;

Atomic<uint32_t> ImageSpace::bitmap_index_(0);

ImageSpace::ImageSpace(const std::string& image_filename,
                       const char* image_location,
                       MemMap&& mem_map,
                       std::unique_ptr<accounting::ContinuousSpaceBitmap> live_bitmap,
                       uint8_t* end)
    : MemMapSpace(image_filename,
                  std::move(mem_map),
                  mem_map.Begin(),
                  end,
                  end,
                  kGcRetentionPolicyNeverCollect),
      live_bitmap_(std::move(live_bitmap)),
      oat_file_non_owned_(nullptr),
      image_location_(image_location) {
  DCHECK(live_bitmap_ != nullptr);
}

static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
  CHECK_ALIGNED(min_delta, kPageSize);
  CHECK_ALIGNED(max_delta, kPageSize);
  CHECK_LT(min_delta, max_delta);

  int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
  if (r % 2 == 0) {
    r = RoundUp(r, kPageSize);
  } else {
    r = RoundDown(r, kPageSize);
  }
  CHECK_LE(min_delta, r);
  CHECK_GE(max_delta, r);
  CHECK_ALIGNED(r, kPageSize);
  return r;
}

static int32_t ChooseRelocationOffsetDelta() {
  return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
}

static bool GenerateImage(const std::string& image_filename,
                          InstructionSet image_isa,
                          std::string* error_msg) {
  Runtime* runtime = Runtime::Current();
  const std::vector<std::string>& boot_class_path = runtime->GetBootClassPath();
  if (boot_class_path.empty()) {
    *error_msg = "Failed to generate image because no boot class path specified";
    return false;
  }
  // We should clean up so we are more likely to have room for the image.
  if (Runtime::Current()->IsZygote()) {
    LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
    PruneDalvikCache(image_isa);
  }

  std::vector<std::string> arg_vector;

  std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
  arg_vector.push_back(dex2oat);

  char* dex2oat_bcp = getenv("DEX2OATBOOTCLASSPATH");
  std::vector<std::string> dex2oat_bcp_vector;
  if (dex2oat_bcp != nullptr) {
    arg_vector.push_back("--runtime-arg");
    arg_vector.push_back(StringPrintf("-Xbootclasspath:%s", dex2oat_bcp));
    Split(dex2oat_bcp, ':', &dex2oat_bcp_vector);
  }

  std::string image_option_string("--image=");
  image_option_string += image_filename;
  arg_vector.push_back(image_option_string);

  if (!dex2oat_bcp_vector.empty()) {
    for (size_t i = 0u; i < dex2oat_bcp_vector.size(); i++) {
      arg_vector.push_back(std::string("--dex-file=") + dex2oat_bcp_vector[i]);
      arg_vector.push_back(std::string("--dex-location=") + dex2oat_bcp_vector[i]);
    }
  } else {
    const std::vector<std::string>& boot_class_path_locations =
        runtime->GetBootClassPathLocations();
    DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size());
    for (size_t i = 0u; i < boot_class_path.size(); i++) {
      arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
      arg_vector.push_back(std::string("--dex-location=") + boot_class_path_locations[i]);
    }
  }

  std::string oat_file_option_string("--oat-file=");
  oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
  arg_vector.push_back(oat_file_option_string);

  // Note: we do not generate a fully debuggable boot image so we do not pass the
  // compiler flag --debuggable here.

  Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
  CHECK_EQ(image_isa, kRuntimeISA)
      << "We should always be generating an image for the current isa.";

  int32_t base_offset = ChooseRelocationOffsetDelta();
  LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
            << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
  arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));

  if (!kIsTargetBuild) {
    arg_vector.push_back("--host");
  }

  const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
  for (size_t i = 0; i < compiler_options.size(); ++i) {
    arg_vector.push_back(compiler_options[i].c_str());
  }

  std::string command_line(android::base::Join(arg_vector, ' '));
  LOG(INFO) << "GenerateImage: " << command_line;
  return Exec(arg_vector, error_msg);
}

static bool FindImageFilenameImpl(const char* image_location,
                                  const InstructionSet image_isa,
                                  bool* has_system,
                                  std::string* system_filename,
                                  bool* dalvik_cache_exists,
                                  std::string* dalvik_cache,
                                  bool* is_global_cache,
                                  bool* has_cache,
                                  std::string* cache_filename) {
  DCHECK(dalvik_cache != nullptr);

  *has_system = false;
  *has_cache = false;
  // image_location = /system/framework/boot.art
  // system_image_location = /system/framework/<image_isa>/boot.art
  std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
  if (OS::FileExists(system_image_filename.c_str())) {
    *system_filename = system_image_filename;
    *has_system = true;
  }

  bool have_android_data = false;
  *dalvik_cache_exists = false;
  GetDalvikCache(GetInstructionSetString(image_isa),
                 /*create_if_absent=*/ true,
                 dalvik_cache,
                 &have_android_data,
                 dalvik_cache_exists,
                 is_global_cache);

  if (*dalvik_cache_exists) {
    DCHECK(have_android_data);
    // Always set output location even if it does not exist,
    // so that the caller knows where to create the image.
    //
    // image_location = /system/framework/boot.art
    // *image_filename = /data/dalvik-cache/<image_isa>/system@framework@boot.art
    std::string error_msg;
    if (!GetDalvikCacheFilename(image_location,
                                dalvik_cache->c_str(),
                                cache_filename,
                                &error_msg)) {
      LOG(WARNING) << error_msg;
      return *has_system;
    }
    *has_cache = OS::FileExists(cache_filename->c_str());
  }
  return *has_system || *has_cache;
}

bool ImageSpace::FindImageFilename(const char* image_location,
                                   const InstructionSet image_isa,
                                   std::string* system_filename,
                                   bool* has_system,
                                   std::string* cache_filename,
                                   bool* dalvik_cache_exists,
                                   bool* has_cache,
                                   bool* is_global_cache) {
  std::string dalvik_cache_unused;
  return FindImageFilenameImpl(image_location,
                               image_isa,
                               has_system,
                               system_filename,
                               dalvik_cache_exists,
                               &dalvik_cache_unused,
                               is_global_cache,
                               has_cache,
                               cache_filename);
}

static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
    std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
    if (image_file.get() == nullptr) {
      return false;
    }
    const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
    if (!success || !image_header->IsValid()) {
      return false;
    }
    return true;
}

static std::unique_ptr<ImageHeader> ReadSpecificImageHeader(const char* filename,
                                                            std::string* error_msg) {
  std::unique_ptr<ImageHeader> hdr(new ImageHeader);
  if (!ReadSpecificImageHeader(filename, hdr.get())) {
    *error_msg = StringPrintf("Unable to read image header for %s", filename);
    return nullptr;
  }
  return hdr;
}

std::unique_ptr<ImageHeader> ImageSpace::ReadImageHeader(const char* image_location,
                                                         const InstructionSet image_isa,
                                                         ImageSpaceLoadingOrder order,
                                                         std::string* error_msg) {
  std::string system_filename;
  bool has_system = false;
  std::string cache_filename;
  bool has_cache = false;
  bool dalvik_cache_exists = false;
  bool is_global_cache = false;
  if (FindImageFilename(image_location,
                        image_isa,
                        &system_filename,
                        &has_system,
                        &cache_filename,
                        &dalvik_cache_exists,
                        &has_cache,
                        &is_global_cache)) {
    if (order == ImageSpaceLoadingOrder::kSystemFirst) {
      if (has_system) {
        return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
      }
      if (has_cache) {
        return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
      }
    } else {
      if (has_cache) {
        return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
      }
      if (has_system) {
        return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
      }
    }
  }

  *error_msg = StringPrintf("Unable to find image file for %s", image_location);
  return nullptr;
}

static bool CanWriteToDalvikCache(const InstructionSet isa) {
  const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa));
  if (access(dalvik_cache.c_str(), O_RDWR) == 0) {
    return true;
  } else if (errno != EACCES) {
    PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES";
  }
  return false;
}

static bool ImageCreationAllowed(bool is_global_cache,
                                 const InstructionSet isa,
                                 bool is_zygote,
                                 std::string* error_msg) {
  // Anyone can write into a "local" cache.
  if (!is_global_cache) {
    return true;
  }

  // Only the zygote running as root is allowed to create the global boot image.
  // If the zygote is running as non-root (and cannot write to the dalvik-cache),
  // then image creation is not allowed..
  if (is_zygote) {
    return CanWriteToDalvikCache(isa);
  }

  *error_msg = "Only the zygote can create the global boot image.";
  return false;
}

void ImageSpace::VerifyImageAllocations() {
  uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
  while (current < End()) {
    CHECK_ALIGNED(current, kObjectAlignment);
    auto* obj = reinterpret_cast<mirror::Object*>(current);
    CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
    CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf();
    if (kUseBakerReadBarrier) {
      obj->AssertReadBarrierState();
    }
    current += RoundUp(obj->SizeOf(), kObjectAlignment);
  }
}

// Helper class for relocating from one range of memory to another.
class RelocationRange {
 public:
  RelocationRange() = default;
  RelocationRange(const RelocationRange&) = default;
  RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
      : source_(source),
        dest_(dest),
        length_(length) {}

  bool InSource(uintptr_t address) const {
    return address - source_ < length_;
  }

  bool InDest(const void* dest) const {
    return InDest(reinterpret_cast<uintptr_t>(dest));
  }

  bool InDest(uintptr_t address) const {
    return address - dest_ < length_;
  }

  // Translate a source address to the destination space.
  uintptr_t ToDest(uintptr_t address) const {
    DCHECK(InSource(address));
    return address + Delta();
  }

  // Returns the delta between the dest from the source.
  uintptr_t Delta() const {
    return dest_ - source_;
  }

  uintptr_t Source() const {
    return source_;
  }

  uintptr_t Dest() const {
    return dest_;
  }

  uintptr_t Length() const {
    return length_;
  }

 private:
  const uintptr_t source_;
  const uintptr_t dest_;
  const uintptr_t length_;
};

std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
  return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
            << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
            << reinterpret_cast<const void*>(reloc.Dest()) << "-"
            << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
}

template <PointerSize kPointerSize, typename HeapVisitor, typename NativeVisitor>
class ImageSpace::PatchObjectVisitor final {
 public:
  explicit PatchObjectVisitor(HeapVisitor heap_visitor, NativeVisitor native_visitor)
      : heap_visitor_(heap_visitor), native_visitor_(native_visitor) {}

  void VisitClass(mirror::Class* klass) REQUIRES_SHARED(Locks::mutator_lock_) {
    // A mirror::Class object consists of
    //  - instance fields inherited from j.l.Object,
    //  - instance fields inherited from j.l.Class,
    //  - embedded tables (vtable, interface method table),
    //  - static fields of the class itself.
    // The reference fields are at the start of each field section (this is how the
    // ClassLinker orders fields; except when that would create a gap between superclass
    // fields and the first reference of the subclass due to alignment, it can be filled
    // with smaller fields - but that's not the case for j.l.Object and j.l.Class).

    DCHECK_ALIGNED(klass, kObjectAlignment);
    static_assert(IsAligned<kHeapReferenceSize>(kObjectAlignment), "Object alignment check.");
    // First, patch the `klass->klass_`, known to be a reference to the j.l.Class.class.
    // This should be the only reference field in j.l.Object and we assert that below.
    PatchReferenceField</*kMayBeNull=*/ false>(klass, mirror::Object::ClassOffset());
    // Then patch the reference instance fields described by j.l.Class.class.
    // Use the sizeof(Object) to determine where these reference fields start;
    // this is the same as `class_class->GetFirstReferenceInstanceFieldOffset()`
    // after patching but the j.l.Class may not have been patched yet.
    mirror::Class* class_class = klass->GetClass<kVerifyNone, kWithoutReadBarrier>();
    size_t num_reference_instance_fields = class_class->NumReferenceInstanceFields<kVerifyNone>();
    DCHECK_NE(num_reference_instance_fields, 0u);
    static_assert(IsAligned<kHeapReferenceSize>(sizeof(mirror::Object)), "Size alignment check.");
    MemberOffset instance_field_offset(sizeof(mirror::Object));
    for (size_t i = 0; i != num_reference_instance_fields; ++i) {
      PatchReferenceField(klass, instance_field_offset);
      static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
                    "Heap reference sizes equality check.");
      instance_field_offset =
          MemberOffset(instance_field_offset.Uint32Value() + kHeapReferenceSize);
    }
    // Now that we have patched the `super_class_`, if this is the j.l.Class.class,
    // we can get a reference to j.l.Object.class and assert that it has only one
    // reference instance field (the `klass_` patched above).
    if (kIsDebugBuild && klass == class_class) {
      ObjPtr<mirror::Class> object_class =
          klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
      CHECK_EQ(object_class->NumReferenceInstanceFields<kVerifyNone>(), 1u);
    }
    // Then patch static fields.
    size_t num_reference_static_fields = klass->NumReferenceStaticFields<kVerifyNone>();
    if (num_reference_static_fields != 0u) {
      MemberOffset static_field_offset =
          klass->GetFirstReferenceStaticFieldOffset<kVerifyNone>(kPointerSize);
      for (size_t i = 0; i != num_reference_static_fields; ++i) {
        PatchReferenceField(klass, static_field_offset);
        static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
                      "Heap reference sizes equality check.");
        static_field_offset =
            MemberOffset(static_field_offset.Uint32Value() + kHeapReferenceSize);
      }
    }
    // Then patch native pointers.
    klass->FixupNativePointers<kVerifyNone>(klass, kPointerSize, *this);
  }

  template <typename T>
  T* operator()(T* ptr, void** dest_addr ATTRIBUTE_UNUSED) const {
    return (ptr != nullptr) ? native_visitor_(ptr) : nullptr;
  }

  void VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)
      REQUIRES_SHARED(Locks::mutator_lock_) {
    // Fully patch the pointer array, including the `klass_` field.
    PatchReferenceField</*kMayBeNull=*/ false>(pointer_array, mirror::Object::ClassOffset());

    int32_t length = pointer_array->GetLength<kVerifyNone>();
    for (int32_t i = 0; i != length; ++i) {
      ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(
          pointer_array->ElementAddress<kVerifyNone>(i, kPointerSize));
      PatchNativePointer</*kMayBeNull=*/ false>(method_entry);
    }
  }

  void VisitObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) {
    // Visit all reference fields.
    object->VisitReferences</*kVisitNativeRoots=*/ false,
                            kVerifyNone,
                            kWithoutReadBarrier>(*this, *this);
    // This function should not be called for classes.
    DCHECK(!object->IsClass<kVerifyNone>());
  }

  // Visitor for VisitReferences().
  ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
                                MemberOffset field_offset,
                                bool is_static)
      const REQUIRES_SHARED(Locks::mutator_lock_) {
    DCHECK(!is_static);
    PatchReferenceField(object, field_offset);
  }
  // Visitor for VisitReferences(), java.lang.ref.Reference case.
  ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
      REQUIRES_SHARED(Locks::mutator_lock_) {
    DCHECK(klass->IsTypeOfReferenceClass());
    this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
  }
  // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
      const {}
  void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}

  void VisitDexCacheArrays(ObjPtr<mirror::DexCache> dex_cache)
      REQUIRES_SHARED(Locks::mutator_lock_) {
    FixupDexCacheArray<mirror::StringDexCacheType>(dex_cache,
                                                   mirror::DexCache::StringsOffset(),
                                                   dex_cache->NumStrings<kVerifyNone>());
    FixupDexCacheArray<mirror::TypeDexCacheType>(dex_cache,
                                                 mirror::DexCache::ResolvedTypesOffset(),
                                                 dex_cache->NumResolvedTypes<kVerifyNone>());
    FixupDexCacheArray<mirror::MethodDexCacheType>(dex_cache,
                                                   mirror::DexCache::ResolvedMethodsOffset(),
                                                   dex_cache->NumResolvedMethods<kVerifyNone>());
    FixupDexCacheArray<mirror::FieldDexCacheType>(dex_cache,
                                                  mirror::DexCache::ResolvedFieldsOffset(),
                                                  dex_cache->NumResolvedFields<kVerifyNone>());
    FixupDexCacheArray<mirror::MethodTypeDexCacheType>(
        dex_cache,
        mirror::DexCache::ResolvedMethodTypesOffset(),
        dex_cache->NumResolvedMethodTypes<kVerifyNone>());
    FixupDexCacheArray<GcRoot<mirror::CallSite>>(
        dex_cache,
        mirror::DexCache::ResolvedCallSitesOffset(),
        dex_cache->NumResolvedCallSites<kVerifyNone>());
    FixupDexCacheArray<GcRoot<mirror::String>>(
        dex_cache,
        mirror::DexCache::PreResolvedStringsOffset(),
        dex_cache->NumPreResolvedStrings<kVerifyNone>());
  }

  template <bool kMayBeNull = true, typename T>
  ALWAYS_INLINE void PatchGcRoot(/*inout*/GcRoot<T>* root) const
      REQUIRES_SHARED(Locks::mutator_lock_) {
    static_assert(sizeof(GcRoot<mirror::Class*>) == sizeof(uint32_t), "GcRoot size check");
    T* old_value = root->template Read<kWithoutReadBarrier>();
    DCHECK(kMayBeNull || old_value != nullptr);
    if (!kMayBeNull || old_value != nullptr) {
      *root = GcRoot<T>(heap_visitor_(old_value));
    }
  }

  template <bool kMayBeNull = true, typename T>
  ALWAYS_INLINE void PatchNativePointer(/*inout*/T** entry) const {
    if (kPointerSize == PointerSize::k64) {
      uint64_t* raw_entry = reinterpret_cast<uint64_t*>(entry);
      T* old_value = reinterpret_cast64<T*>(*raw_entry);
      DCHECK(kMayBeNull || old_value != nullptr);
      if (!kMayBeNull || old_value != nullptr) {
        T* new_value = native_visitor_(old_value);
        *raw_entry = reinterpret_cast64<uint64_t>(new_value);
      }
    } else {
      uint32_t* raw_entry = reinterpret_cast<uint32_t*>(entry);
      T* old_value = reinterpret_cast32<T*>(*raw_entry);
      DCHECK(kMayBeNull || old_value != nullptr);
      if (!kMayBeNull || old_value != nullptr) {
        T* new_value = native_visitor_(old_value);
        *raw_entry = reinterpret_cast32<uint32_t>(new_value);
      }
    }
  }

  template <bool kMayBeNull = true>
  ALWAYS_INLINE void PatchReferenceField(ObjPtr<mirror::Object> object, MemberOffset offset) const
      REQUIRES_SHARED(Locks::mutator_lock_) {
    ObjPtr<mirror::Object> old_value =
        object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
    DCHECK(kMayBeNull || old_value != nullptr);
    if (!kMayBeNull || old_value != nullptr) {
      ObjPtr<mirror::Object> new_value = heap_visitor_(old_value.Ptr());
      object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
                                                /*kCheckTransaction=*/ true,
                                                kVerifyNone>(offset, new_value);
    }
  }

  template <typename T>
  void FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>>* array, uint32_t index)
      REQUIRES_SHARED(Locks::mutator_lock_) {
    static_assert(sizeof(std::atomic<mirror::DexCachePair<T>>) == sizeof(mirror::DexCachePair<T>),
                  "Size check for removing std::atomic<>.");
    PatchGcRoot(&(reinterpret_cast<mirror::DexCachePair<T>*>(array)[index].object));
  }

  template <typename T>
  void FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>>* array, uint32_t index)
      REQUIRES_SHARED(Locks::mutator_lock_) {
    static_assert(sizeof(std::atomic<mirror::NativeDexCachePair<T>>) ==
                      sizeof(mirror::NativeDexCachePair<T>),
                  "Size check for removing std::atomic<>.");
    mirror::NativeDexCachePair<T> pair =
        mirror::DexCache::GetNativePairPtrSize(array, index, kPointerSize);
    if (pair.object != nullptr) {
      pair.object = native_visitor_(pair.object);
      mirror::DexCache::SetNativePairPtrSize(array, index, pair, kPointerSize);
    }
  }

  void FixupDexCacheArrayEntry(GcRoot<mirror::CallSite>* array, uint32_t index)
      REQUIRES_SHARED(Locks::mutator_lock_) {
    PatchGcRoot(&array[index]);
  }

  void FixupDexCacheArrayEntry(GcRoot<mirror::String>* array, uint32_t index)
      REQUIRES_SHARED(Locks::mutator_lock_) {
    PatchGcRoot(&array[index]);
  }

  template <typename EntryType>
  void FixupDexCacheArray(ObjPtr<mirror::DexCache> dex_cache,
                          MemberOffset array_offset,
                          uint32_t size) REQUIRES_SHARED(Locks::mutator_lock_) {
    EntryType* old_array =
        reinterpret_cast64<EntryType*>(dex_cache->GetField64<kVerifyNone>(array_offset));
    DCHECK_EQ(old_array != nullptr, size != 0u);
    if (old_array != nullptr) {
      EntryType* new_array = native_visitor_(old_array);
      dex_cache->SetField64<kVerifyNone>(array_offset, reinterpret_cast64<uint64_t>(new_array));
      for (uint32_t i = 0; i != size; ++i) {
        FixupDexCacheArrayEntry(new_array, i);
      }
    }
  }

 private:
  // Heap objects visitor.
  HeapVisitor heap_visitor_;

  // Native objects visitor.
  NativeVisitor native_visitor_;
};

template <typename ReferenceVisitor>
class ImageSpace::ClassTableVisitor final {
 public:
  explicit ClassTableVisitor(const ReferenceVisitor& reference_visitor)
      : reference_visitor_(reference_visitor) {}

  void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
      REQUIRES_SHARED(Locks::mutator_lock_) {
    DCHECK(root->AsMirrorPtr() != nullptr);
    root->Assign(reference_visitor_(root->AsMirrorPtr()));
  }

 private:
  ReferenceVisitor reference_visitor_;
};

// Helper class encapsulating loading, so we can access private ImageSpace members (this is a
// nested class), but not declare functions in the header.
class ImageSpace::Loader {
 public:
  static std::unique_ptr<ImageSpace> InitAppImage(const char* image_filename,
                                                  const char* image_location,
                                                  const OatFile* oat_file,
                                                  /*inout*/MemMap* image_reservation,
                                                  /*out*/std::string* error_msg)
      REQUIRES_SHARED(Locks::mutator_lock_) {
    TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));

    std::unique_ptr<ImageSpace> space = Init(image_filename,
                                             image_location,
                                             oat_file,
                                             &logger,
                                             image_reservation,
                                             error_msg);
    if (space != nullptr) {
      uint32_t expected_reservation_size =
          RoundUp(space->GetImageHeader().GetImageSize(), kPageSize);
      if (!CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
          !CheckImageComponentCount(*space, /*expected_component_count=*/ 1u, error_msg)) {
        return nullptr;
      }

      TimingLogger::ScopedTiming timing("RelocateImage", &logger);
      ImageHeader* image_header = reinterpret_cast<ImageHeader*>(space->GetMemMap()->Begin());
      const PointerSize pointer_size = image_header->GetPointerSize();
      bool result;
      if (pointer_size == PointerSize::k64) {
        result = RelocateInPlace<PointerSize::k64>(*image_header,
                                                   space->GetMemMap()->Begin(),
                                                   space->GetLiveBitmap(),
                                                   oat_file,
                                                   error_msg);
      } else {
        result = RelocateInPlace<PointerSize::k32>(*image_header,
                                                   space->GetMemMap()->Begin(),
                                                   space->GetLiveBitmap(),
                                                   oat_file,
                                                   error_msg);
      }
      if (!result) {
        return nullptr;
      }
      Runtime* runtime = Runtime::Current();
      CHECK_EQ(runtime->GetResolutionMethod(),
               image_header->GetImageMethod(ImageHeader::kResolutionMethod));
      CHECK_EQ(runtime->GetImtConflictMethod(),
               image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
      CHECK_EQ(runtime->GetImtUnimplementedMethod(),
               image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
      CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves),
               image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod));
      CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly),
               image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod));
      CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs),
               image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod));
      CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything),
               image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod));
      CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit),
               image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit));
      CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck),
               image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck));

      VLOG(image) << "ImageSpace::Loader::InitAppImage exiting " << *space.get();
    }
    if (VLOG_IS_ON(image)) {
      logger.Dump(LOG_STREAM(INFO));
    }
    return space;
  }

  static std::unique_ptr<ImageSpace> Init(const char* image_filename,
                                          const char* image_location,
                                          const OatFile* oat_file,
                                          TimingLogger* logger,
                                          /*inout*/MemMap* image_reservation,
                                          /*out*/std::string* error_msg)
      REQUIRES_SHARED(Locks::mutator_lock_) {
    CHECK(image_filename != nullptr);
    CHECK(image_location != nullptr);

    VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;

    std::unique_ptr<File> file;
    {
      TimingLogger::ScopedTiming timing("OpenImageFile", logger);
      file.reset(OS::OpenFileForReading(image_filename));
      if (file == nullptr) {
        *error_msg = StringPrintf("Failed to open '%s'", image_filename);
        return nullptr;
      }
    }
    ImageHeader temp_image_header;
    ImageHeader* image_header = &temp_image_header;
    {
      TimingLogger::ScopedTiming timing("ReadImageHeader", logger);
      bool success = file->ReadFully(image_header, sizeof(*image_header));
      if (!success || !image_header->IsValid()) {
        *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
        return nullptr;
      }
    }
    // Check that the file is larger or equal to the header size + data size.
    const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
    if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
      *error_msg = StringPrintf(
          "Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
           image_file_size,
           static_cast<uint64_t>(sizeof(ImageHeader) + image_header->GetDataSize()));
      return nullptr;
    }

    if (oat_file != nullptr) {
      // If we have an oat file (i.e. for app image), check the oat file checksum.
      // Otherwise, we open the oat file after the image and check the checksum there.
      const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
      const uint32_t image_oat_checksum = image_header->GetOatChecksum();
      if (oat_checksum != image_oat_checksum) {
        *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
                                  oat_checksum,
                                  image_oat_checksum,
                                  image_filename);
        return nullptr;
      }
    }

    if (VLOG_IS_ON(startup)) {
      LOG(INFO) << "Dumping image sections";
      for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
        const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
        auto& section = image_header->GetImageSection(section_idx);
        LOG(INFO) << section_idx << " start="
            << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
            << section;
      }
    }

    const auto& bitmap_section = image_header->GetImageBitmapSection();
    // The location we want to map from is the first aligned page after the end of the stored
    // (possibly compressed) data.
    const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
                                               kPageSize);
    const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
    if (end_of_bitmap != image_file_size) {
      *error_msg = StringPrintf(
          "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.",
          image_file_size,
          end_of_bitmap);
      return nullptr;
    }

    // GetImageBegin is the preferred address to map the image. If we manage to map the
    // image at the image begin, the amount of fixup work required is minimized.
    // If it is pic we will retry with error_msg for the2 failure case. Pass a null error_msg to
    // avoid reading proc maps for a mapping failure and slowing everything down.
    // For the boot image, we have already reserved the memory and we load the image
    // into the `image_reservation`.
    MemMap map = LoadImageFile(
        image_filename,
        image_location,
        *image_header,
        file->Fd(),
        logger,
        image_reservation,
        error_msg);
    if (!map.IsValid()) {
      DCHECK(!error_msg->empty());
      return nullptr;
    }
    DCHECK_EQ(0, memcmp(image_header, map.Begin(), sizeof(ImageHeader)));

    MemMap image_bitmap_map = MemMap::MapFile(bitmap_section.Size(),
                                              PROT_READ,
                                              MAP_PRIVATE,
                                              file->Fd(),
                                              image_bitmap_offset,
                                              /*low_4gb=*/ false,
                                              image_filename,
                                              error_msg);
    if (!image_bitmap_map.IsValid()) {
      *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
      return nullptr;
    }
    // Loaded the map, use the image header from the file now in case we patch it with
    // RelocateInPlace.
    image_header = reinterpret_cast<ImageHeader*>(map.Begin());
    const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1);
    std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
                                         image_filename,
                                         bitmap_index));
    // Bitmap only needs to cover until the end of the mirror objects section.
    const ImageSection& image_objects = image_header->GetObjectsSection();
    // We only want the mirror object, not the ArtFields and ArtMethods.
    uint8_t* const image_end = map.Begin() + image_objects.End();
    std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
    {
      TimingLogger::ScopedTiming timing("CreateImageBitmap", logger);
      bitmap.reset(
          accounting::ContinuousSpaceBitmap::CreateFromMemMap(
              bitmap_name,
              std::move(image_bitmap_map),
              reinterpret_cast<uint8_t*>(map.Begin()),
              // Make sure the bitmap is aligned to card size instead of just bitmap word size.
              RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize)));
      if (bitmap == nullptr) {
        *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
        return nullptr;
      }
    }
    // We only want the mirror object, not the ArtFields and ArtMethods.
    std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
                                                     image_location,
                                                     std::move(map),
                                                     std::move(bitmap),
                                                     image_end));
    space->oat_file_non_owned_ = oat_file;
    return space;
  }

  static bool CheckImageComponentCount(const ImageSpace& space,
                                       uint32_t expected_component_count,
                                       /*out*/std::string* error_msg) {
    const ImageHeader& header = space.GetImageHeader();
    if (header.GetComponentCount() != expected_component_count) {
      *error_msg = StringPrintf("Unexpected component count in %s, received %u, expected %u",
                                space.GetImageFilename().c_str(),
                                header.GetComponentCount(),
                                expected_component_count);
      return false;
    }
    return true;
  }

  static bool CheckImageReservationSize(const ImageSpace& space,
                                        uint32_t expected_reservation_size,
                                        /*out*/std::string* error_msg) {
    const ImageHeader& header = space.GetImageHeader();
    if (header.GetImageReservationSize() != expected_reservation_size) {
      *error_msg = StringPrintf("Unexpected reservation size in %s, received %u, expected %u",
                                space.GetImageFilename().c_str(),
                                header.GetImageReservationSize(),
                                expected_reservation_size);
      return false;
    }
    return true;
  }

 private:
  static MemMap LoadImageFile(const char* image_filename,
                              const char* image_location,
                              const ImageHeader& image_header,
                              int fd,
                              TimingLogger* logger,
                              /*inout*/MemMap* image_reservation,
                              /*out*/std::string* error_msg)
        REQUIRES_SHARED(Locks::mutator_lock_) {
    TimingLogger::ScopedTiming timing("MapImageFile", logger);
    std::string temp_error_msg;
    const bool is_compressed = image_header.HasCompressedBlock();
    if (!is_compressed) {
      uint8_t* address = (image_reservation != nullptr) ? image_reservation->Begin() : nullptr;
      return MemMap::MapFileAtAddress(address,
                                      image_header.GetImageSize(),
                                      PROT_READ | PROT_WRITE,
                                      MAP_PRIVATE,
                                      fd,
                                      /*start=*/ 0,
                                      /*low_4gb=*/ true,
                                      image_filename,
                                      /*reuse=*/ false,
                                      image_reservation,
                                      error_msg);
    }

    // Reserve output and decompress into it.
    MemMap map = MemMap::MapAnonymous(image_location,
                                      image_header.GetImageSize(),
                                      PROT_READ | PROT_WRITE,
                                      /*low_4gb=*/ true,
                                      image_reservation,
                                      error_msg);
    if (map.IsValid()) {
      const size_t stored_size = image_header.GetDataSize();
      MemMap temp_map = MemMap::MapFile(sizeof(ImageHeader) + stored_size,
                                        PROT_READ,
                                        MAP_PRIVATE,
                                        fd,
                                        /*start=*/ 0,
                                        /*low_4gb=*/ false,
                                        image_filename,
                                        error_msg);
      if (!temp_map.IsValid()) {
        DCHECK(error_msg == nullptr || !error_msg->empty());
        return MemMap::Invalid();
      }
      memcpy(map.Begin(), &image_header, sizeof(ImageHeader));

      Runtime::ScopedThreadPoolUsage stpu;
      ThreadPool* const pool = stpu.GetThreadPool();
      const uint64_t start = NanoTime();
      Thread* const self = Thread::Current();
      static constexpr size_t kMinBlocks = 2u;
      const bool use_parallel = pool != nullptr && image_header.GetBlockCount() >= kMinBlocks;
      for (const ImageHeader::Block& block : image_header.GetBlocks(temp_map.Begin())) {
        auto function = [&](Thread*) {
          const uint64_t start2 = NanoTime();
          ScopedTrace trace("LZ4 decompress block");
          bool result = block.Decompress(/*out_ptr=*/map.Begin(),
                                         /*in_ptr=*/temp_map.Begin(),
                                         error_msg);
          if (!result && error_msg != nullptr) {
            *error_msg = "Failed to decompress image block " + *error_msg;
          }
          VLOG(image) << "Decompress block " << block.GetDataSize() << " -> "
                      << block.GetImageSize() << " in " << PrettyDuration(NanoTime() - start2);
        };
        if (use_parallel) {
          pool->AddTask(self, new FunctionTask(std::move(function)));
        } else {
          function(self);
        }
      }
      if (use_parallel) {
        ScopedTrace trace("Waiting for workers");
        // Go to native since we don't want to suspend while holding the mutator lock.
        ScopedThreadSuspension sts(Thread::Current(), kNative);
        pool->Wait(self, true, false);
      }
      const uint64_t time = NanoTime() - start;
      // Add one 1 ns to prevent possible divide by 0.
      VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
                  << PrettySize(static_cast<uint64_t>(map.Size()) * MsToNs(1000) / (time + 1))
                  << "/s)";
    }

    return map;
  }

  class EmptyRange {
   public:
    ALWAYS_INLINE bool InSource(uintptr_t) const { return false; }
    ALWAYS_INLINE bool InDest(uintptr_t) const { return false; }
    ALWAYS_INLINE uintptr_t ToDest(uintptr_t) const { UNREACHABLE(); }
  };

  template <typename Range0, typename Range1 = EmptyRange, typename Range2 = EmptyRange>
  class ForwardAddress {
   public:
    ForwardAddress(const Range0& range0 = Range0(),
                   const Range1& range1 = Range1(),
                   const Range2& range2 = Range2())
        : range0_(range0), range1_(range1), range2_(range2) {}

    // Return the relocated address of a heap object.
    // Null checks must be performed in the caller (for performance reasons).
    template <typename T>
    ALWAYS_INLINE T* operator()(T* src) const {
      DCHECK(src != nullptr);
      const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
      if (range2_.InSource(uint_src)) {
        return reinterpret_cast<T*>(range2_.ToDest(uint_src));
      }
      if (range1_.InSource(uint_src)) {
        return reinterpret_cast<T*>(range1_.ToDest(uint_src));
      }
      CHECK(range0_.InSource(uint_src))
          << reinterpret_cast<const void*>(src) << " not in "
          << reinterpret_cast<const void*>(range0_.Source()) << "-"
          << reinterpret_cast<const void*>(range0_.Source() + range0_.Length());
      return reinterpret_cast<T*>(range0_.ToDest(uint_src));
    }

   private:
    const Range0 range0_;
    const Range1 range1_;
    const Range2 range2_;
  };

  template <typename Forward>
  class FixupRootVisitor {
   public:
    template<typename... Args>
    explicit FixupRootVisitor(Args... args) : forward_(args...) {}

    ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
        REQUIRES_SHARED(Locks::mutator_lock_) {
      if (!root->IsNull()) {
        VisitRoot(root);
      }
    }

    ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
        REQUIRES_SHARED(Locks::mutator_lock_) {
      mirror::Object* ref = root->AsMirrorPtr();
      mirror::Object* new_ref = forward_(ref);
      if (ref != new_ref) {
        root->Assign(new_ref);
      }
    }

   private:
    Forward forward_;
  };

  template <typename Forward>
  class FixupObjectVisitor {
   public:
    explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
                                const Forward& forward)
        : visited_(visited), forward_(forward) {}

    // Fix up separately since we also need to fix up method entrypoints.
    ALWAYS_INLINE void VisitRootIfNonNull(
        mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}

    ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
        const {}

    ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
                                  MemberOffset offset,
                                  bool is_static ATTRIBUTE_UNUSED) const
        NO_THREAD_SAFETY_ANALYSIS {
      // Space is not yet added to the heap, don't do a read barrier.
      mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
          offset);
      if (ref != nullptr) {
        // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
        // image.
        obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, forward_(ref));
      }
    }

    // java.lang.ref.Reference visitor.
    void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
                    ObjPtr<mirror::Reference> ref) const
        REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
      mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
      if (obj != nullptr) {
        ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
            mirror::Reference::ReferentOffset(),
            forward_(obj));
      }
    }

    void operator()(mirror::Object* obj) const
        NO_THREAD_SAFETY_ANALYSIS {
      if (!visited_->Set(obj)) {
        // Not already visited.
        obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
            *this,
            *this);
        CHECK(!obj->IsClass());
      }
    }

   private:
    gc::accounting::ContinuousSpaceBitmap* const visited_;
    Forward forward_;
  };

  // Relocate an image space mapped at target_base which possibly used to be at a different base
  // address. In place means modifying a single ImageSpace in place rather than relocating from
  // one ImageSpace to another.
  template <PointerSize kPointerSize>
  static bool RelocateInPlace(ImageHeader& image_header,
                              uint8_t* target_base,
                              accounting::ContinuousSpaceBitmap* bitmap,
                              const OatFile* app_oat_file,
                              std::string* error_msg) {
    DCHECK(error_msg != nullptr);
    // Set up sections.
    uint32_t boot_image_begin = 0;
    uint32_t boot_image_end = 0;
    uint32_t boot_oat_begin = 0;
    uint32_t boot_oat_end = 0;
    gc::Heap* const heap = Runtime::Current()->GetHeap();
    heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
    if (boot_image_begin == boot_image_end) {
      *error_msg = "Can not relocate app image without boot image space";
      return false;
    }
    if (boot_oat_begin == boot_oat_end) {
      *error_msg = "Can not relocate app image without boot oat file";
      return false;
    }
    const uint32_t boot_image_size = boot_oat_end - boot_image_begin;
    const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
    if (boot_image_size != image_header_boot_image_size) {
      *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
                                    PRIu64,
                                static_cast<uint64_t>(boot_image_size),
                                static_cast<uint64_t>(image_header_boot_image_size));
      return false;
    }
    const ImageSection& objects_section = image_header.GetObjectsSection();
    // Where the app image objects are mapped to.
    uint8_t* objects_location = target_base + objects_section.Offset();
    TimingLogger logger(__FUNCTION__, true, false);
    RelocationRange boot_image(image_header.GetBootImageBegin(),
                               boot_image_begin,
                               boot_image_size);
    // Metadata is everything after the objects section, use exclusion to be safe.
    RelocationRange app_image_metadata(
        reinterpret_cast<uintptr_t>(image_header.GetImageBegin()) + objects_section.End(),
        reinterpret_cast<uintptr_t>(target_base) + objects_section.End(),
        image_header.GetImageSize() - objects_section.End());
    // App image heap objects, may be mapped in the heap.
    RelocationRange app_image_objects(
        reinterpret_cast<uintptr_t>(image_header.GetImageBegin()) + objects_section.Offset(),
        reinterpret_cast<uintptr_t>(objects_location),
        objects_section.Size());
    // Use the oat data section since this is where the OatFile::Begin is.
    RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
                            // Not necessarily in low 4GB.
                            reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
                            image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
    VLOG(image) << "App image metadata " << app_image_metadata;
    VLOG(image) << "App image objects " << app_image_objects;
    VLOG(image) << "App oat " << app_oat;
    VLOG(image) << "Boot image " << boot_image;
    // True if we need to fixup any heap pointers.
    const bool fixup_image = boot_image.Delta() != 0 || app_image_metadata.Delta() != 0 ||
        app_image_objects.Delta() != 0;
    if (!fixup_image) {
      // Nothing to fix up.
      return true;
    }
    ScopedDebugDisallowReadBarriers sddrb(Thread::Current());

    using ForwardObject = ForwardAddress<RelocationRange, RelocationRange>;
    ForwardObject forward_object(boot_image, app_image_objects);
    ForwardObject forward_metadata(boot_image, app_image_metadata);
    using ForwardCode = ForwardAddress<RelocationRange, RelocationRange>;
    ForwardCode forward_code(boot_image, app_oat);
    PatchObjectVisitor<kPointerSize, ForwardObject, ForwardCode> patch_object_visitor(
        forward_object,
        forward_metadata);
    if (fixup_image) {
      // Two pass approach, fix up all classes first, then fix up non class-objects.
      // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
      std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
          gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
                                                        target_base,
                                                        image_header.GetImageSize()));
      {
        TimingLogger::ScopedTiming timing("Fixup classes", &logger);
        const auto& class_table_section = image_header.GetClassTableSection();
        if (class_table_section.Size() > 0u) {
          ScopedObjectAccess soa(Thread::Current());
          ClassTableVisitor class_table_visitor(forward_object);
          size_t read_count = 0u;
          const uint8_t* data = target_base + class_table_section.Offset();
          // We avoid making a copy of the data since we want modifications to be propagated to the
          // memory map.
          ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
          for (ClassTable::TableSlot& slot : temp_set) {
            slot.VisitRoot(class_table_visitor);
            mirror::Class* klass = slot.Read<kWithoutReadBarrier>();
            if (!app_image_objects.InDest(klass)) {
              continue;
            }
            const bool already_marked = visited_bitmap->Set(klass);
            CHECK(!already_marked) << "App image class already visited";
            patch_object_visitor.VisitClass(klass);
            // Then patch the non-embedded vtable and iftable.
            ObjPtr<mirror::PointerArray> vtable =
                klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
            if (vtable != nullptr &&
                app_image_objects.InDest(vtable.Ptr()) &&
                !visited_bitmap->Set(vtable.Ptr())) {
              patch_object_visitor.VisitPointerArray(vtable);
            }
            ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
            if (iftable != nullptr && app_image_objects.InDest(iftable.Ptr())) {
              // Avoid processing the fields of iftable since we will process them later anyways
              // below.
              int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
              for (int32_t i = 0; i != ifcount; ++i) {
                ObjPtr<mirror::PointerArray> unpatched_ifarray =
                    iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
                if (unpatched_ifarray != nullptr) {
                  // The iftable has not been patched, so we need to explicitly adjust the pointer.
                  ObjPtr<mirror::PointerArray> ifarray = forward_object(unpatched_ifarray.Ptr());
                  if (app_image_objects.InDest(ifarray.Ptr()) &&
                      !visited_bitmap->Set(ifarray.Ptr())) {
                    patch_object_visitor.VisitPointerArray(ifarray);
                  }
                }
              }
            }
          }
        }
      }

      // Fixup objects may read fields in the boot image, use the mutator lock here for sanity.
      // Though its probably not required.
      TimingLogger::ScopedTiming timing("Fixup objects", &logger);
      ScopedObjectAccess soa(Thread::Current());
      // Need to update the image to be at the target base.
      uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
      uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
      FixupObjectVisitor<ForwardObject> fixup_object_visitor(visited_bitmap.get(), forward_object);
      bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
      // Fixup image roots.
      CHECK(app_image_objects.InSource(reinterpret_cast<uintptr_t>(
          image_header.GetImageRoots<kWithoutReadBarrier>().Ptr())));
      image_header.RelocateImageObjects(app_image_objects.Delta());
      CHECK_EQ(image_header.GetImageBegin(), target_base);
      // Fix up dex cache DexFile pointers.
      ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
          image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)
              ->AsObjectArray<mirror::DexCache, kVerifyNone>();
      for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
        ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
        CHECK(dex_cache != nullptr);
        patch_object_visitor.VisitDexCacheArrays(dex_cache);
      }
    }
    {
      // Only touches objects in the app image, no need for mutator lock.
      TimingLogger::ScopedTiming timing("Fixup methods", &logger);
      image_header.VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS {
        // TODO: Consider a separate visitor for runtime vs normal methods.
        if (UNLIKELY(method.IsRuntimeMethod())) {
          ImtConflictTable* table = method.GetImtConflictTable(kPointerSize);
          if (table != nullptr) {
            ImtConflictTable* new_table = forward_metadata(table);
            if (table != new_table) {
              method.SetImtConflictTable(new_table, kPointerSize);
            }
          }
          const void* old_code = method.GetEntryPointFromQuickCompiledCodePtrSize(kPointerSize);
          const void* new_code = forward_code(old_code);
          if (old_code != new_code) {
            method.SetEntryPointFromQuickCompiledCodePtrSize(new_code, kPointerSize);
          }
        } else {
          method.UpdateObjectsForImageRelocation(forward_object);
          method.UpdateEntrypoints(forward_code, kPointerSize);
        }
      }, target_base, kPointerSize);
    }
    if (fixup_image) {
      {
        // Only touches objects in the app image, no need for mutator lock.
        TimingLogger::ScopedTiming timing("Fixup fields", &logger);
        image_header.VisitPackedArtFields([&](ArtField& field) NO_THREAD_SAFETY_ANALYSIS {
          field.UpdateObjects(forward_object);
        }, target_base);
      }
      {
        TimingLogger::ScopedTiming timing("Fixup imt", &logger);
        image_header.VisitPackedImTables(forward_metadata, target_base, kPointerSize);
      }
      {
        TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
        image_header.VisitPackedImtConflictTables(forward_metadata, target_base, kPointerSize);
      }
      // In the app image case, the image methods are actually in the boot image.
      image_header.RelocateImageMethods(boot_image.Delta());
      // Fix up the intern table.
      const auto& intern_table_section = image_header.GetInternedStringsSection();
      if (intern_table_section.Size() > 0u) {
        TimingLogger::ScopedTiming timing("Fixup intern table", &logger);
        ScopedObjectAccess soa(Thread::Current());
        // Fixup the pointers in the newly written intern table to contain image addresses.
        InternTable temp_intern_table;
        // Note that we require that ReadFromMemory does not make an internal copy of the elements
        // so that the VisitRoots() will update the memory directly rather than the copies.
        temp_intern_table.AddTableFromMemory(target_base + intern_table_section.Offset(),
                                             [&](InternTable::UnorderedSet& strings)
            REQUIRES_SHARED(Locks::mutator_lock_) {
          for (GcRoot<mirror::String>& root : strings) {
            root = GcRoot<mirror::String>(forward_object(root.Read<kWithoutReadBarrier>()));
          }
        }, /*is_boot_image=*/ false);
      }
    }
    if (VLOG_IS_ON(image)) {
      logger.Dump(LOG_STREAM(INFO));
    }
    return true;
  }
};

class ImageSpace::BootImageLoader {
 public:
  BootImageLoader(const std::vector<std::string>& boot_class_path,
                  const std::vector<std::string>& boot_class_path_locations,
                  const std::string& image_location,
                  InstructionSet image_isa,
                  bool relocate,
                  bool executable,
                  bool is_zygote)
      : boot_class_path_(boot_class_path),
        boot_class_path_locations_(boot_class_path_locations),
        image_location_(image_location),
        image_isa_(image_isa),
        relocate_(relocate),
        executable_(executable),
        is_zygote_(is_zygote),
        has_system_(false),
        has_cache_(false),
        is_global_cache_(true),
        dalvik_cache_exists_(false),
        dalvik_cache_(),
        cache_filename_() {
  }

  bool IsZygote() const { return is_zygote_; }

  void FindImageFiles() {
    std::string system_filename;
    bool found_image = FindImageFilenameImpl(image_location_.c_str(),
                                             image_isa_,
                                             &has_system_,
                                             &system_filename,
                                             &dalvik_cache_exists_,
                                             &dalvik_cache_,
                                             &is_global_cache_,
                                             &has_cache_,
                                             &cache_filename_);
    DCHECK(!dalvik_cache_exists_ || !dalvik_cache_.empty());
    DCHECK_EQ(found_image, has_system_ || has_cache_);
  }

  bool HasSystem() const { return has_system_; }
  bool HasCache() const { return has_cache_; }

  bool DalvikCacheExists() const { return dalvik_cache_exists_; }
  bool IsGlobalCache() const { return is_global_cache_; }

  const std::string& GetDalvikCache() const {
    return dalvik_cache_;
  }

  const std::string& GetCacheFilename() const {
    return cache_filename_;
  }

  bool LoadFromSystem(bool validate_oat_file,
                      size_t extra_reservation_size,
                      /*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
                      /*out*/MemMap* extra_reservation,
                      /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
    TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
    std::string filename = GetSystemImageFilename(image_location_.c_str(), image_isa_);

    if (!LoadFromFile(filename,
                      validate_oat_file,
                      extra_reservation_size,
                      &logger,
                      boot_image_spaces,
                      extra_reservation,
                      error_msg)) {
      return false;
    }

    if (VLOG_IS_ON(image)) {
      LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting "
          << *boot_image_spaces->front();
      logger.Dump(LOG_STREAM(INFO));
    }
    return true;
  }

  bool LoadFromDalvikCache(
      bool validate_oat_file,
      size_t extra_reservation_size,
      /*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
      /*out*/MemMap* extra_reservation,
      /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
    TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
    DCHECK(DalvikCacheExists());

    if (!LoadFromFile(cache_filename_,
                      validate_oat_file,
                      extra_reservation_size,
                      &logger,
                      boot_image_spaces,
                      extra_reservation,
                      error_msg)) {
      return false;
    }

    if (VLOG_IS_ON(image)) {
      LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromDalvikCache exiting "
          << *boot_image_spaces->front();
      logger.Dump(LOG_STREAM(INFO));
    }
    return true;
  }

 private:
  bool LoadFromFile(
      const std::string& filename,
      bool validate_oat_file,
      size_t extra_reservation_size,
      TimingLogger* logger,
      /*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
      /*out*/MemMap* extra_reservation,
      /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
    ImageHeader system_hdr;
    if (!ReadSpecificImageHeader(filename.c_str(), &system_hdr)) {
      *error_msg = StringPrintf("Cannot read header of %s", filename.c_str());
      return false;
    }
    if (system_hdr.GetComponentCount() == 0u ||
        system_hdr.GetComponentCount() > boot_class_path_.size()) {
      *error_msg = StringPrintf("Unexpected component count in %s, received %u, "
                                    "expected non-zero and <= %zu",
                                filename.c_str(),
                                system_hdr.GetComponentCount(),
                                boot_class_path_.size());
      return false;
    }
    MemMap image_reservation;
    MemMap local_extra_reservation;
    if (!ReserveBootImageMemory(system_hdr.GetImageReservationSize(),
                                reinterpret_cast32<uint32_t>(system_hdr.GetImageBegin()),
                                extra_reservation_size,
                                &image_reservation,
                                &local_extra_reservation,
                                error_msg)) {
      return false;
    }

    ArrayRef<const std::string> provided_locations(boot_class_path_locations_.data(),
                                                   system_hdr.GetComponentCount());
    std::vector<std::string> locations =
        ExpandMultiImageLocations(provided_locations, image_location_);
    std::vector<std::string> filenames =
        ExpandMultiImageLocations(provided_locations, filename);
    DCHECK_EQ(locations.size(), filenames.size());
    std::vector<std::unique_ptr<ImageSpace>> spaces;
    spaces.reserve(locations.size());
    for (std::size_t i = 0u, size = locations.size(); i != size; ++i) {
      spaces.push_back(Load(locations[i], filenames[i], logger, &image_reservation, error_msg));
      const ImageSpace* space = spaces.back().get();
      if (space == nullptr) {
        return false;
      }
      uint32_t expected_component_count = (i == 0u) ? system_hdr.GetComponentCount() : 0u;
      uint32_t expected_reservation_size = (i == 0u) ? system_hdr.GetImageReservationSize() : 0u;
      if (!Loader::CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
          !Loader::CheckImageComponentCount(*space, expected_component_count, error_msg)) {
        return false;
      }
    }
    for (size_t i = 0u, size = spaces.size(); i != size; ++i) {
      std::string expected_boot_class_path =
          (i == 0u) ? android::base::Join(provided_locations, ':') : std::string();
      if (!OpenOatFile(spaces[i].get(),
                       boot_class_path_[i],
                       expected_boot_class_path,
                       validate_oat_file,
                       logger,
                       &image_reservation,
                       error_msg)) {
        return false;
      }
    }
    if (!CheckReservationExhausted(image_reservation, error_msg)) {
      return false;
    }

    MaybeRelocateSpaces(spaces, logger);
    boot_image_spaces->swap(spaces);
    *extra_reservation = std::move(local_extra_reservation);
    return true;
  }

 private:
  class RelocateVisitor {
   public:
    explicit RelocateVisitor(uint32_t diff) : diff_(diff) {}

    template <typename T>
    ALWAYS_INLINE T* operator()(T* src) const {
      DCHECK(src != nullptr);
      return reinterpret_cast32<T*>(reinterpret_cast32<uint32_t>(src) + diff_);
    }

   private:
    const uint32_t diff_;
  };

  static void** PointerAddress(ArtMethod* method, MemberOffset offset) {
    return reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(method) + offset.Uint32Value());
  }

  template <PointerSize kPointerSize>
  static void DoRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
                               uint32_t diff) REQUIRES_SHARED(Locks::mutator_lock_) {
    std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> patched_objects(
        gc::accounting::ContinuousSpaceBitmap::Create(
            "Marked objects",
            spaces.front()->Begin(),
            spaces.back()->End() - spaces.front()->Begin()));
    using PatchRelocateVisitor = PatchObjectVisitor<kPointerSize, RelocateVisitor, RelocateVisitor>;
    RelocateVisitor relocate_visitor(diff);
    PatchRelocateVisitor patch_object_visitor(relocate_visitor, relocate_visitor);

    mirror::Class* dcheck_class_class = nullptr;  // Used only for a DCHECK().
    for (const std::unique_ptr<ImageSpace>& space : spaces) {
      // First patch the image header. The `diff` is OK for patching 32-bit fields but
      // the 64-bit method fields in the ImageHeader may need a negative `delta`.
      reinterpret_cast<ImageHeader*>(space->Begin())->RelocateImage(
          (reinterpret_cast32<uint32_t>(space->Begin()) >= -diff)  // Would `begin+diff` overflow?
              ? -static_cast<int64_t>(-diff) : static_cast<int64_t>(diff));

      // Patch fields and methods.
      const ImageHeader& image_header = space->GetImageHeader();
      image_header.VisitPackedArtFields([&](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) {
        patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
            &field.DeclaringClassRoot());
      }, space->Begin());
      image_header.VisitPackedArtMethods([&](ArtMethod& method)
          REQUIRES_SHARED(Locks::mutator_lock_) {
        patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
        void** data_address = PointerAddress(&method, ArtMethod::DataOffset(kPointerSize));
        patch_object_visitor.PatchNativePointer(data_address);
        void** entrypoint_address =
            PointerAddress(&method, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kPointerSize));
        patch_object_visitor.PatchNativePointer(entrypoint_address);
      }, space->Begin(), kPointerSize);
      auto method_table_visitor = [&](ArtMethod* method) {
        DCHECK(method != nullptr);
        return relocate_visitor(method);
      };
      image_header.VisitPackedImTables(method_table_visitor, space->Begin(), kPointerSize);
      image_header.VisitPackedImtConflictTables(method_table_visitor, space->Begin(), kPointerSize);

      // Patch the intern table.
      if (image_header.GetInternedStringsSection().Size() != 0u) {
        const uint8_t* data = space->Begin() + image_header.GetInternedStringsSection().Offset();
        size_t read_count;
        InternTable::UnorderedSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
        for (GcRoot<mirror::String>& slot : temp_set) {
          patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(&slot);
        }
      }

      // Patch the class table and classes, so that we can traverse class hierarchy to
      // determine the types of other objects when we visit them later.
      if (image_header.GetClassTableSection().Size() != 0u) {
        uint8_t* data = space->Begin() + image_header.GetClassTableSection().Offset();
        size_t read_count;
        ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
        DCHECK(!temp_set.empty());
        ClassTableVisitor class_table_visitor(relocate_visitor);
        for (ClassTable::TableSlot& slot : temp_set) {
          slot.VisitRoot(class_table_visitor);
          mirror::Class* klass = slot.Read<kWithoutReadBarrier>();
          DCHECK(klass != nullptr);
          patched_objects->Set(klass);
          patch_object_visitor.VisitClass(klass);
          if (kIsDebugBuild) {
            mirror::Class* class_class = klass->GetClass<kVerifyNone, kWithoutReadBarrier>();
            if (dcheck_class_class == nullptr) {
              dcheck_class_class = class_class;
            } else {
              CHECK_EQ(class_class, dcheck_class_class);
            }
          }
          // Then patch the non-embedded vtable and iftable.
          ObjPtr<mirror::PointerArray> vtable =
              klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
          if (vtable != nullptr && !patched_objects->Set(vtable.Ptr())) {
            patch_object_visitor.VisitPointerArray(vtable);
          }
          ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
          if (iftable != nullptr) {
            int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
            for (int32_t i = 0; i != ifcount; ++i) {
              ObjPtr<mirror::PointerArray> unpatched_ifarray =
                  iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
              if (unpatched_ifarray != nullptr) {
                // The iftable has not been patched, so we need to explicitly adjust the pointer.
                ObjPtr<mirror::PointerArray> ifarray = relocate_visitor(unpatched_ifarray.Ptr());
                if (!patched_objects->Set(ifarray.Ptr())) {
                  patch_object_visitor.VisitPointerArray(ifarray);
                }
              }
            }
          }
        }
      }
    }

    // Patch class roots now, so that we can recognize mirror::Method and mirror::Constructor.
    ObjPtr<mirror::Class> method_class;
    ObjPtr<mirror::Class> constructor_class;
    {
      const ImageSpace* space = spaces.front().get();
      const ImageHeader& image_header = space->GetImageHeader();

      ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots =
          image_header.GetImageRoots<kWithoutReadBarrier>();
      patched_objects->Set(image_roots.Ptr());
      patch_object_visitor.VisitObject(image_roots.Ptr());

      ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
          ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(
              image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kClassRoots));
      patched_objects->Set(class_roots.Ptr());
      patch_object_visitor.VisitObject(class_roots.Ptr());

      method_class = GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots);
      constructor_class = GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots);
    }

    for (size_t s = 0u, size = spaces.size(); s != size; ++s) {
      const ImageSpace* space = spaces[s].get();
      const ImageHeader& image_header = space->GetImageHeader();

      static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
      uint32_t objects_end = image_header.GetObjectsSection().Size();
      DCHECK_ALIGNED(objects_end, kObjectAlignment);
      for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
        mirror::Object* object = reinterpret_cast<mirror::Object*>(space->Begin() + pos);
        if (!patched_objects->Test(object)) {
          // This is the last pass over objects, so we do not need to Set().
          patch_object_visitor.VisitObject(object);
          ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
          if (klass->IsDexCacheClass<kVerifyNone>()) {
            // Patch dex cache array pointers and elements.
            ObjPtr<mirror::DexCache> dex_cache =
                object->AsDexCache<kVerifyNone, kWithoutReadBarrier>();
            patch_object_visitor.VisitDexCacheArrays(dex_cache);
          } else if (klass == method_class || klass == constructor_class) {
            // Patch the ArtMethod* in the mirror::Executable subobject.
            ObjPtr<mirror::Executable> as_executable =
                ObjPtr<mirror::Executable>::DownCast(object);
            ArtMethod* unpatched_method = as_executable->GetArtMethod<kVerifyNone>();
            ArtMethod* patched_method = relocate_visitor(unpatched_method);
            as_executable->SetArtMethod</*kTransactionActive=*/ false,
                                        /*kCheckTransaction=*/ true,
                                        kVerifyNone>(patched_method);
          }
        }
        pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
      }
    }
  }

  void MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
                           TimingLogger* logger)
      REQUIRES_SHARED(Locks::mutator_lock_) {
    TimingLogger::ScopedTiming timing("MaybeRelocateSpaces", logger);
    ImageSpace* first_space = spaces.front().get();
    const ImageHeader& first_space_header = first_space->GetImageHeader();
    uint32_t diff =
        static_cast<uint32_t>(first_space->Begin() - first_space_header.GetImageBegin());
    if (!relocate_) {
      DCHECK_EQ(diff, 0u);
      return;
    }

    PointerSize pointer_size = first_space_header.GetPointerSize();
    if (pointer_size == PointerSize::k64) {
      DoRelocateSpaces<PointerSize::k64>(spaces, diff);
    } else {
      DoRelocateSpaces<PointerSize::k32>(spaces, diff);
    }
  }

  std::unique_ptr<ImageSpace> Load(const std::string& image_location,
                                   const std::string& image_filename,
                                   TimingLogger* logger,
                                   /*inout*/MemMap* image_reservation,
                                   /*out*/std::string* error_msg)
      REQUIRES_SHARED(Locks::mutator_lock_) {
    // Should this be a RDWR lock? This is only a defensive measure, as at
    // this point the image should exist.
    // However, only the zygote can write into the global dalvik-cache, so
    // restrict to zygote processes, or any process that isn't using
    // /data/dalvik-cache (which we assume to be allowed to write there).
    const bool rw_lock = is_zygote_ || !is_global_cache_;

    // Note that we must not use the file descriptor associated with
    // ScopedFlock::GetFile to Init the image file. We want the file
    // descriptor (and the associated exclusive lock) to be released when
    // we leave Create.
    ScopedFlock image = LockedFile::Open(image_filename.c_str(),
                                         /*flags=*/ rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY,
                                         /*block=*/ true,
                                         error_msg);

    VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
                  << image_location;
    // If we are in /system we can assume the image is good. We can also
    // assume this if we are using a relocated image (i.e. image checksum
    // matches) since this is only different by the offset. We need this to
    // make sure that host tests continue to work.
    // Since we are the boot image, pass null since we load the oat file from the boot image oat
    // file name.
    return Loader::Init(image_filename.c_str(),
                        image_location.c_str(),
                        /*oat_file=*/ nullptr,
                        logger,
                        image_reservation,
                        error_msg);
  }

  bool OpenOatFile(ImageSpace* space,
                   const std::string& dex_filename,
                   const std::string& expected_boot_class_path,
                   bool validate_oat_file,
                   TimingLogger* logger,
                   /*inout*/MemMap* image_reservation,
                   /*out*/std::string* error_msg) {
    // VerifyImageAllocations() will be called later in Runtime::Init()
    // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
    // and ArtField::java_lang_reflect_ArtField_, which are used from
    // Object::SizeOf() which VerifyImageAllocations() calls, are not
    // set yet at this point.
    DCHECK(image_reservation != nullptr);
    std::unique_ptr<OatFile> oat_file;
    {
      TimingLogger::ScopedTiming timing("OpenOatFile", logger);
      std::string oat_filename =
          ImageHeader::GetOatLocationFromImageLocation(space->GetImageFilename());
      std::string oat_location =
          ImageHeader::GetOatLocationFromImageLocation(space->GetImageLocation());

      oat_file.reset(OatFile::Open(/*zip_fd=*/ -1,
                                   oat_filename,
                                   oat_location,
                                   executable_,
                                   /*low_4gb=*/ false,
                                   /*abs_dex_location=*/ dex_filename.c_str(),
                                   image_reservation,
                                   error_msg));
      if (oat_file == nullptr) {
        *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
                                  oat_filename.c_str(),
                                  space->GetName(),
                                  error_msg->c_str());
        return false;
      }
      const ImageHeader& image_header = space->GetImageHeader();
      uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
      uint32_t image_oat_checksum = image_header.GetOatChecksum();
      if (oat_checksum != image_oat_checksum) {
        *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum"
                                  " 0x%x in image %s",
                                  oat_checksum,
                                  image_oat_checksum,
                                  space->GetName());
        return false;
      }
      const char* oat_boot_class_path =
          oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathKey);
      oat_boot_class_path = (oat_boot_class_path != nullptr) ? oat_boot_class_path : "";
      if (expected_boot_class_path != oat_boot_class_path) {
        *error_msg = StringPrintf("Failed to match oat boot class path %s to expected "
                                  "boot class path %s in image %s",
                                  oat_boot_class_path,
                                  expected_boot_class_path.c_str(),
                                  space->GetName());
        return false;
      }
      ptrdiff_t relocation_diff = space->Begin() - image_header.GetImageBegin();
      CHECK(image_header.GetOatDataBegin() != nullptr);
      uint8_t* oat_data_begin = image_header.GetOatDataBegin() + relocation_diff;
      if (oat_file->Begin() != oat_data_begin) {
        *error_msg = StringPrintf("Oat file '%s' referenced from image %s has unexpected begin"
                                      " %p v. %p",
                                  oat_filename.c_str(),
                                  space->GetName(),
                                  oat_file->Begin(),
                                  oat_data_begin);
        return false;
      }
    }
    if (validate_oat_file) {
      TimingLogger::ScopedTiming timing("ValidateOatFile", logger);
      if (!ImageSpace::ValidateOatFile(*oat_file, error_msg)) {
        DCHECK(!error_msg->empty());
        return false;
      }
    }
    space->oat_file_ = std::move(oat_file);
    space->oat_file_non_owned_ = space->oat_file_.get();
    return true;
  }

  bool ReserveBootImageMemory(uint32_t reservation_size,
                              uint32_t image_start,
                              size_t extra_reservation_size,
                              /*out*/MemMap* image_reservation,
                              /*out*/MemMap* extra_reservation,
                              /*out*/std::string* error_msg) {
    DCHECK_ALIGNED(reservation_size, kPageSize);
    DCHECK_ALIGNED(image_start, kPageSize);
    DCHECK(!image_reservation->IsValid());
    DCHECK_LT(extra_reservation_size, std::numeric_limits<uint32_t>::max() - reservation_size);
    size_t total_size = reservation_size + extra_reservation_size;
    // If relocating, choose a random address for ALSR.
    uint32_t addr = relocate_ ? ART_BASE_ADDRESS + ChooseRelocationOffsetDelta() : image_start;
    *image_reservation =
        MemMap::MapAnonymous("Boot image reservation",
                             reinterpret_cast32<uint8_t*>(addr),
                             total_size,
                             PROT_NONE,
                             /*low_4gb=*/ true,
                             /*reuse=*/ false,
                             /*reservation=*/ nullptr,
                             error_msg);
    if (!image_reservation->IsValid()) {
      return false;
    }
    DCHECK(!extra_reservation->IsValid());
    if (extra_reservation_size != 0u) {
      DCHECK_ALIGNED(extra_reservation_size, kPageSize);
      DCHECK_LT(extra_reservation_size, image_reservation->Size());
      uint8_t* split = image_reservation->End() - extra_reservation_size;
      *extra_reservation = image_reservation->RemapAtEnd(split,
                                                         "Boot image extra reservation",
                                                         PROT_NONE,
                                                         error_msg);
      if (!extra_reservation->IsValid()) {
        return false;
      }
    }

    return true;
  }

  bool CheckReservationExhausted(const MemMap& image_reservation, /*out*/std::string* error_msg) {
    if (image_reservation.IsValid()) {
      *error_msg = StringPrintf("Excessive image reservation after loading boot image: %p-%p",
                                image_reservation.Begin(),
                                image_reservation.End());
      return false;
    }
    return true;
  }

  const std::vector<std::string>& boot_class_path_;
  const std::vector<std::string>& boot_class_path_locations_;
  const std::string& image_location_;
  InstructionSet image_isa_;
  bool relocate_;
  bool executable_;
  bool is_zygote_;
  bool has_system_;
  bool has_cache_;
  bool is_global_cache_;
  bool dalvik_cache_exists_;
  std::string dalvik_cache_;
  std::string cache_filename_;
};

static constexpr uint64_t kLowSpaceValue = 50 * MB;
static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;

// Read the free space of the cache partition and make a decision whether to keep the generated
// image. This is to try to mitigate situations where the system might run out of space later.
static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
  // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
  struct statvfs buf;

  int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
  if (res != 0) {
    // Could not stat. Conservatively tell the system to delete the image.
    *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
    return false;
  }

  uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
  // Zygote is privileged, but other things are not. Use bavail.
  uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);

  // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
  // environment. We do not want to fail quickening the boot image there, as it is beneficial
  // for time-to-UI.
  if (fs_overall_size > kTmpFsSentinelValue) {
    if (fs_free_size < kLowSpaceValue) {
      *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at "
                                "least %" PRIu64 ".",
                                static_cast<double>(fs_free_size) / MB,
                                kLowSpaceValue / MB);
      return false;
    }
  }
  return true;
}

bool ImageSpace::LoadBootImage(
    const std::vector<std::string>& boot_class_path,
    const std::vector<std::string>& boot_class_path_locations,
    const std::string& image_location,
    const InstructionSet image_isa,
    ImageSpaceLoadingOrder order,
    bool relocate,
    bool executable,
    bool is_zygote,
    size_t extra_reservation_size,
    /*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
    /*out*/MemMap* extra_reservation) {
  ScopedTrace trace(__FUNCTION__);

  DCHECK(boot_image_spaces != nullptr);
  DCHECK(boot_image_spaces->empty());
  DCHECK_ALIGNED(extra_reservation_size, kPageSize);
  DCHECK(extra_reservation != nullptr);
  DCHECK_NE(image_isa, InstructionSet::kNone);

  if (image_location.empty()) {
    return false;
  }

  BootImageLoader loader(boot_class_path,
                         boot_class_path_locations,
                         image_location,
                         image_isa,
                         relocate,
                         executable,
                         is_zygote);

  // Step 0: Extra zygote work.

  // Step 0.a: If we're the zygote, mark boot.
  if (loader.IsZygote() && CanWriteToDalvikCache(image_isa)) {
    MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
  }

  loader.FindImageFiles();

  // Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively,
  //           if necessary. While the runtime may be fine (it is pretty tolerant to
  //           out-of-disk-space situations), other parts of the platform are not.
  //
  //           The advantage of doing this proactively is that the later steps are simplified,
  //           i.e., we do not need to code retries.
  bool low_space = false;
  if (loader.IsZygote() && loader.DalvikCacheExists()) {
    // Extra checks for the zygote. These only apply when loading the first image, explained below.
    const std::string& dalvik_cache = loader.GetDalvikCache();
    DCHECK(!dalvik_cache.empty());
    std::string local_error_msg;
    bool check_space = CheckSpace(dalvik_cache, &local_error_msg);
    if (!check_space) {
      LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache.";
      PruneDalvikCache(image_isa);

      // Re-evaluate the image.
      loader.FindImageFiles();

      // Disable compilation/patching - we do not want to fill up the space again.
      low_space = true;
    }
  }

  // Collect all the errors.
  std::vector<std::string> error_msgs;

  auto try_load_from = [&](auto has_fn, auto load_fn, bool validate_oat_file) {
    if ((loader.*has_fn)()) {
      std::string local_error_msg;
      if ((loader.*load_fn)(validate_oat_file,
                            extra_reservation_size,
                            boot_image_spaces,
                            extra_reservation,
                            &local_error_msg)) {
        return true;
      }
      error_msgs.push_back(local_error_msg);
    }
    return false;
  };

  auto try_load_from_system = [&]() {
    return try_load_from(&BootImageLoader::HasSystem, &BootImageLoader::LoadFromSystem, false);
  };
  auto try_load_from_cache = [&]() {
    return try_load_from(&BootImageLoader::HasCache, &BootImageLoader::LoadFromDalvikCache, true);
  };

  auto invoke_sequentially = [](auto first, auto second) {
    return first() || second();
  };

  // Step 1+2: Check system and cache images in the asked-for order.
  if (order == ImageSpaceLoadingOrder::kSystemFirst) {
    if (invoke_sequentially(try_load_from_system, try_load_from_cache)) {
      return true;
    }
  } else {
    if (invoke_sequentially(try_load_from_cache, try_load_from_system)) {
      return true;
    }
  }

  // Step 3: We do not have an existing image in /system,
  //         so generate an image into the dalvik cache.
  if (!loader.HasSystem() && loader.DalvikCacheExists()) {
    std::string local_error_msg;
    if (low_space || !Runtime::Current()->IsImageDex2OatEnabled()) {
      local_error_msg = "Image compilation disabled.";
    } else if (ImageCreationAllowed(loader.IsGlobalCache(),
                                    image_isa,
                                    is_zygote,
                                    &local_error_msg)) {
      bool compilation_success =
          GenerateImage(loader.GetCacheFilename(), image_isa, &local_error_msg);
      if (compilation_success) {
        if (loader.LoadFromDalvikCache(/*validate_oat_file=*/ false,
                                       extra_reservation_size,
                                       boot_image_spaces,
                                       extra_reservation,
                                       &local_error_msg)) {
          return true;
        }
      }
    }
    error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s",
                                      loader.GetCacheFilename().c_str(),
                                      local_error_msg.c_str()));
  }

  // We failed. Prune the cache the free up space, create a compound error message
  // and return false.
  if (loader.DalvikCacheExists()) {
    PruneDalvikCache(image_isa);
  }

  std::ostringstream oss;
  bool first = true;
  for (const auto& msg : error_msgs) {
    if (!first) {
      oss << "\n    ";
    }
    oss << msg;
  }

  LOG(ERROR) << "Could not create image space with image file '" << image_location << "'. "
      << "Attempting to fall back to imageless running. Error was: " << oss.str();

  return false;
}

ImageSpace::~ImageSpace() {
  // Everything done by member destructors. Classes forward-declared in header are now defined.
}

std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
                                                           const OatFile* oat_file,
                                                           std::string* error_msg) {
  // Note: The oat file has already been validated.
  return Loader::InitAppImage(image,
                              image,
                              oat_file,
                              /*image_reservation=*/ nullptr,
                              error_msg);
}

const OatFile* ImageSpace::GetOatFile() const {
  return oat_file_non_owned_;
}

std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
  CHECK(oat_file_ != nullptr);
  return std::move(oat_file_);
}

void ImageSpace::Dump(std::ostream& os) const {
  os << GetType()
      << " begin=" << reinterpret_cast<void*>(Begin())
      << ",end=" << reinterpret_cast<void*>(End())
      << ",size=" << PrettySize(Size())
      << ",name=\"" << GetName() << "\"]";
}

bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
  const ArtDexFileLoader dex_file_loader;
  for (const OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
    const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();

    // Skip multidex locations - These will be checked when we visit their
    // corresponding primary non-multidex location.
    if (DexFileLoader::IsMultiDexLocation(dex_file_location.c_str())) {
      continue;
    }

    std::vector<uint32_t> checksums;
    if (!dex_file_loader.GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) {
      *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
                                "referenced by oat file %s: %s",
                                dex_file_location.c_str(),
                                oat_file.GetLocation().c_str(),
                                error_msg->c_str());
      return false;
    }
    CHECK(!checksums.empty());
    if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
      *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
                                "'%s' and dex file '%s' (0x%x != 0x%x)",
                                oat_file.GetLocation().c_str(),
                                dex_file_location.c_str(),
                                oat_dex_file->GetDexFileLocationChecksum(),
                                checksums[0]);
      return false;
    }

    // Verify checksums for any related multidex entries.
    for (size_t i = 1; i < checksums.size(); i++) {
      std::string multi_dex_location = DexFileLoader::GetMultiDexLocation(
          i,
          dex_file_location.c_str());
      const OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
                                                           nullptr,
                                                           error_msg);
      if (multi_dex == nullptr) {
        *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
                                  oat_file.GetLocation().c_str(),
                                  multi_dex_location.c_str());
        return false;
      }

      if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
        *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
                                  "'%s' and dex file '%s' (0x%x != 0x%x)",
                                  oat_file.GetLocation().c_str(),
                                  multi_dex_location.c_str(),
                                  multi_dex->GetDexFileLocationChecksum(),
                                  checksums[i]);
        return false;
      }
    }
  }
  return true;
}

std::string ImageSpace::GetBootClassPathChecksums(ArrayRef<const std::string> boot_class_path,
                                                  const std::string& image_location,
                                                  InstructionSet image_isa,
                                                  ImageSpaceLoadingOrder order,
                                                  /*out*/std::string* error_msg) {
  std::string system_filename;
  bool has_system = false;
  std::string cache_filename;
  bool has_cache = false;
  bool dalvik_cache_exists = false;
  bool is_global_cache = false;
  if (!FindImageFilename(image_location.c_str(),
                         image_isa,
                         &system_filename,
                         &has_system,
                         &cache_filename,
                         &dalvik_cache_exists,
                         &has_cache,
                         &is_global_cache)) {
    *error_msg = StringPrintf("Unable to find image file for %s and %s",
                              image_location.c_str(),
                              GetInstructionSetString(image_isa));
    return std::string();
  }

  DCHECK(has_system || has_cache);
  const std::string& filename = (order == ImageSpaceLoadingOrder::kSystemFirst)
      ? (has_system ? system_filename : cache_filename)
      : (has_cache ? cache_filename : system_filename);
  std::unique_ptr<ImageHeader> header = ReadSpecificImageHeader(filename.c_str(), error_msg);
  if (header == nullptr) {
    return std::string();
  }
  if (header->GetComponentCount() == 0u || header->GetComponentCount() > boot_class_path.size()) {
    *error_msg = StringPrintf("Unexpected component count in %s, received %u, "
                                  "expected non-zero and <= %zu",
                              filename.c_str(),
                              header->GetComponentCount(),
                              boot_class_path.size());
    return std::string();
  }

  std::string boot_image_checksum =
      StringPrintf("i;%d/%08x", header->GetComponentCount(), header->GetImageChecksum());
  ArrayRef<const std::string> boot_class_path_tail =
      ArrayRef<const std::string>(boot_class_path).SubArray(header->GetComponentCount());
  for (const std::string& bcp_filename : boot_class_path_tail) {
    std::vector<std::unique_ptr<const DexFile>> dex_files;
    const ArtDexFileLoader dex_file_loader;
    if (!dex_file_loader.Open(bcp_filename.c_str(),
                              bcp_filename,  // The location does not matter here.
                              /*verify=*/ false,
                              /*verify_checksum=*/ false,
                              error_msg,
                              &dex_files)) {
      return std::string();
    }
    DCHECK(!dex_files.empty());
    StringAppendF(&boot_image_checksum, ":d");
    for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
      StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum());
    }
  }
  return boot_image_checksum;
}

std::string ImageSpace::GetBootClassPathChecksums(
    const std::vector<ImageSpace*>& image_spaces,
    const std::vector<const DexFile*>& boot_class_path) {
  size_t pos = 0u;
  std::string boot_image_checksum;

  if (!image_spaces.empty()) {
    const ImageHeader& primary_header = image_spaces.front()->GetImageHeader();
    uint32_t component_count = primary_header.GetComponentCount();
    DCHECK_EQ(component_count, image_spaces.size());
    boot_image_checksum =
        StringPrintf("i;%d/%08x", component_count, primary_header.GetImageChecksum());
    for (const ImageSpace* space : image_spaces) {
      size_t num_dex_files = space->oat_file_non_owned_->GetOatDexFiles().size();
      if (kIsDebugBuild) {
        CHECK_NE(num_dex_files, 0u);
        CHECK_LE(space->oat_file_non_owned_->GetOatDexFiles().size(), boot_class_path.size() - pos);
        for (size_t i = 0; i != num_dex_files; ++i) {
          CHECK_EQ(space->oat_file_non_owned_->GetOatDexFiles()[i]->GetDexFileLocation(),
                   boot_class_path[pos + i]->GetLocation());
        }
      }
      pos += num_dex_files;
    }
  }

  ArrayRef<const DexFile* const> boot_class_path_tail =
      ArrayRef<const DexFile* const>(boot_class_path).SubArray(pos);
  DCHECK(boot_class_path_tail.empty() ||
         !DexFileLoader::IsMultiDexLocation(boot_class_path_tail.front()->GetLocation().c_str()));
  for (const DexFile* dex_file : boot_class_path_tail) {
    if (!DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str())) {
      StringAppendF(&boot_image_checksum, boot_image_checksum.empty() ? "d" : ":d");
    }
    StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum());
  }
  return boot_image_checksum;
}

std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
    const std::vector<std::string>& dex_locations,
    const std::string& image_location) {
  return ExpandMultiImageLocations(ArrayRef<const std::string>(dex_locations), image_location);
}

std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
    ArrayRef<const std::string> dex_locations,
    const std::string& image_location) {
  DCHECK(!dex_locations.empty());

  // Find the path.
  size_t last_slash = image_location.rfind('/');
  CHECK_NE(last_slash, std::string::npos);

  // We also need to honor path components that were encoded through '@'. Otherwise the loading
  // code won't be able to find the images.
  if (image_location.find('@', last_slash) != std::string::npos) {
    last_slash = image_location.rfind('@');
  }

  // Find the dot separating the primary image name from the extension.
  size_t last_dot = image_location.rfind('.');
  // Extract the extension and base (the path and primary image name).
  std::string extension;
  std::string base = image_location;
  if (last_dot != std::string::npos && last_dot > last_slash) {
    extension = image_location.substr(last_dot);  // Including the dot.
    base.resize(last_dot);
  }
  // For non-empty primary image name, add '-' to the `base`.
  if (last_slash + 1u != base.size()) {
    base += '-';
  }

  std::vector<std::string> locations;
  locations.reserve(dex_locations.size());
  locations.push_back(image_location);

  // Now create the other names. Use a counted loop to skip the first one.
  for (size_t i = 1u; i < dex_locations.size(); ++i) {
    // Replace path with `base` (i.e. image path and prefix) and replace the original
    // extension (if any) with `extension`.
    std::string name = dex_locations[i];
    size_t last_dex_slash = name.rfind('/');
    if (last_dex_slash != std::string::npos) {
      name = name.substr(last_dex_slash + 1);
    }
    size_t last_dex_dot = name.rfind('.');
    if (last_dex_dot != std::string::npos) {
      name.resize(last_dex_dot);
    }
    locations.push_back(base + name + extension);
  }
  return locations;
}

void ImageSpace::DumpSections(std::ostream& os) const {
  const uint8_t* base = Begin();
  const ImageHeader& header = GetImageHeader();
  for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
    auto section_type = static_cast<ImageHeader::ImageSections>(i);
    const ImageSection& section = header.GetImageSection(section_type);
    os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
       << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
  }
}

void ImageSpace::DisablePreResolvedStrings() {
  // Clear dex cache pointers.
  ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
      GetImageHeader().GetImageRoot(ImageHeader::kDexCaches)->AsObjectArray<mirror::DexCache>();
  for (size_t len = dex_caches->GetLength(), i = 0; i < len; ++i) {
    ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
    dex_cache->ClearPreResolvedStrings();
  }
}

void ImageSpace::ReleaseMetadata() {
  const ImageSection& metadata = GetImageHeader().GetMetadataSection();
  VLOG(image) << "Releasing " << metadata.Size() << " image metadata bytes";
  // In the case where new app images may have been added around the checkpoint, ensure that we
  // don't madvise the cache for these.
  ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
      GetImageHeader().GetImageRoot(ImageHeader::kDexCaches)->AsObjectArray<mirror::DexCache>();
  bool have_startup_cache = false;
  for (size_t len = dex_caches->GetLength(), i = 0; i < len; ++i) {
    ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
    if (dex_cache->NumPreResolvedStrings() != 0u) {
      have_startup_cache = true;
    }
  }
  // Only safe to do for images that have their preresolved strings caches disabled. This is because
  // uncompressed images madvise to the original unrelocated image contents.
  if (!have_startup_cache) {
    // Avoid using ZeroAndReleasePages since the zero fill might not be word atomic.
    uint8_t* const page_begin = AlignUp(Begin() + metadata.Offset(), kPageSize);
    uint8_t* const page_end = AlignDown(Begin() + metadata.End(), kPageSize);
    if (page_begin < page_end) {
      CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed";
    }
  }
}

}  // namespace space
}  // namespace gc
}  // namespace art