File: arithmetic.S

package info (click to toggle)
android-platform-art 10.0.0%2Br36-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,308 kB
  • sloc: cpp: 488,455; java: 151,268; asm: 29,126; python: 9,122; sh: 5,840; ansic: 4,161; xml: 2,846; perl: 77; makefile: 57
file content (803 lines) | stat: -rw-r--r-- 31,245 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
%def binop(preinstr="", result="a0", chkzero="0", instr=""):
    /*
     * Generic 32-bit binary operation.  Provide an "instr" line that
     * specifies an instruction that performs "result = a0 op a1".
     * This could be a MIPS instruction or a function call.  (If the result
     * comes back in a register other than a0, you can override "result".)
     *
     * If "chkzero" is set to 1, we perform a divide-by-zero check on
     * vCC (a1).  Useful for integer division and modulus.  Note that we
     * *don't* check for (INT_MIN / -1) here, because the CPU handles it
     * correctly.
     *
     * For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
     *      xor-int, shl-int, shr-int, ushr-int
     */
    /* binop vAA, vBB, vCC */
    FETCH(a0, 1)                           #  a0 <- CCBB
    GET_OPA(rOBJ)                          #  rOBJ <- AA
    srl       a3, a0, 8                    #  a3 <- CC
    and       a2, a0, 255                  #  a2 <- BB
    GET_VREG(a1, a3)                       #  a1 <- vCC
    GET_VREG(a0, a2)                       #  a0 <- vBB
    .if $chkzero
    # is second operand zero?
    beqz      a1, common_errDivideByZero
    .endif

    FETCH_ADVANCE_INST(2)                  #  advance rPC, load rINST
    $preinstr                              #  optional op
    $instr                                 #  $result <- op, a0-a3 changed
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST
    SET_VREG_GOTO($result, rOBJ, t0)       #  vAA <- $result

%def binop2addr(preinstr="", result="a0", chkzero="0", instr=""):
    /*
     * Generic 32-bit "/2addr" binary operation.  Provide an "instr" line
     * that specifies an instruction that performs "result = a0 op a1".
     * This could be an MIPS instruction or a function call.
     *
     * If "chkzero" is set to 1, we perform a divide-by-zero check on
     * vCC (a1).  Useful for integer division and modulus.
     *
     * For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
     *      rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
     *      shl-int/2addr, shr-int/2addr, ushr-int/2addr
     */
    /* binop/2addr vA, vB */
    GET_OPA4(rOBJ)                         #  rOBJ <- A+
    GET_OPB(a3)                            #  a3 <- B
    GET_VREG(a0, rOBJ)                     #  a0 <- vA
    GET_VREG(a1, a3)                       #  a1 <- vB
    .if $chkzero
    # is second operand zero?
    beqz      a1, common_errDivideByZero
    .endif
    FETCH_ADVANCE_INST(1)                  #  advance rPC, load rINST

    $preinstr                              #  optional op
    $instr                                 #  $result <- op, a0-a3 changed
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST
    SET_VREG_GOTO($result, rOBJ, t0)       #  vA <- $result

%def binopLit16(preinstr="", result="a0", chkzero="0", instr=""):
    /*
     * Generic 32-bit "lit16" binary operation.  Provide an "instr" line
     * that specifies an instruction that performs "result = a0 op a1".
     * This could be an MIPS instruction or a function call.  (If the result
     * comes back in a register other than a0, you can override "result".)
     *
     * If "chkzero" is set to 1, we perform a divide-by-zero check on
     * vCC (a1).  Useful for integer division and modulus.
     *
     * For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16,
     *      rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16
     */
    /* binop/lit16 vA, vB, +CCCC */
    FETCH_S(a1, 1)                         #  a1 <- ssssCCCC (sign-extended)
    GET_OPB(a2)                            #  a2 <- B
    GET_OPA4(rOBJ)                         #  rOBJ <- A+
    GET_VREG(a0, a2)                       #  a0 <- vB
    .if $chkzero
    # cmp a1, 0; is second operand zero?
    beqz      a1, common_errDivideByZero
    .endif
    FETCH_ADVANCE_INST(2)                  #  advance rPC, load rINST

    $preinstr                              #  optional op
    $instr                                 #  $result <- op, a0-a3 changed
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST
    SET_VREG_GOTO($result, rOBJ, t0)       #  vA <- $result

%def binopLit8(preinstr="", result="a0", chkzero="0", instr=""):
    /*
     * Generic 32-bit "lit8" binary operation.  Provide an "instr" line
     * that specifies an instruction that performs "result = a0 op a1".
     * This could be an MIPS instruction or a function call.  (If the result
     * comes back in a register other than a0, you can override "result".)
     *
     * If "chkzero" is set to 1, we perform a divide-by-zero check on
     * vCC (a1).  Useful for integer division and modulus.
     *
     * For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
     *      rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
     *      shl-int/lit8, shr-int/lit8, ushr-int/lit8
     */
    /* binop/lit8 vAA, vBB, +CC */
    FETCH_S(a3, 1)                         #  a3 <- ssssCCBB (sign-extended for CC)
    GET_OPA(rOBJ)                          #  rOBJ <- AA
    and       a2, a3, 255                  #  a2 <- BB
    GET_VREG(a0, a2)                       #  a0 <- vBB
    sra       a1, a3, 8                    #  a1 <- ssssssCC (sign extended)
    .if $chkzero
    # is second operand zero?
    beqz      a1, common_errDivideByZero
    .endif
    FETCH_ADVANCE_INST(2)                  #  advance rPC, load rINST

    $preinstr                              #  optional op
    $instr                                 #  $result <- op, a0-a3 changed
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST
    SET_VREG_GOTO($result, rOBJ, t0)       #  vAA <- $result

%def binopWide(preinstr="", result0="a0", result1="a1", chkzero="0", arg0="a0", arg1="a1", arg2="a2", arg3="a3", instr=""):
    /*
     * Generic 64-bit binary operation.  Provide an "instr" line that
     * specifies an instruction that performs "result = a0-a1 op a2-a3".
     * This could be a MIPS instruction or a function call.  (If the result
     * comes back in a register pair other than a0-a1, you can override "result".)
     *
     * If "chkzero" is set to 1, we perform a divide-by-zero check on
     * vCC (a2-a3).  Useful for integer division and modulus.
     *
     * for: add-long, sub-long, div-long, rem-long, and-long, or-long,
     *      xor-long
     *
     * IMPORTANT: you may specify "chkzero" or "preinstr" but not both.
     */
    /* binop vAA, vBB, vCC */
    FETCH(a0, 1)                           #  a0 <- CCBB
    GET_OPA(rOBJ)                          #  rOBJ <- AA
    and       a2, a0, 255                  #  a2 <- BB
    srl       a3, a0, 8                    #  a3 <- CC
    EAS2(a2, rFP, a2)                      #  a2 <- &fp[BB]
    EAS2(t1, rFP, a3)                      #  a3 <- &fp[CC]
    LOAD64($arg0, $arg1, a2)               #  a0/a1 <- vBB/vBB+1
    LOAD64($arg2, $arg3, t1)               #  a2/a3 <- vCC/vCC+1
    .if $chkzero
    or        t0, $arg2, $arg3             #  second arg (a2-a3) is zero?
    beqz      t0, common_errDivideByZero
    .endif
    FETCH_ADVANCE_INST(2)                  #  advance rPC, load rINST

    $preinstr                              #  optional op
    $instr                                 #  result <- op, a0-a3 changed
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST
    SET_VREG64_GOTO($result0, $result1, rOBJ, t0)   #  vAA/vAA+1 <- $result0/$result1

%def binopWide2addr(preinstr="", result0="a0", result1="a1", chkzero="0", arg0="a0", arg1="a1", arg2="a2", arg3="a3", instr=""):
    /*
     * Generic 64-bit "/2addr" binary operation.  Provide an "instr" line
     * that specifies an instruction that performs "result = a0-a1 op a2-a3".
     * This could be a MIPS instruction or a function call.  (If the result
     * comes back in a register pair other than a0-a1, you can override "result".)
     *
     * If "chkzero" is set to 1, we perform a divide-by-zero check on
     * vB (a2-a3).  Useful for integer division and modulus.
     *
     * For: add-long/2addr, sub-long/2addr, div-long/2addr, rem-long/2addr,
     *      and-long/2addr, or-long/2addr, xor-long/2addr
     */
    /* binop/2addr vA, vB */
    GET_OPA4(rOBJ)                         #  rOBJ <- A+
    GET_OPB(a1)                            #  a1 <- B
    EAS2(a1, rFP, a1)                      #  a1 <- &fp[B]
    EAS2(t0, rFP, rOBJ)                    #  t0 <- &fp[A]
    LOAD64($arg2, $arg3, a1)               #  a2/a3 <- vB/vB+1
    LOAD64($arg0, $arg1, t0)               #  a0/a1 <- vA/vA+1
    .if $chkzero
    or        t0, $arg2, $arg3             #  second arg (a2-a3) is zero?
    beqz      t0, common_errDivideByZero
    .endif
    FETCH_ADVANCE_INST(1)                  #  advance rPC, load rINST

    $preinstr                              #  optional op
    $instr                                 #  result <- op, a0-a3 changed
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST
    SET_VREG64_GOTO($result0, $result1, rOBJ, t0)   #  vA/vA+1 <- $result0/$result1

%def unop(preinstr="", result0="a0", instr=""):
    /*
     * Generic 32-bit unary operation.  Provide an "instr" line that
     * specifies an instruction that performs "result0 = op a0".
     * This could be a MIPS instruction or a function call.
     *
     * for: int-to-byte, int-to-char, int-to-short,
     *      neg-int, not-int, neg-float
     */
    /* unop vA, vB */
    GET_OPB(a3)                            #  a3 <- B
    GET_OPA4(t0)                           #  t0 <- A+
    GET_VREG(a0, a3)                       #  a0 <- vB
    FETCH_ADVANCE_INST(1)                  #  advance rPC, load rINST
    $preinstr                              #  optional op
    $instr                                 #  a0 <- op, a0-a3 changed
    GET_INST_OPCODE(t1)                    #  extract opcode from rINST
    SET_VREG_GOTO($result0, t0, t1)        #  vA <- result0

%def unopNarrower(load="LOAD64_F(fa0, fa0f, a3)", instr=""):
    /*
     * Generic 64bit-to-32bit floating-point unary operation.  Provide an "instr"
     * line that specifies an instruction that performs "fv0 = op fa0".
     *
     * For: double-to-float
     */
    /* unop vA, vB */
    GET_OPB(a3)                            #  a3 <- B
    GET_OPA4(rOBJ)                         #  rOBJ <- A+
    EAS2(a3, rFP, a3)                      #  a3 <- &fp[B]
    $load
    FETCH_ADVANCE_INST(1)                  #  advance rPC, load rINST
    $instr
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST
    SET_VREG_F_GOTO(fv0, rOBJ, t0)         #  vA <- fv0

%def unopWide(preinstr="", result0="a0", result1="a1", instr=""):
    /*
     * Generic 64-bit unary operation.  Provide an "instr" line that
     * specifies an instruction that performs "result0/result1 = op a0/a1".
     * This could be MIPS instruction or a function call.
     *
     * For: neg-long, not-long, neg-double,
     */
    /* unop vA, vB */
    GET_OPA4(rOBJ)                         #  rOBJ <- A+
    GET_OPB(a3)                            #  a3 <- B
    EAS2(a3, rFP, a3)                      #  a3 <- &fp[B]
    LOAD64(a0, a1, a3)                     #  a0/a1 <- vA
    FETCH_ADVANCE_INST(1)                  #  advance rPC, load rINST
    $preinstr                              #  optional op
    $instr                                 #  a0/a1 <- op, a2-a3 changed
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST
    SET_VREG64_GOTO($result0, $result1, rOBJ, t0)   #  vA/vA+1 <- a0/a1

%def unopWider(preinstr="", result0="a0", result1="a1", instr=""):
    /*
     * Generic 32bit-to-64bit unary operation.  Provide an "instr" line
     * that specifies an instruction that performs "result0/result1 = op a0".
     *
     * For: int-to-long
     */
    /* unop vA, vB */
    GET_OPA4(rOBJ)                         #  rOBJ <- A+
    GET_OPB(a3)                            #  a3 <- B
    GET_VREG(a0, a3)                       #  a0 <- vB
    FETCH_ADVANCE_INST(1)                  #  advance rPC, load rINST
    $preinstr                              #  optional op
    $instr                                 #  result <- op, a0-a3 changed
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST
    SET_VREG64_GOTO($result0, $result1, rOBJ, t0)   #  vA/vA+1 <- a0/a1

%def op_add_int():
%  binop(instr="addu a0, a0, a1")

%def op_add_int_2addr():
%  binop2addr(instr="addu a0, a0, a1")

%def op_add_int_lit16():
%  binopLit16(instr="addu a0, a0, a1")

%def op_add_int_lit8():
%  binopLit8(instr="addu a0, a0, a1")

%def op_add_long():
/*
 *  The compiler generates the following sequence for
 *  [v1 v0] =  [a1 a0] + [a3 a2];
 *    addu v0,a2,a0
 *    addu a1,a3,a1
 *    sltu v1,v0,a2
 *    addu v1,v1,a1
 */
%  binopWide(result0="v0", result1="v1", preinstr="addu v0, a2, a0", instr="addu a1, a3, a1; sltu v1, v0, a2; addu v1, v1, a1")

%def op_add_long_2addr():
/*
 * See op_add_long.S for details
 */
%  binopWide2addr(result0="v0", result1="v1", preinstr="addu v0, a2, a0", instr="addu a1, a3, a1; sltu v1, v0, a2; addu v1, v1, a1")

%def op_and_int():
%  binop(instr="and a0, a0, a1")

%def op_and_int_2addr():
%  binop2addr(instr="and a0, a0, a1")

%def op_and_int_lit16():
%  binopLit16(instr="and a0, a0, a1")

%def op_and_int_lit8():
%  binopLit8(instr="and a0, a0, a1")

%def op_and_long():
%  binopWide(preinstr="and a0, a0, a2", instr="and a1, a1, a3")

%def op_and_long_2addr():
%  binopWide2addr(preinstr="and a0, a0, a2", instr="and a1, a1, a3")

%def op_cmp_long():
    /*
     * Compare two 64-bit values
     *    x = y     return  0
     *    x < y     return -1
     *    x > y     return  1
     *
     * I think I can improve on the ARM code by the following observation
     *    slt   t0,  x.hi, y.hi;        # (x.hi < y.hi) ? 1:0
     *    sgt   t1,  x.hi, y.hi;        # (y.hi > x.hi) ? 1:0
     *    subu  v0, t0, t1              # v0= -1:1:0 for [ < > = ]
     */
    /* cmp-long vAA, vBB, vCC */
    FETCH(a0, 1)                           #  a0 <- CCBB
    GET_OPA(rOBJ)                          #  rOBJ <- AA
    and       a2, a0, 255                  #  a2 <- BB
    srl       a3, a0, 8                    #  a3 <- CC
    EAS2(a2, rFP, a2)                      #  a2 <- &fp[BB]
    EAS2(a3, rFP, a3)                      #  a3 <- &fp[CC]
    LOAD64(a0, a1, a2)                     #  a0/a1 <- vBB/vBB+1
    LOAD64(a2, a3, a3)                     #  a2/a3 <- vCC/vCC+1

    FETCH_ADVANCE_INST(2)                  #  advance rPC, load rINST
    slt       t0, a1, a3                   #  compare hi
    sgt       t1, a1, a3
    subu      v0, t1, t0                   #  v0 <- (-1, 1, 0)
    bnez      v0, .L${opcode}_finish
    # at this point x.hi==y.hi
    sltu      t0, a0, a2                   #  compare lo
    sgtu      t1, a0, a2
    subu      v0, t1, t0                   #  v0 <- (-1, 1, 0) for [< > =]

.L${opcode}_finish:
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST
    SET_VREG_GOTO(v0, rOBJ, t0)            #  vAA <- v0

%def op_div_int():
#ifdef MIPS32REVGE6
%  binop(instr="div a0, a0, a1", chkzero="1")
#else
%  binop(preinstr="div zero, a0, a1", instr="mflo a0", chkzero="1")
#endif

%def op_div_int_2addr():
#ifdef MIPS32REVGE6
%  binop2addr(instr="div a0, a0, a1", chkzero="1")
#else
%  binop2addr(preinstr="div zero, a0, a1", instr="mflo a0", chkzero="1")
#endif

%def op_div_int_lit16():
#ifdef MIPS32REVGE6
%  binopLit16(instr="div a0, a0, a1", chkzero="1")
#else
%  binopLit16(preinstr="div zero, a0, a1", instr="mflo a0", chkzero="1")
#endif

%def op_div_int_lit8():
#ifdef MIPS32REVGE6
%  binopLit8(instr="div a0, a0, a1", chkzero="1")
#else
%  binopLit8(preinstr="div zero, a0, a1", instr="mflo a0", chkzero="1")
#endif

%def op_div_long():
%  binopWide(result0="v0", result1="v1", instr="JAL(__divdi3)", chkzero="1")

%def op_div_long_2addr():
%  binopWide2addr(result0="v0", result1="v1", instr="JAL(__divdi3)", chkzero="1")

%def op_int_to_byte():
%  unop(instr="SEB(a0, a0)")

%def op_int_to_char():
%  unop(preinstr="", instr="and a0, 0xffff")

%def op_int_to_long():
%  unopWider(instr="sra a1, a0, 31")

%def op_int_to_short():
%  unop(instr="SEH(a0, a0)")

%def op_long_to_int():
/* we ignore the high word, making this equivalent to a 32-bit reg move */
%  op_move()

%def op_mul_int():
%  binop(instr="mul a0, a0, a1")

%def op_mul_int_2addr():
%  binop2addr(instr="mul a0, a0, a1")

%def op_mul_int_lit16():
%  binopLit16(instr="mul a0, a0, a1")

%def op_mul_int_lit8():
%  binopLit8(instr="mul a0, a0, a1")

%def op_mul_long():
    /*
     * Signed 64-bit integer multiply.
     *         a1   a0
     *   x     a3   a2
     *   -------------
     *       a2a1 a2a0
     *       a3a0
     *  a3a1 (<= unused)
     *  ---------------
     *         v1   v0
     */
    /* mul-long vAA, vBB, vCC */
    FETCH(a0, 1)                           #  a0 <- CCBB
    and       t0, a0, 255                  #  a2 <- BB
    srl       t1, a0, 8                    #  a3 <- CC
    EAS2(t0, rFP, t0)                      #  t0 <- &fp[BB]
    LOAD64(a0, a1, t0)                     #  a0/a1 <- vBB/vBB+1

    EAS2(t1, rFP, t1)                      #  t0 <- &fp[CC]
    LOAD64(a2, a3, t1)                     #  a2/a3 <- vCC/vCC+1

    mul       v1, a3, a0                   #  v1= a3a0
#ifdef MIPS32REVGE6
    mulu      v0, a2, a0                   #  v0= a2a0
    muhu      t1, a2, a0
#else
    multu     a2, a0
    mfhi      t1
    mflo      v0                           #  v0= a2a0
#endif
    mul       t0, a2, a1                   #  t0= a2a1
    addu      v1, v1, t1                   #  v1+= hi(a2a0)
    addu      v1, v1, t0                   #  v1= a3a0 + a2a1;

    GET_OPA(a0)                            #  a0 <- AA
    FETCH_ADVANCE_INST(2)                  #  advance rPC, load rINST
    b         .L${opcode}_finish
%def op_mul_long_helper_code():

.Lop_mul_long_finish:
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST
    SET_VREG64_GOTO(v0, v1, a0, t0)        #  vAA/vAA+1 <- v0(low)/v1(high)

%def op_mul_long_2addr():
    /*
     * See op_mul_long.S for more details
     */
    /* mul-long/2addr vA, vB */
    GET_OPA4(rOBJ)                         #  rOBJ <- A+

    EAS2(t0, rFP, rOBJ)                    #  t0 <- &fp[A]
    LOAD64(a0, a1, t0)                     #  vAA.low / high

    GET_OPB(t1)                            #  t1 <- B
    EAS2(t1, rFP, t1)                      #  t1 <- &fp[B]
    LOAD64(a2, a3, t1)                     #  vBB.low / high

    mul       v1, a3, a0                   #  v1= a3a0
#ifdef MIPS32REVGE6
    mulu      v0, a2, a0                   #  v0= a2a0
    muhu      t1, a2, a0
#else
    multu     a2, a0
    mfhi      t1
    mflo      v0                           #  v0= a2a0
 #endif
    mul       t2, a2, a1                   #  t2= a2a1
    addu      v1, v1, t1                   #  v1= a3a0 + hi(a2a0)
    addu      v1, v1, t2                   #  v1= v1 + a2a1;

    FETCH_ADVANCE_INST(1)                  #  advance rPC, load rINST
    GET_INST_OPCODE(t1)                    #  extract opcode from rINST
    SET_VREG64_GOTO(v0, v1, rOBJ, t1)      #  vA/vA+1 <- v0(low)/v1(high)

%def op_neg_int():
%  unop(instr="negu a0, a0")

%def op_neg_long():
%  unopWide(result0="v0", result1="v1", preinstr="negu v0, a0", instr="negu v1, a1; sltu a0, zero, v0; subu v1, v1, a0")

%def op_not_int():
%  unop(instr="not a0, a0")

%def op_not_long():
%  unopWide(preinstr="not a0, a0", instr="not a1, a1")

%def op_or_int():
%  binop(instr="or a0, a0, a1")

%def op_or_int_2addr():
%  binop2addr(instr="or a0, a0, a1")

%def op_or_int_lit16():
%  binopLit16(instr="or a0, a0, a1")

%def op_or_int_lit8():
%  binopLit8(instr="or a0, a0, a1")

%def op_or_long():
%  binopWide(preinstr="or a0, a0, a2", instr="or a1, a1, a3")

%def op_or_long_2addr():
%  binopWide2addr(preinstr="or a0, a0, a2", instr="or a1, a1, a3")

%def op_rem_int():
#ifdef MIPS32REVGE6
%  binop(instr="mod a0, a0, a1", chkzero="1")
#else
%  binop(preinstr="div zero, a0, a1", instr="mfhi a0", chkzero="1")
#endif

%def op_rem_int_2addr():
#ifdef MIPS32REVGE6
%  binop2addr(instr="mod a0, a0, a1", chkzero="1")
#else
%  binop2addr(preinstr="div zero, a0, a1", instr="mfhi a0", chkzero="1")
#endif

%def op_rem_int_lit16():
#ifdef MIPS32REVGE6
%  binopLit16(instr="mod a0, a0, a1", chkzero="1")
#else
%  binopLit16(preinstr="div zero, a0, a1", instr="mfhi a0", chkzero="1")
#endif

%def op_rem_int_lit8():
#ifdef MIPS32REVGE6
%  binopLit8(instr="mod a0, a0, a1", chkzero="1")
#else
%  binopLit8(preinstr="div zero, a0, a1", instr="mfhi a0", chkzero="1")
#endif

%def op_rem_long():
%  binopWide(result0="v0", result1="v1", instr="JAL(__moddi3)", chkzero="1")

%def op_rem_long_2addr():
%  binopWide2addr(result0="v0", result1="v1", instr="JAL(__moddi3)", chkzero="1")

%def op_rsub_int():
/* this op is "rsub-int", but can be thought of as "rsub-int/lit16" */
%  binopLit16(instr="subu a0, a1, a0")

%def op_rsub_int_lit8():
%  binopLit8(instr="subu a0, a1, a0")

%def op_shl_int():
%  binop(instr="sll a0, a0, a1")

%def op_shl_int_2addr():
%  binop2addr(instr="sll a0, a0, a1")

%def op_shl_int_lit8():
%  binopLit8(instr="sll a0, a0, a1")

%def op_shl_long():
    /*
     * Long integer shift.  This is different from the generic 32/64-bit
     * binary operations because vAA/vBB are 64-bit but vCC (the shift
     * distance) is 32-bit.  Also, Dalvik requires us to mask off the low
     * 6 bits of the shift distance.
     */
    /* shl-long vAA, vBB, vCC */
    FETCH(a0, 1)                           #  a0 <- CCBB
    GET_OPA(t2)                            #  t2 <- AA
    and       a3, a0, 255                  #  a3 <- BB
    srl       a0, a0, 8                    #  a0 <- CC
    EAS2(a3, rFP, a3)                      #  a3 <- &fp[BB]
    GET_VREG(a2, a0)                       #  a2 <- vCC
    LOAD64(a0, a1, a3)                     #  a0/a1 <- vBB/vBB+1

    FETCH_ADVANCE_INST(2)                  #  advance rPC, load rINST
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST

    andi    v1, a2, 0x20                   #  shift< shift & 0x20
    sll     v0, a0, a2                     #  rlo<- alo << (shift&31)
    bnez    v1, .L${opcode}_finish
    not     v1, a2                         #  rhi<- 31-shift  (shift is 5b)
    srl     a0, 1
    srl     a0, v1                         #  alo<- alo >> (32-(shift&31))
    sll     v1, a1, a2                     #  rhi<- ahi << (shift&31)
    or      v1, a0                         #  rhi<- rhi | alo
    SET_VREG64_GOTO(v0, v1, t2, t0)        #  vAA/vAA+1 <- v0/v1
%def op_shl_long_helper_code():

.Lop_shl_long_finish:
    SET_VREG64_GOTO(zero, v0, t2, t0)      #  vAA/vAA+1 <- rlo/rhi

%def op_shl_long_2addr():
    /*
     * Long integer shift, 2addr version.  vA is 64-bit value/result, vB is
     * 32-bit shift distance.
     */
    /* shl-long/2addr vA, vB */
    GET_OPA4(rOBJ)                         #  rOBJ <- A+
    GET_OPB(a3)                            #  a3 <- B
    GET_VREG(a2, a3)                       #  a2 <- vB
    EAS2(t2, rFP, rOBJ)                    #  t2 <- &fp[A]
    LOAD64(a0, a1, t2)                     #  a0/a1 <- vA/vA+1

    FETCH_ADVANCE_INST(1)                  #  advance rPC, load rINST
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST

    andi    v1, a2, 0x20                   #  shift< shift & 0x20
    sll     v0, a0, a2                     #  rlo<- alo << (shift&31)
    bnez    v1, .L${opcode}_finish
    not     v1, a2                         #  rhi<- 31-shift  (shift is 5b)
    srl     a0, 1
    srl     a0, v1                         #  alo<- alo >> (32-(shift&31))
    sll     v1, a1, a2                     #  rhi<- ahi << (shift&31)
    or      v1, a0                         #  rhi<- rhi | alo
    SET_VREG64_GOTO(v0, v1, rOBJ, t0)      #  vA/vA+1 <- v0/v1
%def op_shl_long_2addr_helper_code():

.Lop_shl_long_2addr_finish:
    SET_VREG64_GOTO(zero, v0, rOBJ, t0)    #  vA/vA+1 <- rlo/rhi

%def op_shr_int():
%  binop(instr="sra a0, a0, a1")

%def op_shr_int_2addr():
%  binop2addr(instr="sra a0, a0, a1")

%def op_shr_int_lit8():
%  binopLit8(instr="sra a0, a0, a1")

%def op_shr_long():
    /*
     * Long integer shift.  This is different from the generic 32/64-bit
     * binary operations because vAA/vBB are 64-bit but vCC (the shift
     * distance) is 32-bit.  Also, Dalvik requires us to mask off the low
     * 6 bits of the shift distance.
     */
    /* shr-long vAA, vBB, vCC */
    FETCH(a0, 1)                           #  a0 <- CCBB
    GET_OPA(t3)                            #  t3 <- AA
    and       a3, a0, 255                  #  a3 <- BB
    srl       a0, a0, 8                    #  a0 <- CC
    EAS2(a3, rFP, a3)                      #  a3 <- &fp[BB]
    GET_VREG(a2, a0)                       #  a2 <- vCC
    LOAD64(a0, a1, a3)                     #  a0/a1 <- vBB/vBB+1
    FETCH_ADVANCE_INST(2)                  #  advance rPC, load rINST
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST

    andi    v0, a2, 0x20                   #  shift & 0x20
    sra     v1, a1, a2                     #  rhi<- ahi >> (shift&31)
    bnez    v0, .L${opcode}_finish
    srl     v0, a0, a2                     #  rlo<- alo >> (shift&31)
    not     a0, a2                         #  alo<- 31-shift (shift is 5b)
    sll     a1, 1
    sll     a1, a0                         #  ahi<- ahi << (32-(shift&31))
    or      v0, a1                         #  rlo<- rlo | ahi
    SET_VREG64_GOTO(v0, v1, t3, t0)        #  vAA/VAA+1 <- v0/v1
%def op_shr_long_helper_code():

.Lop_shr_long_finish:
    sra     a3, a1, 31                     #  a3<- sign(ah)
    SET_VREG64_GOTO(v1, a3, t3, t0)        #  vAA/VAA+1 <- rlo/rhi

%def op_shr_long_2addr():
    /*
     * Long integer shift, 2addr version.  vA is 64-bit value/result, vB is
     * 32-bit shift distance.
     */
    /* shr-long/2addr vA, vB */
    GET_OPA4(t2)                           #  t2 <- A+
    GET_OPB(a3)                            #  a3 <- B
    GET_VREG(a2, a3)                       #  a2 <- vB
    EAS2(t0, rFP, t2)                      #  t0 <- &fp[A]
    LOAD64(a0, a1, t0)                     #  a0/a1 <- vA/vA+1
    FETCH_ADVANCE_INST(1)                  #  advance rPC, load rINST
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST

    andi    v0, a2, 0x20                   #  shift & 0x20
    sra     v1, a1, a2                     #  rhi<- ahi >> (shift&31)
    bnez    v0, .L${opcode}_finish
    srl     v0, a0, a2                     #  rlo<- alo >> (shift&31)
    not     a0, a2                         #  alo<- 31-shift (shift is 5b)
    sll     a1, 1
    sll     a1, a0                         #  ahi<- ahi << (32-(shift&31))
    or      v0, a1                         #  rlo<- rlo | ahi
    SET_VREG64_GOTO(v0, v1, t2, t0)        #  vA/vA+1 <- v0/v1
%def op_shr_long_2addr_helper_code():

.Lop_shr_long_2addr_finish:
    sra     a3, a1, 31                     #  a3<- sign(ah)
    SET_VREG64_GOTO(v1, a3, t2, t0)        #  vA/vA+1 <- rlo/rhi

%def op_sub_int():
%  binop(instr="subu a0, a0, a1")

%def op_sub_int_2addr():
%  binop2addr(instr="subu a0, a0, a1")

%def op_sub_long():
/*
 * For little endian the code sequence looks as follows:
 *    subu    v0,a0,a2
 *    subu    v1,a1,a3
 *    sltu    a0,a0,v0
 *    subu    v1,v1,a0
 */
%  binopWide(result0="v0", result1="v1", preinstr="subu v0, a0, a2", instr="subu v1, a1, a3; sltu a0, a0, v0; subu v1, v1, a0")

%def op_sub_long_2addr():
/*
 * See op_sub_long.S for more details
 */
%  binopWide2addr(result0="v0", result1="v1", preinstr="subu v0, a0, a2", instr="subu v1, a1, a3; sltu a0, a0, v0; subu v1, v1, a0")

%def op_ushr_int():
%  binop(instr="srl a0, a0, a1")

%def op_ushr_int_2addr():
%  binop2addr(instr="srl a0, a0, a1 ")

%def op_ushr_int_lit8():
%  binopLit8(instr="srl a0, a0, a1")

%def op_ushr_long():
    /*
     * Long integer shift.  This is different from the generic 32/64-bit
     * binary operations because vAA/vBB are 64-bit but vCC (the shift
     * distance) is 32-bit.  Also, Dalvik requires us to mask off the low
     * 6 bits of the shift distance.
     */
    /* ushr-long vAA, vBB, vCC */
    FETCH(a0, 1)                           #  a0 <- CCBB
    GET_OPA(rOBJ)                          #  rOBJ <- AA
    and       a3, a0, 255                  #  a3 <- BB
    srl       a0, a0, 8                    #  a0 <- CC
    EAS2(a3, rFP, a3)                      #  a3 <- &fp[BB]
    GET_VREG(a2, a0)                       #  a2 <- vCC
    LOAD64(a0, a1, a3)                     #  a0/a1 <- vBB/vBB+1

    FETCH_ADVANCE_INST(2)                  #  advance rPC, load rINST
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST

    andi      v0, a2, 0x20                 #  shift & 0x20
    srl       v1, a1, a2                   #  rhi<- ahi >> (shift&31)
    bnez      v0, .L${opcode}_finish
    srl       v0, a0, a2                   #  rlo<- alo >> (shift&31)
    not       a0, a2                       #  alo<- 31-n  (shift is 5b)
    sll       a1, 1
    sll       a1, a0                       #  ahi<- ahi << (32-(shift&31))
    or        v0, a1                       #  rlo<- rlo | ahi
    SET_VREG64_GOTO(v0, v1, rOBJ, t0)      #  vAA/vAA+1 <- v0/v1
%def op_ushr_long_helper_code():

.Lop_ushr_long_finish:
    SET_VREG64_GOTO(v1, zero, rOBJ, t0)    #  vAA/vAA+1 <- rlo/rhi

%def op_ushr_long_2addr():
    /*
     * Long integer shift, 2addr version.  vA is 64-bit value/result, vB is
     * 32-bit shift distance.
     */
    /* ushr-long/2addr vA, vB */
    GET_OPA4(t3)                           #  t3 <- A+
    GET_OPB(a3)                            #  a3 <- B
    GET_VREG(a2, a3)                       #  a2 <- vB
    EAS2(t0, rFP, t3)                      #  t0 <- &fp[A]
    LOAD64(a0, a1, t0)                     #  a0/a1 <- vA/vA+1

    FETCH_ADVANCE_INST(1)                  #  advance rPC, load rINST
    GET_INST_OPCODE(t0)                    #  extract opcode from rINST

    andi      v0, a2, 0x20                 #  shift & 0x20
    srl       v1, a1, a2                   #  rhi<- ahi >> (shift&31)
    bnez      v0, .L${opcode}_finish
    srl       v0, a0, a2                   #  rlo<- alo >> (shift&31)
    not       a0, a2                       #  alo<- 31-n  (shift is 5b)
    sll       a1, 1
    sll       a1, a0                       #  ahi<- ahi << (32-(shift&31))
    or        v0, a1                       #  rlo<- rlo | ahi
    SET_VREG64_GOTO(v0, v1, t3, t0)        #  vA/vA+1 <- v0/v1
%def op_ushr_long_2addr_helper_code():

.Lop_ushr_long_2addr_finish:
    SET_VREG64_GOTO(v1, zero, t3, t0)      #  vA/vA+1 <- rlo/rhi

%def op_xor_int():
%  binop(instr="xor a0, a0, a1")

%def op_xor_int_2addr():
%  binop2addr(instr="xor a0, a0, a1")

%def op_xor_int_lit16():
%  binopLit16(instr="xor a0, a0, a1")

%def op_xor_int_lit8():
%  binopLit8(instr="xor a0, a0, a1")

%def op_xor_long():
%  binopWide(preinstr="xor a0, a0, a2", instr="xor a1, a1, a3")

%def op_xor_long_2addr():
%  binopWide2addr(preinstr="xor a0, a0, a2", instr="xor a1, a1, a3")