1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
%def fbinop(instr=""):
/*:
* Generic 32-bit floating-point operation.
*
* For: add-float, sub-float, mul-float, div-float.
* form: <op> f0, f0, f1
*/
/* binop vAA, vBB, vCC */
srl a4, rINST, 8 # a4 <- AA
lbu a2, 2(rPC) # a2 <- BB
lbu a3, 3(rPC) # a3 <- CC
GET_VREG_FLOAT f0, a2 # f0 <- vBB
GET_VREG_FLOAT f1, a3 # f1 <- vCC
$instr # f0 <- f0 op f1
FETCH_ADVANCE_INST 2 # advance rPC, load rINST
GET_INST_OPCODE v0 # extract opcode from rINST
SET_VREG_FLOAT f0, a4 # vAA <- f0
GOTO_OPCODE v0 # jump to next instruction
%def fbinop2addr(instr=""):
/*:
* Generic 32-bit "/2addr" floating-point operation.
*
* For: add-float/2addr, sub-float/2addr, mul-float/2addr, div-float/2addr.
* form: <op> f0, f0, f1
*/
/* binop/2addr vA, vB */
ext a2, rINST, 8, 4 # a2 <- A
ext a3, rINST, 12, 4 # a3 <- B
GET_VREG_FLOAT f0, a2 # f0 <- vA
GET_VREG_FLOAT f1, a3 # f1 <- vB
$instr # f0 <- f0 op f1
FETCH_ADVANCE_INST 1 # advance rPC, load rINST
GET_INST_OPCODE v0 # extract opcode from rINST
SET_VREG_FLOAT f0, a2 # vA <- f0
GOTO_OPCODE v0 # jump to next instruction
%def fbinopWide(instr=""):
/*:
* Generic 64-bit floating-point operation.
*
* For: add-double, sub-double, mul-double, div-double.
* form: <op> f0, f0, f1
*/
/* binop vAA, vBB, vCC */
srl a4, rINST, 8 # a4 <- AA
lbu a2, 2(rPC) # a2 <- BB
lbu a3, 3(rPC) # a3 <- CC
GET_VREG_DOUBLE f0, a2 # f0 <- vBB
GET_VREG_DOUBLE f1, a3 # f1 <- vCC
$instr # f0 <- f0 op f1
FETCH_ADVANCE_INST 2 # advance rPC, load rINST
GET_INST_OPCODE v0 # extract opcode from rINST
SET_VREG_DOUBLE f0, a4 # vAA <- f0
GOTO_OPCODE v0 # jump to next instruction
%def fbinopWide2addr(instr=""):
/*:
* Generic 64-bit "/2addr" floating-point operation.
*
* For: add-double/2addr, sub-double/2addr, mul-double/2addr, div-double/2addr.
* form: <op> f0, f0, f1
*/
/* binop/2addr vA, vB */
ext a2, rINST, 8, 4 # a2 <- A
ext a3, rINST, 12, 4 # a3 <- B
GET_VREG_DOUBLE f0, a2 # f0 <- vA
GET_VREG_DOUBLE f1, a3 # f1 <- vB
$instr # f0 <- f0 op f1
FETCH_ADVANCE_INST 1 # advance rPC, load rINST
GET_INST_OPCODE v0 # extract opcode from rINST
SET_VREG_DOUBLE f0, a2 # vA <- f0
GOTO_OPCODE v0 # jump to next instruction
%def fcmp(gt_bias=""):
/*
* Compare two floating-point values. Puts 0, 1, or -1 into the
* destination register based on the results of the comparison.
*
* For: cmpl-float, cmpg-float
*/
/* op vAA, vBB, vCC */
srl a4, rINST, 8 # a4 <- AA
lbu a2, 2(rPC) # a2 <- BB
lbu a3, 3(rPC) # a3 <- CC
GET_VREG_FLOAT f0, a2 # f0 <- vBB
GET_VREG_FLOAT f1, a3 # f1 <- vCC
cmp.eq.s f2, f0, f1
li a0, 0
bc1nez f2, 1f # done if vBB == vCC (ordered)
.if $gt_bias
cmp.lt.s f2, f0, f1
li a0, -1
bc1nez f2, 1f # done if vBB < vCC (ordered)
li a0, 1 # vBB > vCC or unordered
.else
cmp.lt.s f2, f1, f0
li a0, 1
bc1nez f2, 1f # done if vBB > vCC (ordered)
li a0, -1 # vBB < vCC or unordered
.endif
1:
FETCH_ADVANCE_INST 2 # advance rPC, load rINST
GET_INST_OPCODE v0 # extract opcode from rINST
SET_VREG a0, a4 # vAA <- a0
GOTO_OPCODE v0 # jump to next instruction
%def fcmpWide(gt_bias=""):
/*
* Compare two floating-point values. Puts 0, 1, or -1 into the
* destination register based on the results of the comparison.
*
* For: cmpl-double, cmpg-double
*/
/* op vAA, vBB, vCC */
srl a4, rINST, 8 # a4 <- AA
lbu a2, 2(rPC) # a2 <- BB
lbu a3, 3(rPC) # a3 <- CC
GET_VREG_DOUBLE f0, a2 # f0 <- vBB
GET_VREG_DOUBLE f1, a3 # f1 <- vCC
cmp.eq.d f2, f0, f1
li a0, 0
bc1nez f2, 1f # done if vBB == vCC (ordered)
.if $gt_bias
cmp.lt.d f2, f0, f1
li a0, -1
bc1nez f2, 1f # done if vBB < vCC (ordered)
li a0, 1 # vBB > vCC or unordered
.else
cmp.lt.d f2, f1, f0
li a0, 1
bc1nez f2, 1f # done if vBB > vCC (ordered)
li a0, -1 # vBB < vCC or unordered
.endif
1:
FETCH_ADVANCE_INST 2 # advance rPC, load rINST
GET_INST_OPCODE v0 # extract opcode from rINST
SET_VREG a0, a4 # vAA <- a0
GOTO_OPCODE v0 # jump to next instruction
%def fcvtFooter(suffix="", valreg=""):
/*
* Stores a specified register containing the result of conversion
* from or to a floating-point type and jumps to the next instruction.
*
* Expects a1 to contain the destination Dalvik register number.
* a1 is set up by fcvtHeader.S.
*
* For: int-to-float, int-to-double, long-to-float, long-to-double,
* float-to-int, float-to-long, float-to-double, double-to-int,
* double-to-long, double-to-float, neg-float, neg-double.
*
* Note that this file can't be included after a break in other files
* and in those files its contents appear as a copy.
* See: float-to-int, float-to-long, double-to-int, double-to-long.
*/
GET_INST_OPCODE v0 # extract opcode from rINST
SET_VREG$suffix $valreg, a1
GOTO_OPCODE v0 # jump to next instruction
%def fcvtHeader(suffix="", valreg=""):
/*
* Loads a specified register from vB. Used primarily for conversions
* from or to a floating-point type.
*
* Sets up a1 = A and a2 = B. a2 is later used by fcvtFooter.S to
* store the result in vA and jump to the next instruction.
*
* For: int-to-float, int-to-double, long-to-float, long-to-double,
* float-to-int, float-to-long, float-to-double, double-to-int,
* double-to-long, double-to-float, neg-float, neg-double.
*/
ext a1, rINST, 8, 4 # a1 <- A
srl a2, rINST, 12 # a2 <- B
GET_VREG$suffix $valreg, a2
FETCH_ADVANCE_INST 1 # advance rPC, load rINST
%def op_add_double():
% fbinopWide(instr="add.d f0, f0, f1")
%def op_add_double_2addr():
% fbinopWide2addr(instr="add.d f0, f0, f1")
%def op_add_float():
% fbinop(instr="add.s f0, f0, f1")
%def op_add_float_2addr():
% fbinop2addr(instr="add.s f0, f0, f1")
%def op_cmpg_double():
% fcmpWide(gt_bias="1")
%def op_cmpg_float():
% fcmp(gt_bias="1")
%def op_cmpl_double():
% fcmpWide(gt_bias="0")
%def op_cmpl_float():
% fcmp(gt_bias="0")
%def op_div_double():
% fbinopWide(instr="div.d f0, f0, f1")
%def op_div_double_2addr():
% fbinopWide2addr(instr="div.d f0, f0, f1")
%def op_div_float():
% fbinop(instr="div.s f0, f0, f1")
%def op_div_float_2addr():
% fbinop2addr(instr="div.s f0, f0, f1")
%def op_double_to_float():
/*
* Conversion from or to floating-point happens in a floating-point register.
* Therefore we load the input and store the output into or from a
* floating-point register irrespective of the type.
*/
% fcvtHeader(suffix="_DOUBLE", valreg="f0")
cvt.s.d f0, f0
% fcvtFooter(suffix="_FLOAT", valreg="f0")
%def op_double_to_int():
% fcvtHeader(suffix="_DOUBLE", valreg="f0")
trunc.w.d f0, f0
% fcvtFooter(suffix="_FLOAT", valreg="f0")
%def op_double_to_long():
% fcvtHeader(suffix="_DOUBLE", valreg="f0")
trunc.l.d f0, f0
% fcvtFooter(suffix="_DOUBLE", valreg="f0")
%def op_float_to_double():
/*
* Conversion from or to floating-point happens in a floating-point register.
* Therefore we load the input and store the output into or from a
* floating-point register irrespective of the type.
*/
% fcvtHeader(suffix="_FLOAT", valreg="f0")
cvt.d.s f0, f0
% fcvtFooter(suffix="_DOUBLE", valreg="f0")
%def op_float_to_int():
% fcvtHeader(suffix="_FLOAT", valreg="f0")
trunc.w.s f0, f0
% fcvtFooter(suffix="_FLOAT", valreg="f0")
%def op_float_to_long():
% fcvtHeader(suffix="_FLOAT", valreg="f0")
trunc.l.s f0, f0
% fcvtFooter(suffix="_DOUBLE", valreg="f0")
%def op_int_to_double():
/*
* Conversion from or to floating-point happens in a floating-point register.
* Therefore we load the input and store the output into or from a
* floating-point register irrespective of the type.
*/
% fcvtHeader(suffix="_FLOAT", valreg="f0")
cvt.d.w f0, f0
% fcvtFooter(suffix="_DOUBLE", valreg="f0")
%def op_int_to_float():
/*
* Conversion from or to floating-point happens in a floating-point register.
* Therefore we load the input and store the output into or from a
* floating-point register irrespective of the type.
*/
% fcvtHeader(suffix="_FLOAT", valreg="f0")
cvt.s.w f0, f0
% fcvtFooter(suffix="_FLOAT", valreg="f0")
%def op_long_to_double():
/*
* Conversion from or to floating-point happens in a floating-point register.
* Therefore we load the input and store the output into or from a
* floating-point register irrespective of the type.
*/
% fcvtHeader(suffix="_DOUBLE", valreg="f0")
cvt.d.l f0, f0
% fcvtFooter(suffix="_DOUBLE", valreg="f0")
%def op_long_to_float():
/*
* Conversion from or to floating-point happens in a floating-point register.
* Therefore we load the input and store the output into or from a
* floating-point register irrespective of the type.
*/
% fcvtHeader(suffix="_DOUBLE", valreg="f0")
cvt.s.l f0, f0
% fcvtFooter(suffix="_FLOAT", valreg="f0")
%def op_mul_double():
% fbinopWide(instr="mul.d f0, f0, f1")
%def op_mul_double_2addr():
% fbinopWide2addr(instr="mul.d f0, f0, f1")
%def op_mul_float():
% fbinop(instr="mul.s f0, f0, f1")
%def op_mul_float_2addr():
% fbinop2addr(instr="mul.s f0, f0, f1")
%def op_neg_double():
% fcvtHeader(suffix="_DOUBLE", valreg="f0")
neg.d f0, f0
% fcvtFooter(suffix="_DOUBLE", valreg="f0")
%def op_neg_float():
% fcvtHeader(suffix="_FLOAT", valreg="f0")
neg.s f0, f0
% fcvtFooter(suffix="_FLOAT", valreg="f0")
%def op_rem_double():
/* rem-double vAA, vBB, vCC */
.extern fmod
lbu a2, 2(rPC) # a2 <- BB
lbu a3, 3(rPC) # a3 <- CC
GET_VREG_DOUBLE f12, a2 # f12 <- vBB
GET_VREG_DOUBLE f13, a3 # f13 <- vCC
jal fmod # f0 <- f12 op f13
srl a4, rINST, 8 # a4 <- AA
FETCH_ADVANCE_INST 2 # advance rPC, load rINST
GET_INST_OPCODE v0 # extract opcode from rINST
SET_VREG_DOUBLE f0, a4 # vAA <- f0
GOTO_OPCODE v0 # jump to next instruction
%def op_rem_double_2addr():
/* rem-double/2addr vA, vB */
.extern fmod
ext a2, rINST, 8, 4 # a2 <- A
ext a3, rINST, 12, 4 # a3 <- B
GET_VREG_DOUBLE f12, a2 # f12 <- vA
GET_VREG_DOUBLE f13, a3 # f13 <- vB
jal fmod # f0 <- f12 op f13
ext a2, rINST, 8, 4 # a2 <- A
FETCH_ADVANCE_INST 1 # advance rPC, load rINST
GET_INST_OPCODE v0 # extract opcode from rINST
SET_VREG_DOUBLE f0, a2 # vA <- f0
GOTO_OPCODE v0 # jump to next instruction
%def op_rem_float():
/* rem-float vAA, vBB, vCC */
.extern fmodf
lbu a2, 2(rPC) # a2 <- BB
lbu a3, 3(rPC) # a3 <- CC
GET_VREG_FLOAT f12, a2 # f12 <- vBB
GET_VREG_FLOAT f13, a3 # f13 <- vCC
jal fmodf # f0 <- f12 op f13
srl a4, rINST, 8 # a4 <- AA
FETCH_ADVANCE_INST 2 # advance rPC, load rINST
GET_INST_OPCODE v0 # extract opcode from rINST
SET_VREG_FLOAT f0, a4 # vAA <- f0
GOTO_OPCODE v0 # jump to next instruction
%def op_rem_float_2addr():
/* rem-float/2addr vA, vB */
.extern fmodf
ext a2, rINST, 8, 4 # a2 <- A
ext a3, rINST, 12, 4 # a3 <- B
GET_VREG_FLOAT f12, a2 # f12 <- vA
GET_VREG_FLOAT f13, a3 # f13 <- vB
jal fmodf # f0 <- f12 op f13
ext a2, rINST, 8, 4 # a2 <- A
FETCH_ADVANCE_INST 1 # advance rPC, load rINST
GET_INST_OPCODE v0 # extract opcode from rINST
SET_VREG_FLOAT f0, a2 # vA <- f0
GOTO_OPCODE v0 # jump to next instruction
%def op_sub_double():
% fbinopWide(instr="sub.d f0, f0, f1")
%def op_sub_double_2addr():
% fbinopWide2addr(instr="sub.d f0, f0, f1")
%def op_sub_float():
% fbinop(instr="sub.s f0, f0, f1")
%def op_sub_float_2addr():
% fbinop2addr(instr="sub.s f0, f0, f1")
|