1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_INDUCTION_VAR_ANALYSIS_H_
#define ART_COMPILER_OPTIMIZING_INDUCTION_VAR_ANALYSIS_H_
#include <string>
#include "nodes.h"
#include "optimization.h"
namespace art {
/**
* Induction variable analysis. This class does not have a direct public API.
* Instead, the results of induction variable analysis can be queried through
* friend classes, such as InductionVarRange.
*
* The analysis implementation is based on the paper by M. Gerlek et al.
* "Beyond Induction Variables: Detecting and Classifying Sequences Using a Demand-Driven SSA Form"
* (ACM Transactions on Programming Languages and Systems, Volume 17 Issue 1, Jan. 1995).
*/
class HInductionVarAnalysis : public HOptimization {
public:
explicit HInductionVarAnalysis(HGraph* graph, const char* name = kInductionPassName);
bool Run() override;
static constexpr const char* kInductionPassName = "induction_var_analysis";
private:
struct NodeInfo {
explicit NodeInfo(uint32_t d) : depth(d), done(false) {}
uint32_t depth;
bool done;
};
enum InductionClass {
kInvariant,
kLinear,
kPolynomial,
kGeometric,
kWrapAround,
kPeriodic
};
enum InductionOp {
// Operations.
kNop,
kAdd,
kSub,
kNeg,
kMul,
kDiv,
kRem,
kXor,
kFetch,
// Trip-counts.
kTripCountInLoop, // valid in full loop; loop is finite
kTripCountInBody, // valid in body only; loop is finite
kTripCountInLoopUnsafe, // valid in full loop; loop may be infinite
kTripCountInBodyUnsafe, // valid in body only; loop may be infinite
// Comparisons for trip-count tests.
kLT,
kLE,
kGT,
kGE
};
/**
* Defines a detected induction as:
* (1) invariant:
* op: a + b, a - b, -b, a * b, a / b, a % b, a ^ b, fetch
* (2) linear:
* nop: a * i + b
* (3) polynomial:
* nop: sum_lt(a) + b, for linear a
* (4) geometric:
* op: a * fetch^i + b, a * fetch^-i + b
* (5) wrap-around
* nop: a, then defined by b
* (6) periodic
* nop: a, then defined by b (repeated when exhausted)
* (7) trip-count:
* tc: defined by a, taken-test in b
*/
struct InductionInfo : public ArenaObject<kArenaAllocInductionVarAnalysis> {
InductionInfo(InductionClass ic,
InductionOp op,
InductionInfo* a,
InductionInfo* b,
HInstruction* f,
DataType::Type t)
: induction_class(ic),
operation(op),
op_a(a),
op_b(b),
fetch(f),
type(t) {}
InductionClass induction_class;
InductionOp operation;
InductionInfo* op_a;
InductionInfo* op_b;
HInstruction* fetch;
DataType::Type type; // precision of operation
};
bool IsVisitedNode(HInstruction* instruction) const {
return map_.find(instruction) != map_.end();
}
InductionInfo* CreateInvariantOp(InductionOp op, InductionInfo* a, InductionInfo* b) {
DCHECK(((op != kNeg && a != nullptr) || (op == kNeg && a == nullptr)) && b != nullptr);
return CreateSimplifiedInvariant(op, a, b);
}
InductionInfo* CreateInvariantFetch(HInstruction* f) {
DCHECK(f != nullptr);
return new (graph_->GetAllocator())
InductionInfo(kInvariant, kFetch, nullptr, nullptr, f, f->GetType());
}
InductionInfo* CreateTripCount(InductionOp op,
InductionInfo* a,
InductionInfo* b,
DataType::Type type) {
DCHECK(a != nullptr && b != nullptr);
return new (graph_->GetAllocator()) InductionInfo(kInvariant, op, a, b, nullptr, type);
}
InductionInfo* CreateInduction(InductionClass ic,
InductionOp op,
InductionInfo* a,
InductionInfo* b,
HInstruction* f,
DataType::Type type) {
DCHECK(a != nullptr && b != nullptr);
return new (graph_->GetAllocator()) InductionInfo(ic, op, a, b, f, type);
}
// Methods for analysis.
void VisitLoop(HLoopInformation* loop);
void VisitNode(HLoopInformation* loop, HInstruction* instruction);
uint32_t VisitDescendant(HLoopInformation* loop, HInstruction* instruction);
void ClassifyTrivial(HLoopInformation* loop, HInstruction* instruction);
void ClassifyNonTrivial(HLoopInformation* loop);
InductionInfo* RotatePeriodicInduction(InductionInfo* induction, InductionInfo* last);
// Transfer operations.
InductionInfo* TransferPhi(HLoopInformation* loop,
HInstruction* phi,
size_t input_index,
size_t adjust_input_size);
InductionInfo* TransferAddSub(InductionInfo* a, InductionInfo* b, InductionOp op);
InductionInfo* TransferNeg(InductionInfo* a);
InductionInfo* TransferMul(InductionInfo* a, InductionInfo* b);
InductionInfo* TransferConversion(InductionInfo* a, DataType::Type from, DataType::Type to);
// Solvers.
InductionInfo* SolvePhi(HInstruction* phi, size_t input_index, size_t adjust_input_size);
InductionInfo* SolvePhiAllInputs(HLoopInformation* loop,
HInstruction* entry_phi,
HInstruction* phi);
InductionInfo* SolveAddSub(HLoopInformation* loop,
HInstruction* entry_phi,
HInstruction* instruction,
HInstruction* x,
HInstruction* y,
InductionOp op,
bool is_first_call); // possibly swaps x and y to try again
InductionInfo* SolveOp(HLoopInformation* loop,
HInstruction* entry_phi,
HInstruction* instruction,
HInstruction* x,
HInstruction* y,
InductionOp op);
InductionInfo* SolveTest(HLoopInformation* loop,
HInstruction* entry_phi,
HInstruction* instruction,
int64_t oppositive_value);
InductionInfo* SolveConversion(HLoopInformation* loop,
HInstruction* entry_phi,
HTypeConversion* conversion);
//
// Loop trip count analysis methods.
//
// Trip count information.
void VisitControl(HLoopInformation* loop);
void VisitCondition(HLoopInformation* loop,
HBasicBlock* body,
InductionInfo* a,
InductionInfo* b,
DataType::Type type,
IfCondition cmp);
void VisitTripCount(HLoopInformation* loop,
InductionInfo* lower_expr,
InductionInfo* upper_expr,
InductionInfo* stride,
int64_t stride_value,
DataType::Type type,
IfCondition cmp);
bool IsTaken(InductionInfo* lower_expr, InductionInfo* upper_expr, IfCondition cmp);
bool IsFinite(InductionInfo* upper_expr,
int64_t stride_value,
DataType::Type type,
IfCondition cmp);
bool FitsNarrowerControl(InductionInfo* lower_expr,
InductionInfo* upper_expr,
int64_t stride_value,
DataType::Type type,
IfCondition cmp);
bool RewriteBreakLoop(HLoopInformation* loop,
HBasicBlock* body,
int64_t stride_value,
DataType::Type type);
//
// Helper methods.
//
// Assign and lookup.
void AssignInfo(HLoopInformation* loop, HInstruction* instruction, InductionInfo* info);
InductionInfo* LookupInfo(HLoopInformation* loop, HInstruction* instruction);
InductionInfo* CreateConstant(int64_t value, DataType::Type type);
InductionInfo* CreateSimplifiedInvariant(InductionOp op, InductionInfo* a, InductionInfo* b);
HInstruction* GetShiftConstant(HLoopInformation* loop,
HInstruction* instruction,
InductionInfo* initial);
void AssignCycle(HPhi* phi);
ArenaSet<HInstruction*>* LookupCycle(HPhi* phi);
// Constants.
bool IsExact(InductionInfo* info, /*out*/ int64_t* value);
bool IsAtMost(InductionInfo* info, /*out*/ int64_t* value);
bool IsAtLeast(InductionInfo* info, /*out*/ int64_t* value);
// Helpers.
static bool IsNarrowingLinear(InductionInfo* info);
static bool InductionEqual(InductionInfo* info1, InductionInfo* info2);
static std::string FetchToString(HInstruction* fetch);
static std::string InductionToString(InductionInfo* info);
// TODO: fine tune the following data structures, only keep relevant data.
// Temporary book-keeping during the analysis.
uint32_t global_depth_;
ArenaVector<HInstruction*> stack_;
ArenaSafeMap<HInstruction*, NodeInfo> map_;
ArenaVector<HInstruction*> scc_;
ArenaSafeMap<HInstruction*, InductionInfo*> cycle_;
DataType::Type type_;
/**
* Maintains the results of the analysis as a mapping from loops to a mapping from instructions
* to the induction information for that instruction in that loop.
*/
ArenaSafeMap<HLoopInformation*, ArenaSafeMap<HInstruction*, InductionInfo*>> induction_;
/**
* Preserves induction cycle information for each loop-phi.
*/
ArenaSafeMap<HPhi*, ArenaSet<HInstruction*>> cycles_;
friend class InductionVarAnalysisTest;
friend class InductionVarRange;
friend class InductionVarRangeTest;
DISALLOW_COPY_AND_ASSIGN(HInductionVarAnalysis);
};
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_INDUCTION_VAR_ANALYSIS_H_
|