1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ssa_builder.h"
#include "base/arena_bit_vector.h"
#include "base/bit_vector-inl.h"
#include "base/logging.h"
#include "data_type-inl.h"
#include "dex/bytecode_utils.h"
#include "mirror/class-inl.h"
#include "nodes.h"
#include "reference_type_propagation.h"
#include "scoped_thread_state_change-inl.h"
#include "ssa_phi_elimination.h"
namespace art {
void SsaBuilder::FixNullConstantType() {
// The order doesn't matter here.
for (HBasicBlock* block : graph_->GetReversePostOrder()) {
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* equality_instr = it.Current();
if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) {
continue;
}
HInstruction* left = equality_instr->InputAt(0);
HInstruction* right = equality_instr->InputAt(1);
HInstruction* int_operand = nullptr;
if ((left->GetType() == DataType::Type::kReference) &&
(right->GetType() == DataType::Type::kInt32)) {
int_operand = right;
} else if ((right->GetType() == DataType::Type::kReference) &&
(left->GetType() == DataType::Type::kInt32)) {
int_operand = left;
} else {
continue;
}
// If we got here, we are comparing against a reference and the int constant
// should be replaced with a null constant.
// Both type propagation and redundant phi elimination ensure `int_operand`
// can only be the 0 constant.
DCHECK(int_operand->IsIntConstant()) << int_operand->DebugName();
DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue());
equality_instr->ReplaceInput(graph_->GetNullConstant(), int_operand == right ? 1 : 0);
}
}
}
void SsaBuilder::EquivalentPhisCleanup() {
// The order doesn't matter here.
for (HBasicBlock* block : graph_->GetReversePostOrder()) {
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->AsPhi();
HPhi* next = phi->GetNextEquivalentPhiWithSameType();
if (next != nullptr) {
// Make sure we do not replace a live phi with a dead phi. A live phi
// has been handled by the type propagation phase, unlike a dead phi.
if (next->IsLive()) {
phi->ReplaceWith(next);
phi->SetDead();
} else {
next->ReplaceWith(phi);
}
DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr)
<< "More then one phi equivalent with type " << phi->GetType()
<< " found for phi" << phi->GetId();
}
}
}
}
void SsaBuilder::FixEnvironmentPhis() {
for (HBasicBlock* block : graph_->GetReversePostOrder()) {
for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) {
HPhi* phi = it_phis.Current()->AsPhi();
// If the phi is not dead, or has no environment uses, there is nothing to do.
if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue;
HInstruction* next = phi->GetNext();
if (!phi->IsVRegEquivalentOf(next)) continue;
if (next->AsPhi()->IsDead()) {
// If the phi equivalent is dead, check if there is another one.
next = next->GetNext();
if (!phi->IsVRegEquivalentOf(next)) continue;
// There can be at most two phi equivalents.
DCHECK(!phi->IsVRegEquivalentOf(next->GetNext()));
if (next->AsPhi()->IsDead()) continue;
}
// We found a live phi equivalent. Update the environment uses of `phi` with it.
phi->ReplaceWith(next);
}
}
}
static void AddDependentInstructionsToWorklist(HInstruction* instruction,
ScopedArenaVector<HPhi*>* worklist) {
// If `instruction` is a dead phi, type conflict was just identified. All its
// live phi users, and transitively users of those users, therefore need to be
// marked dead/conflicting too, so we add them to the worklist. Otherwise we
// add users whose type does not match and needs to be updated.
bool add_all_live_phis = instruction->IsPhi() && instruction->AsPhi()->IsDead();
for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
HInstruction* user = use.GetUser();
if (user->IsPhi() && user->AsPhi()->IsLive()) {
if (add_all_live_phis || user->GetType() != instruction->GetType()) {
worklist->push_back(user->AsPhi());
}
}
}
}
// Find a candidate primitive type for `phi` by merging the type of its inputs.
// Return false if conflict is identified.
static bool TypePhiFromInputs(HPhi* phi) {
DataType::Type common_type = phi->GetType();
for (HInstruction* input : phi->GetInputs()) {
if (input->IsPhi() && input->AsPhi()->IsDead()) {
// Phis are constructed live so if an input is a dead phi, it must have
// been made dead due to type conflict. Mark this phi conflicting too.
return false;
}
DataType::Type input_type = HPhi::ToPhiType(input->GetType());
if (common_type == input_type) {
// No change in type.
} else if (DataType::Is64BitType(common_type) != DataType::Is64BitType(input_type)) {
// Types are of different sizes, e.g. int vs. long. Must be a conflict.
return false;
} else if (DataType::IsIntegralType(common_type)) {
// Previous inputs were integral, this one is not but is of the same size.
// This does not imply conflict since some bytecode instruction types are
// ambiguous. TypeInputsOfPhi will either type them or detect a conflict.
DCHECK(DataType::IsFloatingPointType(input_type) ||
input_type == DataType::Type::kReference);
common_type = input_type;
} else if (DataType::IsIntegralType(input_type)) {
// Input is integral, common type is not. Same as in the previous case, if
// there is a conflict, it will be detected during TypeInputsOfPhi.
DCHECK(DataType::IsFloatingPointType(common_type) ||
common_type == DataType::Type::kReference);
} else {
// Combining float and reference types. Clearly a conflict.
DCHECK(
(common_type == DataType::Type::kFloat32 && input_type == DataType::Type::kReference) ||
(common_type == DataType::Type::kReference && input_type == DataType::Type::kFloat32));
return false;
}
}
// We have found a candidate type for the phi. Set it and return true. We may
// still discover conflict whilst typing the individual inputs in TypeInputsOfPhi.
phi->SetType(common_type);
return true;
}
// Replace inputs of `phi` to match its type. Return false if conflict is identified.
bool SsaBuilder::TypeInputsOfPhi(HPhi* phi, ScopedArenaVector<HPhi*>* worklist) {
DataType::Type common_type = phi->GetType();
if (DataType::IsIntegralType(common_type)) {
// We do not need to retype ambiguous inputs because they are always constructed
// with the integral type candidate.
if (kIsDebugBuild) {
for (HInstruction* input : phi->GetInputs()) {
DCHECK(HPhi::ToPhiType(input->GetType()) == common_type);
}
}
// Inputs did not need to be replaced, hence no conflict. Report success.
return true;
} else {
DCHECK(common_type == DataType::Type::kReference ||
DataType::IsFloatingPointType(common_type));
HInputsRef inputs = phi->GetInputs();
for (size_t i = 0; i < inputs.size(); ++i) {
HInstruction* input = inputs[i];
if (input->GetType() != common_type) {
// Input type does not match phi's type. Try to retype the input or
// generate a suitably typed equivalent.
HInstruction* equivalent = (common_type == DataType::Type::kReference)
? GetReferenceTypeEquivalent(input)
: GetFloatOrDoubleEquivalent(input, common_type);
if (equivalent == nullptr) {
// Input could not be typed. Report conflict.
return false;
}
// Make sure the input did not change its type and we do not need to
// update its users.
DCHECK_NE(input, equivalent);
phi->ReplaceInput(equivalent, i);
if (equivalent->IsPhi()) {
worklist->push_back(equivalent->AsPhi());
}
}
}
// All inputs either matched the type of the phi or we successfully replaced
// them with a suitable equivalent. Report success.
return true;
}
}
// Attempt to set the primitive type of `phi` to match its inputs. Return whether
// it was changed by the algorithm or not.
bool SsaBuilder::UpdatePrimitiveType(HPhi* phi, ScopedArenaVector<HPhi*>* worklist) {
DCHECK(phi->IsLive());
DataType::Type original_type = phi->GetType();
// Try to type the phi in two stages:
// (1) find a candidate type for the phi by merging types of all its inputs,
// (2) try to type the phi's inputs to that candidate type.
// Either of these stages may detect a type conflict and fail, in which case
// we immediately abort.
if (!TypePhiFromInputs(phi) || !TypeInputsOfPhi(phi, worklist)) {
// Conflict detected. Mark the phi dead and return true because it changed.
phi->SetDead();
return true;
}
// Return true if the type of the phi has changed.
return phi->GetType() != original_type;
}
void SsaBuilder::RunPrimitiveTypePropagation() {
ScopedArenaVector<HPhi*> worklist(local_allocator_->Adapter(kArenaAllocGraphBuilder));
for (HBasicBlock* block : graph_->GetReversePostOrder()) {
if (block->IsLoopHeader()) {
for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
HPhi* phi = phi_it.Current()->AsPhi();
if (phi->IsLive()) {
worklist.push_back(phi);
}
}
} else {
for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
// Eagerly compute the type of the phi, for quicker convergence. Note
// that we don't need to add users to the worklist because we are
// doing a reverse post-order visit, therefore either the phi users are
// non-loop phi and will be visited later in the visit, or are loop-phis,
// and they are already in the work list.
HPhi* phi = phi_it.Current()->AsPhi();
if (phi->IsLive()) {
UpdatePrimitiveType(phi, &worklist);
}
}
}
}
ProcessPrimitiveTypePropagationWorklist(&worklist);
EquivalentPhisCleanup();
}
void SsaBuilder::ProcessPrimitiveTypePropagationWorklist(ScopedArenaVector<HPhi*>* worklist) {
// Process worklist
while (!worklist->empty()) {
HPhi* phi = worklist->back();
worklist->pop_back();
// The phi could have been made dead as a result of conflicts while in the
// worklist. If it is now dead, there is no point in updating its type.
if (phi->IsLive() && UpdatePrimitiveType(phi, worklist)) {
AddDependentInstructionsToWorklist(phi, worklist);
}
}
}
static HArrayGet* FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
DataType::Type type = aget->GetType();
DCHECK(DataType::IsIntOrLongType(type));
HInstruction* next = aget->GetNext();
if (next != nullptr && next->IsArrayGet()) {
HArrayGet* next_aget = next->AsArrayGet();
if (next_aget->IsEquivalentOf(aget)) {
return next_aget;
}
}
return nullptr;
}
static HArrayGet* CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
DataType::Type type = aget->GetType();
DCHECK(DataType::IsIntOrLongType(type));
DCHECK(FindFloatOrDoubleEquivalentOfArrayGet(aget) == nullptr);
HArrayGet* equivalent = new (aget->GetBlock()->GetGraph()->GetAllocator()) HArrayGet(
aget->GetArray(),
aget->GetIndex(),
type == DataType::Type::kInt32 ? DataType::Type::kFloat32 : DataType::Type::kFloat64,
aget->GetDexPc());
aget->GetBlock()->InsertInstructionAfter(equivalent, aget);
return equivalent;
}
static DataType::Type GetPrimitiveArrayComponentType(HInstruction* array)
REQUIRES_SHARED(Locks::mutator_lock_) {
ReferenceTypeInfo array_type = array->GetReferenceTypeInfo();
DCHECK(array_type.IsPrimitiveArrayClass());
return DataTypeFromPrimitive(
array_type.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
}
bool SsaBuilder::FixAmbiguousArrayOps() {
if (ambiguous_agets_.empty() && ambiguous_asets_.empty()) {
return true;
}
// The wrong ArrayGet equivalent may still have Phi uses coming from ArraySet
// uses (because they are untyped) and environment uses (if --debuggable).
// After resolving all ambiguous ArrayGets, we will re-run primitive type
// propagation on the Phis which need to be updated.
ScopedArenaVector<HPhi*> worklist(local_allocator_->Adapter(kArenaAllocGraphBuilder));
{
ScopedObjectAccess soa(Thread::Current());
for (HArrayGet* aget_int : ambiguous_agets_) {
HInstruction* array = aget_int->GetArray();
if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) {
// RTP did not type the input array. Bail.
VLOG(compiler) << "Not compiled: Could not infer an array type for array operation at "
<< aget_int->GetDexPc();
return false;
}
HArrayGet* aget_float = FindFloatOrDoubleEquivalentOfArrayGet(aget_int);
DataType::Type array_type = GetPrimitiveArrayComponentType(array);
DCHECK_EQ(DataType::Is64BitType(aget_int->GetType()), DataType::Is64BitType(array_type));
if (DataType::IsIntOrLongType(array_type)) {
if (aget_float != nullptr) {
// There is a float/double equivalent. We must replace it and re-run
// primitive type propagation on all dependent instructions.
aget_float->ReplaceWith(aget_int);
aget_float->GetBlock()->RemoveInstruction(aget_float);
AddDependentInstructionsToWorklist(aget_int, &worklist);
}
} else {
DCHECK(DataType::IsFloatingPointType(array_type));
if (aget_float == nullptr) {
// This is a float/double ArrayGet but there were no typed uses which
// would create the typed equivalent. Create it now.
aget_float = CreateFloatOrDoubleEquivalentOfArrayGet(aget_int);
}
// Replace the original int/long instruction. Note that it may have phi
// uses, environment uses, as well as real uses (from untyped ArraySets).
// We need to re-run primitive type propagation on its dependent instructions.
aget_int->ReplaceWith(aget_float);
aget_int->GetBlock()->RemoveInstruction(aget_int);
AddDependentInstructionsToWorklist(aget_float, &worklist);
}
}
// Set a flag stating that types of ArrayGets have been resolved. Requesting
// equivalent of the wrong type with GetFloatOrDoubleEquivalentOfArrayGet
// will fail from now on.
agets_fixed_ = true;
for (HArraySet* aset : ambiguous_asets_) {
HInstruction* array = aset->GetArray();
if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) {
// RTP did not type the input array. Bail.
VLOG(compiler) << "Not compiled: Could not infer an array type for array operation at "
<< aset->GetDexPc();
return false;
}
HInstruction* value = aset->GetValue();
DataType::Type value_type = value->GetType();
DataType::Type array_type = GetPrimitiveArrayComponentType(array);
DCHECK_EQ(DataType::Is64BitType(value_type), DataType::Is64BitType(array_type));
if (DataType::IsFloatingPointType(array_type)) {
if (!DataType::IsFloatingPointType(value_type)) {
DCHECK(DataType::IsIntegralType(value_type));
// Array elements are floating-point but the value has not been replaced
// with its floating-point equivalent. The replacement must always
// succeed in code validated by the verifier.
HInstruction* equivalent = GetFloatOrDoubleEquivalent(value, array_type);
DCHECK(equivalent != nullptr);
aset->ReplaceInput(equivalent, /* index= */ 2);
if (equivalent->IsPhi()) {
// Returned equivalent is a phi which may not have had its inputs
// replaced yet. We need to run primitive type propagation on it.
worklist.push_back(equivalent->AsPhi());
}
}
// Refine the side effects of this floating point aset. Note that we do this even if
// no replacement occurs, since the right-hand-side may have been corrected already.
aset->SetSideEffects(HArraySet::ComputeSideEffects(aset->GetComponentType()));
} else {
// Array elements are integral and the value assigned to it initially
// was integral too. Nothing to do.
DCHECK(DataType::IsIntegralType(array_type));
DCHECK(DataType::IsIntegralType(value_type));
}
}
}
if (!worklist.empty()) {
ProcessPrimitiveTypePropagationWorklist(&worklist);
EquivalentPhisCleanup();
}
return true;
}
bool SsaBuilder::HasAliasInEnvironments(HInstruction* instruction) {
ScopedArenaHashSet<size_t> seen_users(
local_allocator_->Adapter(kArenaAllocGraphBuilder));
for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
DCHECK(use.GetUser() != nullptr);
size_t id = use.GetUser()->GetHolder()->GetId();
if (seen_users.find(id) != seen_users.end()) {
return true;
}
seen_users.insert(id);
}
return false;
}
bool SsaBuilder::ReplaceUninitializedStringPhis() {
for (HInvoke* invoke : uninitialized_string_phis_) {
HInstruction* str = invoke->InputAt(invoke->InputCount() - 1);
if (str->IsPhi()) {
// If after redundant phi and dead phi elimination, it's still a phi that feeds
// the invoke, then we must be compiling a method with irreducible loops. Just bail.
DCHECK(graph_->HasIrreducibleLoops());
return false;
}
DCHECK(str->IsNewInstance());
AddUninitializedString(str->AsNewInstance());
str->ReplaceUsesDominatedBy(invoke, invoke);
str->ReplaceEnvUsesDominatedBy(invoke, invoke);
invoke->RemoveInputAt(invoke->InputCount() - 1);
}
return true;
}
void SsaBuilder::RemoveRedundantUninitializedStrings() {
if (graph_->IsDebuggable()) {
// Do not perform the optimization for consistency with the interpreter
// which always allocates an object for new-instance of String.
return;
}
for (HNewInstance* new_instance : uninitialized_strings_) {
DCHECK(new_instance->IsInBlock());
DCHECK(new_instance->IsStringAlloc());
// Replace NewInstance of String with NullConstant if not used prior to
// calling StringFactory. We check for alias environments in case of deoptimization.
// The interpreter is expected to skip null check on the `this` argument of the
// StringFactory call.
if (!new_instance->HasNonEnvironmentUses() && !HasAliasInEnvironments(new_instance)) {
new_instance->ReplaceWith(graph_->GetNullConstant());
new_instance->GetBlock()->RemoveInstruction(new_instance);
// Remove LoadClass if not needed any more.
HInstruction* input = new_instance->InputAt(0);
HLoadClass* load_class = nullptr;
// If the class was not present in the dex cache at the point of building
// the graph, the builder inserted a HClinitCheck in between. Since the String
// class is always initialized at the point of running Java code, we can remove
// that check.
if (input->IsClinitCheck()) {
load_class = input->InputAt(0)->AsLoadClass();
input->ReplaceWith(load_class);
input->GetBlock()->RemoveInstruction(input);
} else {
load_class = input->AsLoadClass();
DCHECK(new_instance->IsStringAlloc());
DCHECK(!load_class->NeedsAccessCheck()) << "String class is always accessible";
}
DCHECK(load_class != nullptr);
if (!load_class->HasUses()) {
// Even if the HLoadClass needs access check, we can remove it, as we know the
// String class does not need it.
load_class->GetBlock()->RemoveInstruction(load_class);
}
}
}
}
static bool HasPhiEquivalentAtLoopEntry(HGraph* graph) {
// Phi equivalents for a dex register do not work with OSR, as the phis will
// receive two different stack slots but only one is recorded in the stack
// map.
for (HBasicBlock* block : graph->GetReversePostOrder()) {
if (block->IsLoopHeader()) {
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
if (it.Current()->AsPhi()->HasEquivalentPhi()) {
return true;
}
}
}
}
return false;
}
GraphAnalysisResult SsaBuilder::BuildSsa() {
DCHECK(!graph_->IsInSsaForm());
// Propagate types of phis. At this point, phis are typed void in the general
// case, or float/double/reference if we created an equivalent phi. So we need
// to propagate the types across phis to give them a correct type. If a type
// conflict is detected in this stage, the phi is marked dead.
RunPrimitiveTypePropagation();
// Now that the correct primitive types have been assigned, we can get rid
// of redundant phis. Note that we cannot do this phase before type propagation,
// otherwise we could get rid of phi equivalents, whose presence is a requirement
// for the type propagation phase. Note that this is to satisfy statement (a)
// of the SsaBuilder (see ssa_builder.h).
SsaRedundantPhiElimination(graph_).Run();
// Fix the type for null constants which are part of an equality comparison.
// We need to do this after redundant phi elimination, to ensure the only cases
// that we can see are reference comparison against 0. The redundant phi
// elimination ensures we do not see a phi taking two 0 constants in a HEqual
// or HNotEqual.
FixNullConstantType();
// Compute type of reference type instructions. The pass assumes that
// NullConstant has been fixed up.
ReferenceTypePropagation(graph_,
class_loader_,
dex_cache_,
handles_,
/* is_first_run= */ true).Run();
// HInstructionBuilder duplicated ArrayGet instructions with ambiguous type
// (int/float or long/double) and marked ArraySets with ambiguous input type.
// Now that RTP computed the type of the array input, the ambiguity can be
// resolved and the correct equivalents kept.
if (!FixAmbiguousArrayOps()) {
return kAnalysisFailAmbiguousArrayOp;
}
// Mark dead phis. This will mark phis which are not used by instructions
// or other live phis. If compiling as debuggable code, phis will also be kept
// live if they have an environment use.
SsaDeadPhiElimination dead_phi_elimimation(graph_);
dead_phi_elimimation.MarkDeadPhis();
// Make sure environments use the right phi equivalent: a phi marked dead
// can have a phi equivalent that is not dead. In that case we have to replace
// it with the live equivalent because deoptimization and try/catch rely on
// environments containing values of all live vregs at that point. Note that
// there can be multiple phis for the same Dex register that are live
// (for example when merging constants), in which case it is okay for the
// environments to just reference one.
FixEnvironmentPhis();
// Now that the right phis are used for the environments, we can eliminate
// phis we do not need. Regardless of the debuggable status, this phase is
/// necessary for statement (b) of the SsaBuilder (see ssa_builder.h), as well
// as for the code generation, which does not deal with phis of conflicting
// input types.
dead_phi_elimimation.EliminateDeadPhis();
// Replace Phis that feed in a String.<init> during instruction building. We
// run this after redundant and dead phi elimination to make sure the phi will have
// been replaced by the actual allocation. Only with an irreducible loop
// a phi can still be the input, in which case we bail.
if (!ReplaceUninitializedStringPhis()) {
return kAnalysisFailIrreducibleLoopAndStringInit;
}
// HInstructionBuidler replaced uses of NewInstances of String with the
// results of their corresponding StringFactory calls. Unless the String
// objects are used before they are initialized, they can be replaced with
// NullConstant. Note that this optimization is valid only if unsimplified
// code does not use the uninitialized value because we assume execution can
// be deoptimized at any safepoint. We must therefore perform it before any
// other optimizations.
RemoveRedundantUninitializedStrings();
if (graph_->IsCompilingOsr() && HasPhiEquivalentAtLoopEntry(graph_)) {
return kAnalysisFailPhiEquivalentInOsr;
}
graph_->SetInSsaForm();
return kAnalysisSuccess;
}
/**
* Constants in the Dex format are not typed. So the builder types them as
* integers, but when doing the SSA form, we might realize the constant
* is used for floating point operations. We create a floating-point equivalent
* constant to make the operations correctly typed.
*/
HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) {
// We place the floating point constant next to this constant.
HFloatConstant* result = constant->GetNext()->AsFloatConstant();
if (result == nullptr) {
float value = bit_cast<float, int32_t>(constant->GetValue());
result = new (graph_->GetAllocator()) HFloatConstant(value);
constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
graph_->CacheFloatConstant(result);
} else {
// If there is already a constant with the expected type, we know it is
// the floating point equivalent of this constant.
DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue());
}
return result;
}
/**
* Wide constants in the Dex format are not typed. So the builder types them as
* longs, but when doing the SSA form, we might realize the constant
* is used for floating point operations. We create a floating-point equivalent
* constant to make the operations correctly typed.
*/
HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) {
// We place the floating point constant next to this constant.
HDoubleConstant* result = constant->GetNext()->AsDoubleConstant();
if (result == nullptr) {
double value = bit_cast<double, int64_t>(constant->GetValue());
result = new (graph_->GetAllocator()) HDoubleConstant(value);
constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
graph_->CacheDoubleConstant(result);
} else {
// If there is already a constant with the expected type, we know it is
// the floating point equivalent of this constant.
DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue());
}
return result;
}
/**
* Because of Dex format, we might end up having the same phi being
* used for non floating point operations and floating point / reference operations.
* Because we want the graph to be correctly typed (and thereafter avoid moves between
* floating point registers and core registers), we need to create a copy of the
* phi with a floating point / reference type.
*/
HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, DataType::Type type) {
DCHECK(phi->IsLive()) << "Cannot get equivalent of a dead phi since it would create a live one.";
// We place the floating point /reference phi next to this phi.
HInstruction* next = phi->GetNext();
if (next != nullptr
&& next->AsPhi()->GetRegNumber() == phi->GetRegNumber()
&& next->GetType() != type) {
// Move to the next phi to see if it is the one we are looking for.
next = next->GetNext();
}
if (next == nullptr
|| (next->AsPhi()->GetRegNumber() != phi->GetRegNumber())
|| (next->GetType() != type)) {
ArenaAllocator* allocator = graph_->GetAllocator();
HInputsRef inputs = phi->GetInputs();
HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), inputs.size(), type);
// Copy the inputs. Note that the graph may not be correctly typed
// by doing this copy, but the type propagation phase will fix it.
ArrayRef<HUserRecord<HInstruction*>> new_input_records = new_phi->GetInputRecords();
for (size_t i = 0; i < inputs.size(); ++i) {
new_input_records[i] = HUserRecord<HInstruction*>(inputs[i]);
}
phi->GetBlock()->InsertPhiAfter(new_phi, phi);
DCHECK(new_phi->IsLive());
return new_phi;
} else {
// An existing equivalent was found. If it is dead, conflict was previously
// identified and we return nullptr instead.
HPhi* next_phi = next->AsPhi();
DCHECK_EQ(next_phi->GetType(), type);
return next_phi->IsLive() ? next_phi : nullptr;
}
}
HArrayGet* SsaBuilder::GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
DCHECK(DataType::IsIntegralType(aget->GetType()));
if (!DataType::IsIntOrLongType(aget->GetType())) {
// Cannot type boolean, char, byte, short to float/double.
return nullptr;
}
DCHECK(ContainsElement(ambiguous_agets_, aget));
if (agets_fixed_) {
// This used to be an ambiguous ArrayGet but its type has been resolved to
// int/long. Requesting a float/double equivalent should lead to a conflict.
if (kIsDebugBuild) {
ScopedObjectAccess soa(Thread::Current());
DCHECK(DataType::IsIntOrLongType(GetPrimitiveArrayComponentType(aget->GetArray())));
}
return nullptr;
} else {
// This is an ambiguous ArrayGet which has not been resolved yet. Return an
// equivalent float/double instruction to use until it is resolved.
HArrayGet* equivalent = FindFloatOrDoubleEquivalentOfArrayGet(aget);
return (equivalent == nullptr) ? CreateFloatOrDoubleEquivalentOfArrayGet(aget) : equivalent;
}
}
HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* value, DataType::Type type) {
if (value->IsArrayGet()) {
return GetFloatOrDoubleEquivalentOfArrayGet(value->AsArrayGet());
} else if (value->IsLongConstant()) {
return GetDoubleEquivalent(value->AsLongConstant());
} else if (value->IsIntConstant()) {
return GetFloatEquivalent(value->AsIntConstant());
} else if (value->IsPhi()) {
return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type);
} else {
return nullptr;
}
}
HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) {
if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) {
return graph_->GetNullConstant();
} else if (value->IsPhi()) {
return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), DataType::Type::kReference);
} else {
return nullptr;
}
}
} // namespace art
|