File: array_slice.h

package info (click to toggle)
android-platform-art 11.0.0%2Br48-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 78,932 kB
  • sloc: cpp: 459,858; java: 163,268; asm: 22,644; python: 9,815; sh: 6,330; ansic: 4,117; xml: 2,855; perl: 77; makefile: 73
file content (171 lines) | stat: -rw-r--r-- 5,735 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_LIBARTBASE_BASE_ARRAY_SLICE_H_
#define ART_LIBARTBASE_BASE_ARRAY_SLICE_H_

#include "bit_utils.h"
#include "casts.h"
#include "iteration_range.h"
#include "length_prefixed_array.h"
#include "stride_iterator.h"

namespace art {

// An ArraySlice is an abstraction over an array or a part of an array of a particular type. It does
// bounds checking and can be made from several common array-like structures in Art.
template <typename T>
class ArraySlice {
 public:
  using value_type = T;
  using reference = T&;
  using const_reference = const T&;
  using pointer = T*;
  using const_pointer = const T*;
  using iterator = StrideIterator<T>;
  using const_iterator = StrideIterator<const T>;
  using reverse_iterator = std::reverse_iterator<iterator>;
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
  using difference_type = ptrdiff_t;
  using size_type = size_t;

  // Create an empty array slice.
  ArraySlice() : array_(nullptr), size_(0), element_size_(0) {}

  // Create an array slice of the first 'length' elements of the array, with each element being
  // element_size bytes long.
  ArraySlice(T* array,
             size_t length,
             size_t element_size = sizeof(T))
      : array_(array),
        size_(dchecked_integral_cast<uint32_t>(length)),
        element_size_(element_size) {
    DCHECK(array_ != nullptr || length == 0);
  }

  ArraySlice(LengthPrefixedArray<T>* lpa,
             size_t element_size = sizeof(T),
             size_t alignment = alignof(T))
      : ArraySlice(
            lpa != nullptr && lpa->size() != 0 ? &lpa->At(0, element_size, alignment) : nullptr,
            lpa != nullptr ? lpa->size() : 0,
            element_size) {}

  // Iterators.
  iterator begin() { return iterator(&AtUnchecked(0), element_size_); }
  const_iterator begin() const { return const_iterator(&AtUnchecked(0), element_size_); }
  const_iterator cbegin() const { return const_iterator(&AtUnchecked(0), element_size_); }
  StrideIterator<T> end() { return StrideIterator<T>(&AtUnchecked(size_), element_size_); }
  const_iterator end() const { return const_iterator(&AtUnchecked(size_), element_size_); }
  const_iterator cend() const { return const_iterator(&AtUnchecked(size_), element_size_); }
  reverse_iterator rbegin() { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
  const_reverse_iterator crbegin() const { return const_reverse_iterator(cend()); }
  reverse_iterator rend() { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
  const_reverse_iterator crend() const { return const_reverse_iterator(cbegin()); }

  // Size.
  size_type size() const { return size_; }
  bool empty() const { return size() == 0u; }

  // Element access. NOTE: Not providing at() and data().

  reference operator[](size_t index) {
    DCHECK_LT(index, size_);
    return AtUnchecked(index);
  }

  const_reference operator[](size_t index) const {
    DCHECK_LT(index, size_);
    return AtUnchecked(index);
  }

  reference front() {
    DCHECK(!empty());
    return (*this)[0];
  }

  const_reference front() const {
    DCHECK(!empty());
    return (*this)[0];
  }

  reference back() {
    DCHECK(!empty());
    return (*this)[size_ - 1u];
  }

  const_reference back() const {
    DCHECK(!empty());
    return (*this)[size_ - 1u];
  }

  ArraySlice<T> SubArray(size_type pos) {
    return SubArray(pos, size() - pos);
  }

  ArraySlice<const T> SubArray(size_type pos) const {
    return SubArray(pos, size() - pos);
  }

  ArraySlice<T> SubArray(size_type pos, size_type length) {
    DCHECK_LE(pos, size());
    DCHECK_LE(length, size() - pos);
    return ArraySlice<T>(&AtUnchecked(pos), length, element_size_);
  }

  ArraySlice<const T> SubArray(size_type pos, size_type length) const {
    DCHECK_LE(pos, size());
    DCHECK_LE(length, size() - pos);
    return ArraySlice<const T>(&AtUnchecked(pos), length, element_size_);
  }

  size_t ElementSize() const {
    return element_size_;
  }

  bool Contains(const T* element) const {
    return &AtUnchecked(0) <= element && element < &AtUnchecked(size_) &&
          ((reinterpret_cast<uintptr_t>(element) -
            reinterpret_cast<uintptr_t>(&AtUnchecked(0))) % element_size_) == 0;
  }

  size_t OffsetOf(const T* element) const {
    DCHECK(Contains(element));
    // Since it's possible element_size_ != sizeof(T) we cannot just use pointer arithmatic
    uintptr_t base_ptr = reinterpret_cast<uintptr_t>(&AtUnchecked(0));
    uintptr_t obj_ptr = reinterpret_cast<uintptr_t>(element);
    return (obj_ptr - base_ptr) / element_size_;
  }

 private:
  T& AtUnchecked(size_t index) {
    return *reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(array_) + index * element_size_);
  }

  const T& AtUnchecked(size_t index) const {
    return *reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(array_) + index * element_size_);
  }

  T* array_;
  size_t size_;
  size_t element_size_;
};

}  // namespace art

#endif  // ART_LIBARTBASE_BASE_ARRAY_SLICE_H_