1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_
#define ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_
#include "memory_region.h"
#include "bit_utils.h"
#include "memory_tool.h"
#include <array>
namespace art {
// Bit memory region is a bit offset subregion of a normal memoryregion. This is useful for
// abstracting away the bit start offset to avoid needing passing as an argument everywhere.
class BitMemoryRegion final : public ValueObject {
public:
struct Less {
bool operator()(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) const {
return Compare(lhs, rhs) < 0;
}
};
BitMemoryRegion() = default;
ALWAYS_INLINE BitMemoryRegion(uint8_t* data, ssize_t bit_start, size_t bit_size) {
// Normalize the data pointer. Note that bit_start may be negative.
data_ = AlignDown(data + (bit_start >> kBitsPerByteLog2), kPageSize);
bit_start_ = bit_start + kBitsPerByte * (data - data_);
bit_size_ = bit_size;
}
ALWAYS_INLINE explicit BitMemoryRegion(MemoryRegion region)
: BitMemoryRegion(region.begin(), /* bit_start */ 0, region.size_in_bits()) {
}
ALWAYS_INLINE BitMemoryRegion(MemoryRegion region, size_t bit_offset, size_t bit_length)
: BitMemoryRegion(region) {
*this = Subregion(bit_offset, bit_length);
}
ALWAYS_INLINE bool IsValid() const { return data_ != nullptr; }
const uint8_t* data() const {
DCHECK_ALIGNED(bit_start_, kBitsPerByte);
return data_ + bit_start_ / kBitsPerByte;
}
size_t size_in_bits() const {
return bit_size_;
}
void Resize(size_t bit_size) {
bit_size_ = bit_size;
}
ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset, size_t bit_length) const {
DCHECK_LE(bit_offset, bit_size_);
DCHECK_LE(bit_length, bit_size_ - bit_offset);
BitMemoryRegion result = *this;
result.bit_start_ += bit_offset;
result.bit_size_ = bit_length;
return result;
}
ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset) const {
DCHECK_LE(bit_offset, bit_size_);
BitMemoryRegion result = *this;
result.bit_start_ += bit_offset;
result.bit_size_ -= bit_offset;
return result;
}
// Load a single bit in the region. The bit at offset 0 is the least
// significant bit in the first byte.
ALWAYS_INLINE bool LoadBit(size_t bit_offset) const {
DCHECK_LT(bit_offset, bit_size_);
size_t index = (bit_start_ + bit_offset) / kBitsPerByte;
size_t shift = (bit_start_ + bit_offset) % kBitsPerByte;
return ((data_[index] >> shift) & 1) != 0;
}
ALWAYS_INLINE void StoreBit(size_t bit_offset, bool value) {
DCHECK_LT(bit_offset, bit_size_);
size_t index = (bit_start_ + bit_offset) / kBitsPerByte;
size_t shift = (bit_start_ + bit_offset) % kBitsPerByte;
data_[index] &= ~(1 << shift); // Clear bit.
data_[index] |= (value ? 1 : 0) << shift; // Set bit.
DCHECK_EQ(value, LoadBit(bit_offset));
}
// Load `bit_length` bits from `data` starting at given `bit_offset`.
// The least significant bit is stored in the smallest memory offset.
template<typename Result = size_t>
ATTRIBUTE_NO_SANITIZE_ADDRESS // We might touch extra bytes due to the alignment.
ATTRIBUTE_NO_SANITIZE_HWADDRESS // The hwasan uses different attribute.
ALWAYS_INLINE Result LoadBits(size_t bit_offset, size_t bit_length) const {
static_assert(std::is_integral<Result>::value, "Result must be integral");
static_assert(std::is_unsigned<Result>::value, "Result must be unsigned");
DCHECK(IsAligned<sizeof(Result)>(data_));
DCHECK_LE(bit_offset, bit_size_);
DCHECK_LE(bit_length, bit_size_ - bit_offset);
DCHECK_LE(bit_length, BitSizeOf<Result>());
if (bit_length == 0) {
return 0;
}
// Load naturally-aligned value which contains the least significant bit.
Result* data = reinterpret_cast<Result*>(data_);
size_t width = BitSizeOf<Result>();
size_t index = (bit_start_ + bit_offset) / width;
size_t shift = (bit_start_ + bit_offset) % width;
Result value = data[index] >> shift;
// Load extra value containing the most significant bit (it might be the same one).
// We can not just load the following value as that could potentially cause SIGSEGV.
Result extra = data[index + (shift + (bit_length - 1)) / width];
// Mask to clear unwanted bits (the 1s are needed to avoid avoid undefined shift).
Result clear = (std::numeric_limits<Result>::max() << 1) << (bit_length - 1);
// Prepend the extra value. We add explicit '& (width - 1)' so that the shift is defined.
// It is a no-op for `shift != 0` and if `shift == 0` then `value == extra` because of
// bit_length <= width causing the `value` and `extra` to be read from the same location.
// The '& (width - 1)' is implied by the shift instruction on ARM and removed by compiler.
return (value | (extra << ((width - shift) & (width - 1)))) & ~clear;
}
// Store `bit_length` bits in `data` starting at given `bit_offset`.
// The least significant bit is stored in the smallest memory offset.
ALWAYS_INLINE void StoreBits(size_t bit_offset, uint32_t value, size_t bit_length) {
DCHECK_LE(bit_offset, bit_size_);
DCHECK_LE(bit_length, bit_size_ - bit_offset);
DCHECK_LE(bit_length, BitSizeOf<uint32_t>());
DCHECK_LE(value, MaxInt<uint32_t>(bit_length));
if (bit_length == 0) {
return;
}
// Write data byte by byte to avoid races with other threads
// on bytes that do not overlap with this region.
uint32_t mask = std::numeric_limits<uint32_t>::max() >> (BitSizeOf<uint32_t>() - bit_length);
size_t index = (bit_start_ + bit_offset) / kBitsPerByte;
size_t shift = (bit_start_ + bit_offset) % kBitsPerByte;
data_[index] &= ~(mask << shift); // Clear bits.
data_[index] |= (value << shift); // Set bits.
size_t finished_bits = kBitsPerByte - shift;
for (int i = 1; finished_bits < bit_length; i++, finished_bits += kBitsPerByte) {
data_[index + i] &= ~(mask >> finished_bits); // Clear bits.
data_[index + i] |= (value >> finished_bits); // Set bits.
}
DCHECK_EQ(value, LoadBits(bit_offset, bit_length));
}
// Store bits from other bit region.
ALWAYS_INLINE void StoreBits(size_t bit_offset, const BitMemoryRegion& src, size_t bit_length) {
DCHECK_LE(bit_offset, bit_size_);
DCHECK_LE(bit_length, bit_size_ - bit_offset);
size_t bit = 0;
constexpr size_t kNumBits = BitSizeOf<uint32_t>();
for (; bit + kNumBits <= bit_length; bit += kNumBits) {
StoreBits(bit_offset + bit, src.LoadBits(bit, kNumBits), kNumBits);
}
size_t num_bits = bit_length - bit;
StoreBits(bit_offset + bit, src.LoadBits(bit, num_bits), num_bits);
}
// Count the number of set bits within the given bit range.
ALWAYS_INLINE size_t PopCount(size_t bit_offset, size_t bit_length) const {
DCHECK_LE(bit_offset, bit_size_);
DCHECK_LE(bit_length, bit_size_ - bit_offset);
size_t count = 0;
size_t bit = 0;
constexpr size_t kNumBits = BitSizeOf<uint32_t>();
for (; bit + kNumBits <= bit_length; bit += kNumBits) {
count += POPCOUNT(LoadBits(bit_offset + bit, kNumBits));
}
count += POPCOUNT(LoadBits(bit_offset + bit, bit_length - bit));
return count;
}
static int Compare(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) {
if (lhs.size_in_bits() != rhs.size_in_bits()) {
return (lhs.size_in_bits() < rhs.size_in_bits()) ? -1 : 1;
}
size_t bit = 0;
constexpr size_t kNumBits = BitSizeOf<uint32_t>();
for (; bit + kNumBits <= lhs.size_in_bits(); bit += kNumBits) {
uint32_t lhs_bits = lhs.LoadBits(bit, kNumBits);
uint32_t rhs_bits = rhs.LoadBits(bit, kNumBits);
if (lhs_bits != rhs_bits) {
return (lhs_bits < rhs_bits) ? -1 : 1;
}
}
size_t num_bits = lhs.size_in_bits() - bit;
uint32_t lhs_bits = lhs.LoadBits(bit, num_bits);
uint32_t rhs_bits = rhs.LoadBits(bit, num_bits);
if (lhs_bits != rhs_bits) {
return (lhs_bits < rhs_bits) ? -1 : 1;
}
return 0;
}
private:
uint8_t* data_ = nullptr; // The pointer is page aligned.
size_t bit_start_ = 0;
size_t bit_size_ = 0;
};
constexpr uint32_t kVarintBits = 4; // Minimum number of bits used for varint.
constexpr uint32_t kVarintMax = 11; // Maximum value which is stored "inline".
class BitMemoryReader {
public:
BitMemoryReader(BitMemoryReader&&) = default;
explicit BitMemoryReader(BitMemoryRegion data)
: finished_region_(data.Subregion(0, 0) /* set the length to zero */ ) {
}
explicit BitMemoryReader(const uint8_t* data, ssize_t bit_offset = 0)
: finished_region_(const_cast<uint8_t*>(data), bit_offset, /* bit_length */ 0) {
}
const uint8_t* data() const { return finished_region_.data(); }
BitMemoryRegion GetReadRegion() const { return finished_region_; }
size_t NumberOfReadBits() const { return finished_region_.size_in_bits(); }
ALWAYS_INLINE BitMemoryRegion ReadRegion(size_t bit_length) {
size_t bit_offset = finished_region_.size_in_bits();
finished_region_.Resize(bit_offset + bit_length);
return finished_region_.Subregion(bit_offset, bit_length);
}
template<typename Result = size_t>
ALWAYS_INLINE Result ReadBits(size_t bit_length) {
return ReadRegion(bit_length).LoadBits<Result>(/* bit_offset */ 0, bit_length);
}
ALWAYS_INLINE bool ReadBit() {
return ReadRegion(/* bit_length */ 1).LoadBit(/* bit_offset */ 0);
}
// Read variable-length bit-packed integer.
// The first four bits determine the variable length of the encoded integer:
// Values 0..11 represent the result as-is, with no further following bits.
// Values 12..15 mean the result is in the next 8/16/24/32-bits respectively.
ALWAYS_INLINE uint32_t ReadVarint() {
uint32_t x = ReadBits(kVarintBits);
return (x <= kVarintMax) ? x : ReadBits((x - kVarintMax) * kBitsPerByte);
}
// Read N 'interleaved' varints (different to just reading consecutive varints).
// All small values are stored first and the large values are stored after them.
// This requires fewer bit-reads compared to indidually storing the varints.
template<size_t N>
ALWAYS_INLINE std::array<uint32_t, N> ReadInterleavedVarints() {
static_assert(N * kVarintBits <= sizeof(uint64_t) * kBitsPerByte, "N too big");
std::array<uint32_t, N> values;
// StackMap BitTable uses over 8 varints in the header, so we need uint64_t.
uint64_t data = ReadBits<uint64_t>(N * kVarintBits);
for (size_t i = 0; i < N; i++) {
values[i] = BitFieldExtract(data, i * kVarintBits, kVarintBits);
}
// Do the second part in its own loop as that seems to produce better code in clang.
for (size_t i = 0; i < N; i++) {
if (UNLIKELY(values[i] > kVarintMax)) {
values[i] = ReadBits((values[i] - kVarintMax) * kBitsPerByte);
}
}
return values;
}
private:
// Represents all of the bits which were read so far. There is no upper bound.
// Therefore, by definition, the "cursor" is always at the end of the region.
BitMemoryRegion finished_region_;
DISALLOW_COPY_AND_ASSIGN(BitMemoryReader);
};
template<typename Vector>
class BitMemoryWriter {
public:
explicit BitMemoryWriter(Vector* out, size_t bit_offset = 0)
: out_(out), bit_start_(bit_offset), bit_offset_(bit_offset) {
DCHECK_EQ(NumberOfWrittenBits(), 0u);
}
BitMemoryRegion GetWrittenRegion() const {
return BitMemoryRegion(out_->data(), bit_start_, bit_offset_ - bit_start_);
}
const uint8_t* data() const { return out_->data(); }
size_t NumberOfWrittenBits() const { return bit_offset_ - bit_start_; }
ALWAYS_INLINE BitMemoryRegion Allocate(size_t bit_length) {
out_->resize(BitsToBytesRoundUp(bit_offset_ + bit_length));
BitMemoryRegion region(out_->data(), bit_offset_, bit_length);
DCHECK_LE(bit_length, std::numeric_limits<size_t>::max() - bit_offset_) << "Overflow";
bit_offset_ += bit_length;
return region;
}
ALWAYS_INLINE void WriteRegion(const BitMemoryRegion& region) {
Allocate(region.size_in_bits()).StoreBits(/* bit_offset */ 0, region, region.size_in_bits());
}
ALWAYS_INLINE void WriteBits(uint32_t value, size_t bit_length) {
Allocate(bit_length).StoreBits(/* bit_offset */ 0, value, bit_length);
}
ALWAYS_INLINE void WriteBit(bool value) {
Allocate(1).StoreBit(/* bit_offset */ 0, value);
}
template<size_t N>
ALWAYS_INLINE void WriteInterleavedVarints(std::array<uint32_t, N> values) {
// Write small values (or the number of bytes needed for the large values).
for (uint32_t value : values) {
if (value > kVarintMax) {
WriteBits(kVarintMax + BitsToBytesRoundUp(MinimumBitsToStore(value)), kVarintBits);
} else {
WriteBits(value, kVarintBits);
}
}
// Write large values.
for (uint32_t value : values) {
if (value > kVarintMax) {
WriteBits(value, BitsToBytesRoundUp(MinimumBitsToStore(value)) * kBitsPerByte);
}
}
}
ALWAYS_INLINE void WriteVarint(uint32_t value) {
WriteInterleavedVarints<1>({value});
}
ALWAYS_INLINE void ByteAlign() {
size_t end = bit_start_ + bit_offset_;
bit_offset_ += RoundUp(end, kBitsPerByte) - end;
}
private:
Vector* out_;
size_t bit_start_;
size_t bit_offset_;
DISALLOW_COPY_AND_ASSIGN(BitMemoryWriter);
};
} // namespace art
#endif // ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_
|