1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_LIBARTBASE_BASE_BIT_TABLE_H_
#define ART_LIBARTBASE_BASE_BIT_TABLE_H_
#include <array>
#include <initializer_list>
#include <numeric>
#include <string.h>
#include <type_traits>
#include <unordered_map>
#include "base/bit_memory_region.h"
#include "base/casts.h"
#include "base/iteration_range.h"
#include "base/memory_region.h"
#include "base/scoped_arena_containers.h"
#include "base/stl_util.h"
namespace art {
// Generic purpose table of uint32_t values, which are tightly packed at bit level.
// It has its own header with the number of rows and the bit-widths of all columns.
// The values are accessible by (row, column). The value -1 is stored efficiently.
template<uint32_t kNumColumns>
class BitTableBase {
public:
static constexpr uint32_t kNoValue = std::numeric_limits<uint32_t>::max(); // == -1.
static constexpr uint32_t kValueBias = kNoValue; // Bias so that -1 is encoded as 0.
BitTableBase() {}
explicit BitTableBase(BitMemoryReader& reader) {
Decode(reader);
}
ALWAYS_INLINE void Decode(BitMemoryReader& reader) {
// Decode row count and column sizes from the table header.
std::array<uint32_t, 1+kNumColumns> header = reader.ReadInterleavedVarints<1+kNumColumns>();
num_rows_ = header[0];
column_offset_[0] = 0;
for (uint32_t i = 0; i < kNumColumns; i++) {
size_t column_end = column_offset_[i] + header[i + 1];
column_offset_[i + 1] = dchecked_integral_cast<uint16_t>(column_end);
}
// Record the region which contains the table data and skip past it.
table_data_ = reader.ReadRegion(num_rows_ * NumRowBits());
}
ALWAYS_INLINE uint32_t Get(uint32_t row, uint32_t column = 0) const {
DCHECK(table_data_.IsValid()) << "Table has not been loaded";
DCHECK_LT(row, num_rows_);
DCHECK_LT(column, kNumColumns);
size_t offset = row * NumRowBits() + column_offset_[column];
return table_data_.LoadBits(offset, NumColumnBits(column)) + kValueBias;
}
ALWAYS_INLINE BitMemoryRegion GetBitMemoryRegion(uint32_t row, uint32_t column = 0) const {
DCHECK(table_data_.IsValid()) << "Table has not been loaded";
DCHECK_LT(row, num_rows_);
DCHECK_LT(column, kNumColumns);
size_t offset = row * NumRowBits() + column_offset_[column];
return table_data_.Subregion(offset, NumColumnBits(column));
}
size_t NumRows() const { return num_rows_; }
uint32_t NumRowBits() const { return column_offset_[kNumColumns]; }
constexpr size_t NumColumns() const { return kNumColumns; }
uint32_t NumColumnBits(uint32_t column) const {
return column_offset_[column + 1] - column_offset_[column];
}
size_t DataBitSize() const { return table_data_.size_in_bits(); }
bool Equals(const BitTableBase& other) const {
return num_rows_ == other.num_rows_ &&
std::equal(column_offset_, column_offset_ + kNumColumns, other.column_offset_) &&
BitMemoryRegion::Compare(table_data_, other.table_data_) == 0;
}
protected:
BitMemoryRegion table_data_;
size_t num_rows_ = 0;
uint16_t column_offset_[kNumColumns + 1] = {};
};
// Helper class which can be used to create BitTable accessors with named getters.
template<uint32_t NumColumns>
class BitTableAccessor {
public:
static constexpr uint32_t kNumColumns = NumColumns;
static constexpr uint32_t kNoValue = BitTableBase<kNumColumns>::kNoValue;
BitTableAccessor() = default;
BitTableAccessor(const BitTableBase<kNumColumns>* table, uint32_t row)
: table_(table), row_(row) {
DCHECK(table_ != nullptr);
}
ALWAYS_INLINE uint32_t Row() const { return row_; }
ALWAYS_INLINE bool IsValid() const { return row_ < table_->NumRows(); }
ALWAYS_INLINE bool Equals(const BitTableAccessor& other) {
return this->table_ == other.table_ && this->row_ == other.row_;
}
// Helper macro to create constructors and per-table utilities in derived class.
#define BIT_TABLE_HEADER(NAME) \
using BitTableAccessor<kNumColumns>::BitTableAccessor; /* inherit constructors */ \
template<int COLUMN, int UNUSED /*needed to compile*/> struct ColumnName; \
static constexpr const char* kTableName = #NAME; \
// Helper macro to create named column accessors in derived class.
#define BIT_TABLE_COLUMN(COLUMN, NAME) \
static constexpr uint32_t k##NAME = COLUMN; \
ALWAYS_INLINE uint32_t Get##NAME() const { return table_->Get(row_, COLUMN); } \
ALWAYS_INLINE bool Has##NAME() const { return Get##NAME() != kNoValue; } \
template<int UNUSED> struct ColumnName<COLUMN, UNUSED> { \
static constexpr const char* Value = #NAME; \
}; \
protected:
const BitTableBase<kNumColumns>* table_ = nullptr;
uint32_t row_ = -1;
};
// Template meta-programming helper.
template<typename Accessor, size_t... Columns>
static const char* const* GetBitTableColumnNamesImpl(std::index_sequence<Columns...>) {
static const char* names[] = { Accessor::template ColumnName<Columns, 0>::Value... };
return names;
}
// Wrapper which makes it easier to use named accessors for the individual rows.
template<typename Accessor>
class BitTable : public BitTableBase<Accessor::kNumColumns> {
public:
class const_iterator : public std::iterator<std::random_access_iterator_tag,
/* value_type */ Accessor,
/* difference_type */ int32_t,
/* pointer */ void,
/* reference */ void> {
public:
using difference_type = int32_t;
const_iterator() {}
const_iterator(const BitTable* table, uint32_t row) : table_(table), row_(row) {}
const_iterator operator+(difference_type n) { return const_iterator(table_, row_ + n); }
const_iterator operator-(difference_type n) { return const_iterator(table_, row_ - n); }
difference_type operator-(const const_iterator& other) { return row_ - other.row_; }
void operator+=(difference_type rows) { row_ += rows; }
void operator-=(difference_type rows) { row_ -= rows; }
const_iterator operator++() { return const_iterator(table_, ++row_); }
const_iterator operator--() { return const_iterator(table_, --row_); }
const_iterator operator++(int) { return const_iterator(table_, row_++); }
const_iterator operator--(int) { return const_iterator(table_, row_--); }
bool operator==(const_iterator i) const { DCHECK(table_ == i.table_); return row_ == i.row_; }
bool operator!=(const_iterator i) const { DCHECK(table_ == i.table_); return row_ != i.row_; }
bool operator<=(const_iterator i) const { DCHECK(table_ == i.table_); return row_ <= i.row_; }
bool operator>=(const_iterator i) const { DCHECK(table_ == i.table_); return row_ >= i.row_; }
bool operator<(const_iterator i) const { DCHECK(table_ == i.table_); return row_ < i.row_; }
bool operator>(const_iterator i) const { DCHECK(table_ == i.table_); return row_ > i.row_; }
Accessor operator*() {
DCHECK_LT(row_, table_->NumRows());
return Accessor(table_, row_);
}
Accessor operator->() {
DCHECK_LT(row_, table_->NumRows());
return Accessor(table_, row_);
}
Accessor operator[](size_t index) {
DCHECK_LT(row_ + index, table_->NumRows());
return Accessor(table_, row_ + index);
}
private:
const BitTable* table_ = nullptr;
uint32_t row_ = 0;
};
using BitTableBase<Accessor::kNumColumns>::BitTableBase; // Constructors.
ALWAYS_INLINE const_iterator begin() const { return const_iterator(this, 0); }
ALWAYS_INLINE const_iterator end() const { return const_iterator(this, this->NumRows()); }
ALWAYS_INLINE Accessor GetRow(uint32_t row) const {
return Accessor(this, row);
}
ALWAYS_INLINE Accessor GetInvalidRow() const {
return Accessor(this, static_cast<uint32_t>(-1));
}
const char* GetName() const {
return Accessor::kTableName;
}
const char* const* GetColumnNames() const {
return GetBitTableColumnNamesImpl<Accessor>(std::make_index_sequence<Accessor::kNumColumns>());
}
};
template<typename Accessor>
typename BitTable<Accessor>::const_iterator operator+(
typename BitTable<Accessor>::const_iterator::difference_type n,
typename BitTable<Accessor>::const_iterator a) {
return a + n;
}
template<typename Accessor>
class BitTableRange : public IterationRange<typename BitTable<Accessor>::const_iterator> {
public:
typedef typename BitTable<Accessor>::const_iterator const_iterator;
using IterationRange<const_iterator>::IterationRange;
BitTableRange() : IterationRange<const_iterator>(const_iterator(), const_iterator()) { }
bool empty() const { return this->begin() == this->end(); }
size_t size() const { return this->end() - this->begin(); }
Accessor operator[](size_t index) const {
const_iterator it = this->begin() + index;
DCHECK(it < this->end());
return *it;
}
Accessor back() const {
DCHECK(!empty());
return *(this->end() - 1);
}
void pop_back() {
DCHECK(!empty());
--this->last_;
}
};
// Helper class for encoding BitTable. It can optionally de-duplicate the inputs.
template<uint32_t kNumColumns>
class BitTableBuilderBase {
public:
static constexpr uint32_t kNoValue = BitTableBase<kNumColumns>::kNoValue;
static constexpr uint32_t kValueBias = BitTableBase<kNumColumns>::kValueBias;
class Entry {
public:
Entry() {
// The definition of kNoValue here is for host and target debug builds which complain about
// missing a symbol definition for BitTableBase<N>::kNovValue when optimization is off.
static constexpr uint32_t kNoValue = BitTableBase<kNumColumns>::kNoValue;
std::fill_n(data_, kNumColumns, kNoValue);
}
Entry(std::initializer_list<uint32_t> values) {
DCHECK_EQ(values.size(), kNumColumns);
std::copy(values.begin(), values.end(), data_);
}
uint32_t& operator[](size_t column) {
DCHECK_LT(column, kNumColumns);
return data_[column];
}
uint32_t operator[](size_t column) const {
DCHECK_LT(column, kNumColumns);
return data_[column];
}
private:
uint32_t data_[kNumColumns];
};
explicit BitTableBuilderBase(ScopedArenaAllocator* allocator)
: rows_(allocator->Adapter(kArenaAllocBitTableBuilder)),
dedup_(8, allocator->Adapter(kArenaAllocBitTableBuilder)) {
}
Entry& operator[](size_t row) { return rows_[row]; }
const Entry& operator[](size_t row) const { return rows_[row]; }
const Entry& back() const { return rows_.back(); }
size_t size() const { return rows_.size(); }
// Append given value to the vector without de-duplication.
// This will not add the element to the dedup map to avoid its associated costs.
void Add(Entry value) {
rows_.push_back(value);
}
// Append given list of values and return the index of the first value.
// If the exact same set of values was already added, return the old index.
uint32_t Dedup(Entry* values, size_t count = 1) {
FNVHash<MemoryRegion> hasher;
uint32_t hash = hasher(MemoryRegion(values, sizeof(Entry) * count));
// Check if we have already added identical set of values.
auto range = dedup_.equal_range(hash);
for (auto it = range.first; it != range.second; ++it) {
uint32_t index = it->second;
if (count <= size() - index &&
std::equal(values,
values + count,
rows_.begin() + index,
[](const Entry& lhs, const Entry& rhs) {
return memcmp(&lhs, &rhs, sizeof(Entry)) == 0;
})) {
return index;
}
}
// Add the set of values and add the index to the dedup map.
uint32_t index = size();
rows_.insert(rows_.end(), values, values + count);
dedup_.emplace(hash, index);
return index;
}
uint32_t Dedup(Entry value) {
return Dedup(&value, /* count */ 1);
}
// Calculate the column bit widths based on the current data.
void Measure(/*out*/ uint32_t* column_bits) const {
uint32_t max_column_value[kNumColumns];
std::fill_n(max_column_value, kNumColumns, 0);
for (uint32_t r = 0; r < size(); r++) {
for (uint32_t c = 0; c < kNumColumns; c++) {
max_column_value[c] |= rows_[r][c] - kValueBias;
}
}
for (uint32_t c = 0; c < kNumColumns; c++) {
column_bits[c] = MinimumBitsToStore(max_column_value[c]);
}
}
// Encode the stored data into a BitTable.
template<typename Vector>
void Encode(BitMemoryWriter<Vector>& out) const {
size_t initial_bit_offset = out.NumberOfWrittenBits();
// Write table header.
std::array<uint32_t, 1 + kNumColumns> header;
header[0] = size();
uint32_t* column_bits = header.data() + 1;
Measure(column_bits);
out.WriteInterleavedVarints(header);
// Write table data.
for (uint32_t r = 0; r < size(); r++) {
for (uint32_t c = 0; c < kNumColumns; c++) {
out.WriteBits(rows_[r][c] - kValueBias, column_bits[c]);
}
}
// Verify the written data.
if (kIsDebugBuild) {
BitTableBase<kNumColumns> table;
BitMemoryReader reader(out.GetWrittenRegion().Subregion(initial_bit_offset));
table.Decode(reader);
DCHECK_EQ(size(), table.NumRows());
for (uint32_t c = 0; c < kNumColumns; c++) {
DCHECK_EQ(column_bits[c], table.NumColumnBits(c));
}
for (uint32_t r = 0; r < size(); r++) {
for (uint32_t c = 0; c < kNumColumns; c++) {
DCHECK_EQ(rows_[r][c], table.Get(r, c)) << " (" << r << ", " << c << ")";
}
}
}
}
protected:
ScopedArenaDeque<Entry> rows_;
ScopedArenaUnorderedMultimap<uint32_t, uint32_t> dedup_; // Hash -> row index.
};
template<typename Accessor>
class BitTableBuilder : public BitTableBuilderBase<Accessor::kNumColumns> {
public:
using BitTableBuilderBase<Accessor::kNumColumns>::BitTableBuilderBase; // Constructors.
};
// Helper class for encoding single-column BitTable of bitmaps (allows more than 32 bits).
class BitmapTableBuilder {
public:
explicit BitmapTableBuilder(ScopedArenaAllocator* const allocator)
: allocator_(allocator),
rows_(allocator->Adapter(kArenaAllocBitTableBuilder)),
dedup_(8, allocator_->Adapter(kArenaAllocBitTableBuilder)) {
}
MemoryRegion operator[](size_t row) { return rows_[row]; }
const MemoryRegion operator[](size_t row) const { return rows_[row]; }
size_t size() const { return rows_.size(); }
// Add the given bitmap to the table and return its index.
// If the bitmap was already added it will be deduplicated.
// The last bit must be set and any padding bits in the last byte must be zero.
uint32_t Dedup(const void* bitmap, size_t num_bits) {
MemoryRegion region(const_cast<void*>(bitmap), BitsToBytesRoundUp(num_bits));
DCHECK(num_bits == 0 || BitMemoryRegion(region).LoadBit(num_bits - 1) == 1);
DCHECK_EQ(BitMemoryRegion(region).LoadBits(num_bits, region.size_in_bits() - num_bits), 0u);
FNVHash<MemoryRegion> hasher;
uint32_t hash = hasher(region);
// Check if we have already added identical bitmap.
auto range = dedup_.equal_range(hash);
for (auto it = range.first; it != range.second; ++it) {
if (MemoryRegion::ContentEquals()(region, rows_[it->second])) {
return it->second;
}
}
// Add the bitmap and add the index to the dedup map.
uint32_t index = size();
void* copy = allocator_->Alloc(region.size(), kArenaAllocBitTableBuilder);
memcpy(copy, region.pointer(), region.size());
rows_.push_back(MemoryRegion(copy, region.size()));
dedup_.emplace(hash, index);
max_num_bits_ = std::max(max_num_bits_, num_bits);
return index;
}
// Encode the stored data into a BitTable.
template<typename Vector>
void Encode(BitMemoryWriter<Vector>& out) const {
size_t initial_bit_offset = out.NumberOfWrittenBits();
// Write table header.
out.WriteInterleavedVarints(std::array<uint32_t, 2>{
dchecked_integral_cast<uint32_t>(size()),
dchecked_integral_cast<uint32_t>(max_num_bits_),
});
// Write table data.
for (MemoryRegion row : rows_) {
BitMemoryRegion src(row);
BitMemoryRegion dst = out.Allocate(max_num_bits_);
dst.StoreBits(/* bit_offset */ 0, src, std::min(max_num_bits_, src.size_in_bits()));
}
// Verify the written data.
if (kIsDebugBuild) {
BitTableBase<1> table;
BitMemoryReader reader(out.GetWrittenRegion().Subregion(initial_bit_offset));
table.Decode(reader);
DCHECK_EQ(size(), table.NumRows());
DCHECK_EQ(max_num_bits_, table.NumColumnBits(0));
for (uint32_t r = 0; r < size(); r++) {
BitMemoryRegion expected(rows_[r]);
BitMemoryRegion seen = table.GetBitMemoryRegion(r);
size_t num_bits = std::max(expected.size_in_bits(), seen.size_in_bits());
for (size_t b = 0; b < num_bits; b++) {
bool e = b < expected.size_in_bits() && expected.LoadBit(b);
bool s = b < seen.size_in_bits() && seen.LoadBit(b);
DCHECK_EQ(e, s) << " (" << r << ")[" << b << "]";
}
}
}
}
private:
ScopedArenaAllocator* const allocator_;
ScopedArenaDeque<MemoryRegion> rows_;
ScopedArenaUnorderedMultimap<uint32_t, uint32_t> dedup_; // Hash -> row index.
size_t max_num_bits_ = 0u;
};
} // namespace art
#endif // ART_LIBARTBASE_BASE_BIT_TABLE_H_
|