File: bit_utils.h

package info (click to toggle)
android-platform-art 11.0.0%2Br48-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 78,932 kB
  • sloc: cpp: 459,858; java: 163,268; asm: 22,644; python: 9,815; sh: 6,330; ansic: 4,117; xml: 2,855; perl: 77; makefile: 73
file content (509 lines) | stat: -rw-r--r-- 18,678 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_LIBARTBASE_BASE_BIT_UTILS_H_
#define ART_LIBARTBASE_BASE_BIT_UTILS_H_

#include <limits>
#include <type_traits>

#include <android-base/logging.h>

#include "globals.h"
#include "stl_util_identity.h"

namespace art {

// Like sizeof, but count how many bits a type takes. Pass type explicitly.
template <typename T>
constexpr size_t BitSizeOf() {
  static_assert(std::is_integral<T>::value, "T must be integral");
  using unsigned_type = typename std::make_unsigned<T>::type;
  static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!");
  static_assert(std::numeric_limits<unsigned_type>::radix == 2, "Unexpected radix!");
  return std::numeric_limits<unsigned_type>::digits;
}

// Like sizeof, but count how many bits a type takes. Infers type from parameter.
template <typename T>
constexpr size_t BitSizeOf(T /*x*/) {
  return BitSizeOf<T>();
}

template<typename T>
constexpr int CLZ(T x) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  static_assert(std::is_unsigned<T>::value, "T must be unsigned");
  static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
  static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t),
                "Unsupported sizeof(T)");
  DCHECK_NE(x, 0u);
  constexpr bool is_64_bit = (sizeof(T) == sizeof(uint64_t));
  constexpr size_t adjustment =
      is_64_bit ? 0u : std::numeric_limits<uint32_t>::digits - std::numeric_limits<T>::digits;
  return is_64_bit ? __builtin_clzll(x) : __builtin_clz(x) - adjustment;
}

// Similar to CLZ except that on zero input it returns bitwidth and supports signed integers.
template<typename T>
constexpr int JAVASTYLE_CLZ(T x) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  using unsigned_type = typename std::make_unsigned<T>::type;
  return (x == 0) ? BitSizeOf<T>() : CLZ(static_cast<unsigned_type>(x));
}

template<typename T>
constexpr int CTZ(T x) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  // It is not unreasonable to ask for trailing zeros in a negative number. As such, do not check
  // that T is an unsigned type.
  static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t),
                "Unsupported sizeof(T)");
  DCHECK_NE(x, static_cast<T>(0));
  return (sizeof(T) == sizeof(uint64_t)) ? __builtin_ctzll(x) : __builtin_ctz(x);
}

// Similar to CTZ except that on zero input it returns bitwidth and supports signed integers.
template<typename T>
constexpr int JAVASTYLE_CTZ(T x) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  using unsigned_type = typename std::make_unsigned<T>::type;
  return (x == 0) ? BitSizeOf<T>() : CTZ(static_cast<unsigned_type>(x));
}

// Return the number of 1-bits in `x`.
template<typename T>
constexpr int POPCOUNT(T x) {
  return (sizeof(T) == sizeof(uint32_t)) ? __builtin_popcount(x) : __builtin_popcountll(x);
}

// Swap bytes.
template<typename T>
constexpr T BSWAP(T x) {
  if (sizeof(T) == sizeof(uint16_t)) {
    return __builtin_bswap16(x);
  } else if (sizeof(T) == sizeof(uint32_t)) {
    return __builtin_bswap32(x);
  } else {
    return __builtin_bswap64(x);
  }
}

// Find the bit position of the most significant bit (0-based), or -1 if there were no bits set.
template <typename T>
constexpr ssize_t MostSignificantBit(T value) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  static_assert(std::is_unsigned<T>::value, "T must be unsigned");
  static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
  return (value == 0) ? -1 : std::numeric_limits<T>::digits - 1 - CLZ(value);
}

// Find the bit position of the least significant bit (0-based), or -1 if there were no bits set.
template <typename T>
constexpr ssize_t LeastSignificantBit(T value) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  static_assert(std::is_unsigned<T>::value, "T must be unsigned");
  return (value == 0) ? -1 : CTZ(value);
}

// How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc.
template <typename T>
constexpr size_t MinimumBitsToStore(T value) {
  return static_cast<size_t>(MostSignificantBit(value) + 1);
}

template <typename T>
constexpr T RoundUpToPowerOfTwo(T x) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  static_assert(std::is_unsigned<T>::value, "T must be unsigned");
  // NOTE: Undefined if x > (1 << (std::numeric_limits<T>::digits - 1)).
  return (x < 2u) ? x : static_cast<T>(1u) << (std::numeric_limits<T>::digits - CLZ(x - 1u));
}

// Return highest possible N - a power of two - such that val >= N.
template <typename T>
constexpr T TruncToPowerOfTwo(T val) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  static_assert(std::is_unsigned<T>::value, "T must be unsigned");
  return (val != 0) ? static_cast<T>(1u) << (BitSizeOf<T>() - CLZ(val) - 1u) : 0;
}

template<typename T>
constexpr bool IsPowerOfTwo(T x) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  // TODO: assert unsigned. There is currently many uses with signed values.
  return (x & (x - 1)) == 0;
}

template<typename T>
constexpr int WhichPowerOf2(T x) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  // TODO: assert unsigned. There is currently many uses with signed values.
  DCHECK((x != 0) && IsPowerOfTwo(x));
  return CTZ(x);
}

// For rounding integers.
// Note: Omit the `n` from T type deduction, deduce only from the `x` argument.
template<typename T>
constexpr T RoundDown(T x, typename Identity<T>::type n) WARN_UNUSED;

template<typename T>
constexpr T RoundDown(T x, typename Identity<T>::type n) {
  DCHECK(IsPowerOfTwo(n));
  return (x & -n);
}

template<typename T>
constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) WARN_UNUSED;

template<typename T>
constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) {
  return RoundDown(x + n - 1, n);
}

// For aligning pointers.
template<typename T>
inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;

template<typename T>
inline T* AlignDown(T* x, uintptr_t n) {
  return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
}

template<typename T>
inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;

template<typename T>
inline T* AlignUp(T* x, uintptr_t n) {
  return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
}

template<int n, typename T>
constexpr bool IsAligned(T x) {
  static_assert((n & (n - 1)) == 0, "n is not a power of two");
  return (x & (n - 1)) == 0;
}

template<int n, typename T>
inline bool IsAligned(T* x) {
  return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
}

template<typename T>
inline bool IsAlignedParam(T x, int n) {
  return (x & (n - 1)) == 0;
}

template<typename T>
inline bool IsAlignedParam(T* x, int n) {
  return IsAlignedParam(reinterpret_cast<const uintptr_t>(x), n);
}

#define CHECK_ALIGNED(value, alignment) \
  CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)

#define DCHECK_ALIGNED(value, alignment) \
  DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)

#define CHECK_ALIGNED_PARAM(value, alignment) \
  CHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)

#define DCHECK_ALIGNED_PARAM(value, alignment) \
  DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)

inline uint16_t Low16Bits(uint32_t value) {
  return static_cast<uint16_t>(value);
}

inline uint16_t High16Bits(uint32_t value) {
  return static_cast<uint16_t>(value >> 16);
}

inline uint32_t Low32Bits(uint64_t value) {
  return static_cast<uint32_t>(value);
}

inline uint32_t High32Bits(uint64_t value) {
  return static_cast<uint32_t>(value >> 32);
}

// Check whether an N-bit two's-complement representation can hold value.
template <typename T>
inline bool IsInt(size_t N, T value) {
  if (N == BitSizeOf<T>()) {
    return true;
  } else {
    CHECK_LT(0u, N);
    CHECK_LT(N, BitSizeOf<T>());
    T limit = static_cast<T>(1) << (N - 1u);
    return (-limit <= value) && (value < limit);
  }
}

template <typename T>
constexpr T GetIntLimit(size_t bits) {
  DCHECK_NE(bits, 0u);
  DCHECK_LT(bits, BitSizeOf<T>());
  return static_cast<T>(1) << (bits - 1);
}

template <size_t kBits, typename T>
constexpr bool IsInt(T value) {
  static_assert(kBits > 0, "kBits cannot be zero.");
  static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
  static_assert(std::is_signed<T>::value, "Needs a signed type.");
  // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
  // trivially true.
  return (kBits == BitSizeOf<T>()) ?
      true :
      (-GetIntLimit<T>(kBits) <= value) && (value < GetIntLimit<T>(kBits));
}

template <size_t kBits, typename T>
constexpr bool IsUint(T value) {
  static_assert(kBits > 0, "kBits cannot be zero.");
  static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
  static_assert(std::is_integral<T>::value, "Needs an integral type.");
  // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
  // trivially true.
  // NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf<T>(),
  // use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows.
  using unsigned_type = typename std::make_unsigned<T>::type;
  return (0 <= value) &&
      (kBits == BitSizeOf<T>() ||
          (static_cast<unsigned_type>(value) <= GetIntLimit<unsigned_type>(kBits) * 2u - 1u));
}

template <size_t kBits, typename T>
constexpr bool IsAbsoluteUint(T value) {
  static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
  static_assert(std::is_integral<T>::value, "Needs an integral type.");
  using unsigned_type = typename std::make_unsigned<T>::type;
  return (kBits == BitSizeOf<T>())
      ? true
      : IsUint<kBits>(value < 0
                      ? static_cast<unsigned_type>(-1 - value) + 1u  // Avoid overflow.
                      : static_cast<unsigned_type>(value));
}

// Generate maximum/minimum values for signed/unsigned n-bit integers
template <typename T>
constexpr T MaxInt(size_t bits) {
  DCHECK(std::is_unsigned<T>::value || bits > 0u) << "bits cannot be zero for signed.";
  DCHECK_LE(bits, BitSizeOf<T>());
  using unsigned_type = typename std::make_unsigned<T>::type;
  return bits == BitSizeOf<T>()
      ? std::numeric_limits<T>::max()
      : std::is_signed<T>::value
          ? ((bits == 1u) ? 0 : static_cast<T>(MaxInt<unsigned_type>(bits - 1)))
          : static_cast<T>(UINT64_C(1) << bits) - static_cast<T>(1);
}

template <typename T>
constexpr T MinInt(size_t bits) {
  DCHECK(std::is_unsigned<T>::value || bits > 0) << "bits cannot be zero for signed.";
  DCHECK_LE(bits, BitSizeOf<T>());
  return bits == BitSizeOf<T>()
      ? std::numeric_limits<T>::min()
      : std::is_signed<T>::value
          ? ((bits == 1u) ? -1 : static_cast<T>(-1) - MaxInt<T>(bits))
          : static_cast<T>(0);
}

// Returns value with bit set in lowest one-bit position or 0 if 0.  (java.lang.X.lowestOneBit).
template <typename kind>
inline static kind LowestOneBitValue(kind opnd) {
  // Hacker's Delight, Section 2-1
  return opnd & -opnd;
}

// Returns value with bit set in hightest one-bit position or 0 if 0.  (java.lang.X.highestOneBit).
template <typename T>
inline static T HighestOneBitValue(T opnd) {
  using unsigned_type = typename std::make_unsigned<T>::type;
  T res;
  if (opnd == 0) {
    res = 0;
  } else {
    int bit_position = BitSizeOf<T>() - (CLZ(static_cast<unsigned_type>(opnd)) + 1);
    res = static_cast<T>(UINT64_C(1) << bit_position);
  }
  return res;
}

// Rotate bits.
template <typename T, bool left>
inline static T Rot(T opnd, int distance) {
  int mask = BitSizeOf<T>() - 1;
  int unsigned_right_shift = left ? (-distance & mask) : (distance & mask);
  int signed_left_shift = left ? (distance & mask) : (-distance & mask);
  using unsigned_type = typename std::make_unsigned<T>::type;
  return (static_cast<unsigned_type>(opnd) >> unsigned_right_shift) | (opnd << signed_left_shift);
}

// TUNING: use rbit for arm/arm64
inline static uint32_t ReverseBits32(uint32_t opnd) {
  // Hacker's Delight 7-1
  opnd = ((opnd >>  1) & 0x55555555) | ((opnd & 0x55555555) <<  1);
  opnd = ((opnd >>  2) & 0x33333333) | ((opnd & 0x33333333) <<  2);
  opnd = ((opnd >>  4) & 0x0F0F0F0F) | ((opnd & 0x0F0F0F0F) <<  4);
  opnd = ((opnd >>  8) & 0x00FF00FF) | ((opnd & 0x00FF00FF) <<  8);
  opnd = ((opnd >> 16)) | ((opnd) << 16);
  return opnd;
}

// TUNING: use rbit for arm/arm64
inline static uint64_t ReverseBits64(uint64_t opnd) {
  // Hacker's Delight 7-1
  opnd = (opnd & 0x5555555555555555L) << 1 | ((opnd >> 1) & 0x5555555555555555L);
  opnd = (opnd & 0x3333333333333333L) << 2 | ((opnd >> 2) & 0x3333333333333333L);
  opnd = (opnd & 0x0f0f0f0f0f0f0f0fL) << 4 | ((opnd >> 4) & 0x0f0f0f0f0f0f0f0fL);
  opnd = (opnd & 0x00ff00ff00ff00ffL) << 8 | ((opnd >> 8) & 0x00ff00ff00ff00ffL);
  opnd = (opnd << 48) | ((opnd & 0xffff0000L) << 16) | ((opnd >> 16) & 0xffff0000L) | (opnd >> 48);
  return opnd;
}

// Create a mask for the least significant "bits"
// The returned value is always unsigned to prevent undefined behavior for bitwise ops.
//
// Given 'bits',
// Returns:
//                   <--- bits --->
// +-----------------+------------+
// | 0 ............0 |   1.....1  |
// +-----------------+------------+
// msb                           lsb
template <typename T = size_t>
inline static constexpr std::make_unsigned_t<T> MaskLeastSignificant(size_t bits) {
  DCHECK_GE(BitSizeOf<T>(), bits) << "Bits out of range for type T";
  using unsigned_T = std::make_unsigned_t<T>;
  if (bits >= BitSizeOf<T>()) {
    return std::numeric_limits<unsigned_T>::max();
  } else {
    auto kOne = static_cast<unsigned_T>(1);  // Do not truncate for T>size_t.
    return static_cast<unsigned_T>((kOne << bits) - kOne);
  }
}

// Clears the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'.
// (Equivalent of ARM BFC instruction).
//
// Given:
//           <-- width  -->
// +--------+------------+--------+
// | ABC... |  bitfield  | XYZ... +
// +--------+------------+--------+
//                       lsb      0
// Returns:
//           <-- width  -->
// +--------+------------+--------+
// | ABC... | 0........0 | XYZ... +
// +--------+------------+--------+
//                       lsb      0
template <typename T>
inline static constexpr T BitFieldClear(T value, size_t lsb, size_t width) {
  DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value";
  const auto val = static_cast<std::make_unsigned_t<T>>(value);
  const auto mask = MaskLeastSignificant<T>(width);

  return static_cast<T>(val & ~(mask << lsb));
}

// Inserts the contents of 'data' into bitfield of 'value'  starting
// at the least significant bit "lsb" with a bitwidth of 'width'.
// Note: data must be within range of [MinInt(width), MaxInt(width)].
// (Equivalent of ARM BFI instruction).
//
// Given (data):
//           <-- width  -->
// +--------+------------+--------+
// | ABC... |  bitfield  | XYZ... +
// +--------+------------+--------+
//                       lsb      0
// Returns:
//           <-- width  -->
// +--------+------------+--------+
// | ABC... | 0...data   | XYZ... +
// +--------+------------+--------+
//                       lsb      0

template <typename T, typename T2>
inline static constexpr T BitFieldInsert(T value, T2 data, size_t lsb, size_t width) {
  DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value";
  if (width != 0u) {
    DCHECK_GE(MaxInt<T2>(width), data) << "Data out of range [too large] for bitwidth";
    DCHECK_LE(MinInt<T2>(width), data) << "Data out of range [too small] for bitwidth";
  } else {
    DCHECK_EQ(static_cast<T2>(0), data) << "Data out of range [nonzero] for bitwidth 0";
  }
  const auto data_mask = MaskLeastSignificant<T2>(width);
  const auto value_cleared = BitFieldClear(value, lsb, width);

  return static_cast<T>(value_cleared | ((data & data_mask) << lsb));
}

// Extracts the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'.
// Signed types are sign-extended during extraction. (Equivalent of ARM UBFX/SBFX instruction).
//
// Given:
//           <-- width   -->
// +--------+-------------+-------+
// |        |   bitfield  |       +
// +--------+-------------+-------+
//                       lsb      0
// (Unsigned) Returns:
//                  <-- width   -->
// +----------------+-------------+
// | 0...        0  |   bitfield  |
// +----------------+-------------+
//                                0
// (Signed) Returns:
//                  <-- width   -->
// +----------------+-------------+
// | S...        S  |   bitfield  |
// +----------------+-------------+
//                                0
// where S is the highest bit in 'bitfield'.
template <typename T>
inline static constexpr T BitFieldExtract(T value, size_t lsb, size_t width) {
  DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value";
  const auto val = static_cast<std::make_unsigned_t<T>>(value);

  const T bitfield_unsigned =
      static_cast<T>((val >> lsb) & MaskLeastSignificant<T>(width));
  if (std::is_signed<T>::value) {
    // Perform sign extension
    if (width == 0) {  // Avoid underflow.
      return static_cast<T>(0);
    } else if (bitfield_unsigned & (1 << (width - 1))) {  // Detect if sign bit was set.
      // MSB        <width> LSB
      // 0b11111...100...000000
      const auto ones_negmask = ~MaskLeastSignificant<T>(width);
      return static_cast<T>(bitfield_unsigned | ones_negmask);
    }
  }
  // Skip sign extension.
  return bitfield_unsigned;
}

inline static constexpr size_t BitsToBytesRoundUp(size_t num_bits) {
  return RoundUp(num_bits, kBitsPerByte) / kBitsPerByte;
}

}  // namespace art

#endif  // ART_LIBARTBASE_BASE_BIT_UTILS_H_