1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_LIBARTBASE_BASE_LEB128_H_
#define ART_LIBARTBASE_BASE_LEB128_H_
#include <vector>
#include <android-base/logging.h>
#include "bit_utils.h"
#include "globals.h"
#include "macros.h"
namespace art {
// Reads an unsigned LEB128 value, updating the given pointer to point
// just past the end of the read value. This function tolerates
// non-zero high-order bits in the fifth encoded byte.
static inline uint32_t DecodeUnsignedLeb128(const uint8_t** data) {
const uint8_t* ptr = *data;
int result = *(ptr++);
if (UNLIKELY(result > 0x7f)) {
int cur = *(ptr++);
result = (result & 0x7f) | ((cur & 0x7f) << 7);
if (cur > 0x7f) {
cur = *(ptr++);
result |= (cur & 0x7f) << 14;
if (cur > 0x7f) {
cur = *(ptr++);
result |= (cur & 0x7f) << 21;
if (cur > 0x7f) {
// Note: We don't check to see if cur is out of range here,
// meaning we tolerate garbage in the four high-order bits.
cur = *(ptr++);
result |= cur << 28;
}
}
}
}
*data = ptr;
return static_cast<uint32_t>(result);
}
static inline uint32_t DecodeUnsignedLeb128WithoutMovingCursor(const uint8_t* data) {
return DecodeUnsignedLeb128(&data);
}
static inline bool DecodeUnsignedLeb128Checked(const uint8_t** data,
const void* end,
uint32_t* out) {
const uint8_t* ptr = *data;
if (ptr >= end) {
return false;
}
int result = *(ptr++);
if (UNLIKELY(result > 0x7f)) {
if (ptr >= end) {
return false;
}
int cur = *(ptr++);
result = (result & 0x7f) | ((cur & 0x7f) << 7);
if (cur > 0x7f) {
if (ptr >= end) {
return false;
}
cur = *(ptr++);
result |= (cur & 0x7f) << 14;
if (cur > 0x7f) {
if (ptr >= end) {
return false;
}
cur = *(ptr++);
result |= (cur & 0x7f) << 21;
if (cur > 0x7f) {
if (ptr >= end) {
return false;
}
// Note: We don't check to see if cur is out of range here,
// meaning we tolerate garbage in the four high-order bits.
cur = *(ptr++);
result |= cur << 28;
}
}
}
}
*data = ptr;
*out = static_cast<uint32_t>(result);
return true;
}
// Reads an unsigned LEB128 + 1 value. updating the given pointer to point
// just past the end of the read value. This function tolerates
// non-zero high-order bits in the fifth encoded byte.
// It is possible for this function to return -1.
static inline int32_t DecodeUnsignedLeb128P1(const uint8_t** data) {
return DecodeUnsignedLeb128(data) - 1;
}
// Reads a signed LEB128 value, updating the given pointer to point
// just past the end of the read value. This function tolerates
// non-zero high-order bits in the fifth encoded byte.
static inline int32_t DecodeSignedLeb128(const uint8_t** data) {
const uint8_t* ptr = *data;
int32_t result = *(ptr++);
if (result <= 0x7f) {
result = (result << 25) >> 25;
} else {
int cur = *(ptr++);
result = (result & 0x7f) | ((cur & 0x7f) << 7);
if (cur <= 0x7f) {
result = (result << 18) >> 18;
} else {
cur = *(ptr++);
result |= (cur & 0x7f) << 14;
if (cur <= 0x7f) {
result = (result << 11) >> 11;
} else {
cur = *(ptr++);
result |= (cur & 0x7f) << 21;
if (cur <= 0x7f) {
result = (result << 4) >> 4;
} else {
// Note: We don't check to see if cur is out of range here,
// meaning we tolerate garbage in the four high-order bits.
cur = *(ptr++);
result |= cur << 28;
}
}
}
}
*data = ptr;
return result;
}
static inline bool DecodeSignedLeb128Checked(const uint8_t** data,
const void* end,
int32_t* out) {
const uint8_t* ptr = *data;
if (ptr >= end) {
return false;
}
int32_t result = *(ptr++);
if (result <= 0x7f) {
result = (result << 25) >> 25;
} else {
if (ptr >= end) {
return false;
}
int cur = *(ptr++);
result = (result & 0x7f) | ((cur & 0x7f) << 7);
if (cur <= 0x7f) {
result = (result << 18) >> 18;
} else {
if (ptr >= end) {
return false;
}
cur = *(ptr++);
result |= (cur & 0x7f) << 14;
if (cur <= 0x7f) {
result = (result << 11) >> 11;
} else {
if (ptr >= end) {
return false;
}
cur = *(ptr++);
result |= (cur & 0x7f) << 21;
if (cur <= 0x7f) {
result = (result << 4) >> 4;
} else {
if (ptr >= end) {
return false;
}
// Note: We don't check to see if cur is out of range here,
// meaning we tolerate garbage in the four high-order bits.
cur = *(ptr++);
result |= cur << 28;
}
}
}
}
*data = ptr;
*out = static_cast<uint32_t>(result);
return true;
}
// Returns the number of bytes needed to encode the value in unsigned LEB128.
static inline uint32_t UnsignedLeb128Size(uint32_t data) {
// bits_to_encode = (data != 0) ? 32 - CLZ(x) : 1 // 32 - CLZ(data | 1)
// bytes = ceil(bits_to_encode / 7.0); // (6 + bits_to_encode) / 7
uint32_t x = 6 + 32 - CLZ(data | 1U);
// Division by 7 is done by (x * 37) >> 8 where 37 = ceil(256 / 7).
// This works for 0 <= x < 256 / (7 * 37 - 256), i.e. 0 <= x <= 85.
return (x * 37) >> 8;
}
static inline bool IsLeb128Terminator(const uint8_t* ptr) {
return *ptr <= 0x7f;
}
// Returns the first byte of a Leb128 value assuming that:
// (1) `end_ptr` points to the first byte after the Leb128 value, and
// (2) there is another Leb128 value before this one.
template <typename T>
static inline T* ReverseSearchUnsignedLeb128(T* end_ptr) {
static_assert(std::is_same<typename std::remove_const<T>::type, uint8_t>::value,
"T must be a uint8_t");
T* ptr = end_ptr;
// Move one byte back, check that this is the terminating byte.
ptr--;
DCHECK(IsLeb128Terminator(ptr));
// Keep moving back while the previous byte is not a terminating byte.
// Fail after reading five bytes in case there isn't another Leb128 value
// before this one.
while (!IsLeb128Terminator(ptr - 1)) {
ptr--;
DCHECK_LE(static_cast<ptrdiff_t>(end_ptr - ptr), 5);
}
return ptr;
}
// Returns the number of bytes needed to encode the value in unsigned LEB128.
static inline uint32_t SignedLeb128Size(int32_t data) {
// Like UnsignedLeb128Size(), but we need one bit beyond the highest bit that differs from sign.
data = data ^ (data >> 31);
uint32_t x = 1 /* we need to encode the sign bit */ + 6 + 32 - CLZ(data | 1U);
return (x * 37) >> 8;
}
static inline uint8_t* EncodeUnsignedLeb128(uint8_t* dest, uint32_t value) {
uint8_t out = value & 0x7f;
value >>= 7;
while (value != 0) {
*dest++ = out | 0x80;
out = value & 0x7f;
value >>= 7;
}
*dest++ = out;
return dest;
}
template <typename Vector>
static inline void EncodeUnsignedLeb128(Vector* dest, uint32_t value) {
static_assert(std::is_same<typename Vector::value_type, uint8_t>::value, "Invalid value type");
uint8_t out = value & 0x7f;
value >>= 7;
while (value != 0) {
dest->push_back(out | 0x80);
out = value & 0x7f;
value >>= 7;
}
dest->push_back(out);
}
// Overwrite encoded Leb128 with a new value. The new value must be less than
// or equal to the old value to ensure that it fits the allocated space.
static inline void UpdateUnsignedLeb128(uint8_t* dest, uint32_t value) {
const uint8_t* old_end = dest;
uint32_t old_value = DecodeUnsignedLeb128(&old_end);
DCHECK_LE(UnsignedLeb128Size(value), UnsignedLeb128Size(old_value));
for (uint8_t* end = EncodeUnsignedLeb128(dest, value); end < old_end; end++) {
// Use longer encoding than necessary to fill the allocated space.
end[-1] |= 0x80;
end[0] = 0;
}
}
static inline uint8_t* EncodeSignedLeb128(uint8_t* dest, int32_t value) {
uint32_t extra_bits = static_cast<uint32_t>(value ^ (value >> 31)) >> 6;
uint8_t out = value & 0x7f;
while (extra_bits != 0u) {
*dest++ = out | 0x80;
value >>= 7;
out = value & 0x7f;
extra_bits >>= 7;
}
*dest++ = out;
return dest;
}
template<typename Vector>
static inline void EncodeSignedLeb128(Vector* dest, int32_t value) {
static_assert(std::is_same<typename Vector::value_type, uint8_t>::value, "Invalid value type");
uint32_t extra_bits = static_cast<uint32_t>(value ^ (value >> 31)) >> 6;
uint8_t out = value & 0x7f;
while (extra_bits != 0u) {
dest->push_back(out | 0x80);
value >>= 7;
out = value & 0x7f;
extra_bits >>= 7;
}
dest->push_back(out);
}
// An encoder that pushes int32_t/uint32_t data onto the given std::vector.
template <typename Vector = std::vector<uint8_t>>
class Leb128Encoder {
static_assert(std::is_same<typename Vector::value_type, uint8_t>::value, "Invalid value type");
public:
explicit Leb128Encoder(Vector* data) : data_(data) {
DCHECK(data != nullptr);
}
void Reserve(uint32_t size) {
data_->reserve(size);
}
void PushBackUnsigned(uint32_t value) {
EncodeUnsignedLeb128(data_, value);
}
template<typename It>
void InsertBackUnsigned(It cur, It end) {
for (; cur != end; ++cur) {
PushBackUnsigned(*cur);
}
}
void PushBackSigned(int32_t value) {
EncodeSignedLeb128(data_, value);
}
template<typename It>
void InsertBackSigned(It cur, It end) {
for (; cur != end; ++cur) {
PushBackSigned(*cur);
}
}
const Vector& GetData() const {
return *data_;
}
protected:
Vector* const data_;
private:
DISALLOW_COPY_AND_ASSIGN(Leb128Encoder);
};
// An encoder with an API similar to vector<uint32_t> where the data is captured in ULEB128 format.
template <typename Vector = std::vector<uint8_t>>
class Leb128EncodingVector final : private Vector,
public Leb128Encoder<Vector> {
static_assert(std::is_same<typename Vector::value_type, uint8_t>::value, "Invalid value type");
public:
Leb128EncodingVector() : Leb128Encoder<Vector>(this) { }
explicit Leb128EncodingVector(const typename Vector::allocator_type& alloc)
: Vector(alloc),
Leb128Encoder<Vector>(this) { }
private:
DISALLOW_COPY_AND_ASSIGN(Leb128EncodingVector);
};
} // namespace art
#endif // ART_LIBARTBASE_BASE_LEB128_H_
|