1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_LIBDEXFILE_DEX_DEX_INSTRUCTION_H_
#define ART_LIBDEXFILE_DEX_DEX_INSTRUCTION_H_
#include <android-base/logging.h>
#include "base/globals.h"
#include "base/macros.h"
typedef uint8_t uint4_t;
typedef int8_t int4_t;
namespace art {
class DexFile;
enum {
kNumPackedOpcodes = 0x100
};
class Instruction {
public:
// NOP-encoded switch-statement signatures.
enum Signatures {
kPackedSwitchSignature = 0x0100,
kSparseSwitchSignature = 0x0200,
kArrayDataSignature = 0x0300,
};
struct PACKED(4) PackedSwitchPayload {
const uint16_t ident;
const uint16_t case_count;
const int32_t first_key;
const int32_t targets[];
private:
DISALLOW_COPY_AND_ASSIGN(PackedSwitchPayload);
};
struct PACKED(4) SparseSwitchPayload {
const uint16_t ident;
const uint16_t case_count;
const int32_t keys_and_targets[];
public:
const int32_t* GetKeys() const {
return keys_and_targets;
}
const int32_t* GetTargets() const {
return keys_and_targets + case_count;
}
private:
DISALLOW_COPY_AND_ASSIGN(SparseSwitchPayload);
};
struct PACKED(4) ArrayDataPayload {
const uint16_t ident;
const uint16_t element_width;
const uint32_t element_count;
const uint8_t data[];
private:
DISALLOW_COPY_AND_ASSIGN(ArrayDataPayload);
};
enum Code { // private marker to avoid generate-operator-out.py from processing.
#define INSTRUCTION_ENUM(opcode, cname, p, f, i, a, e, v) cname = (opcode),
#include "dex_instruction_list.h"
DEX_INSTRUCTION_LIST(INSTRUCTION_ENUM)
#undef DEX_INSTRUCTION_LIST
#undef INSTRUCTION_ENUM
RSUB_INT_LIT16 = RSUB_INT,
};
enum Format : uint8_t {
k10x, // op
k12x, // op vA, vB
k11n, // op vA, #+B
k11x, // op vAA
k10t, // op +AA
k20t, // op +AAAA
k22x, // op vAA, vBBBB
k21t, // op vAA, +BBBB
k21s, // op vAA, #+BBBB
k21h, // op vAA, #+BBBB00000[00000000]
k21c, // op vAA, thing@BBBB
k23x, // op vAA, vBB, vCC
k22b, // op vAA, vBB, #+CC
k22t, // op vA, vB, +CCCC
k22s, // op vA, vB, #+CCCC
k22c, // op vA, vB, thing@CCCC
k32x, // op vAAAA, vBBBB
k30t, // op +AAAAAAAA
k31t, // op vAA, +BBBBBBBB
k31i, // op vAA, #+BBBBBBBB
k31c, // op vAA, thing@BBBBBBBB
k35c, // op {vC, vD, vE, vF, vG}, thing@BBBB (B: count, A: vG)
k3rc, // op {vCCCC .. v(CCCC+AA-1)}, meth@BBBB
// op {vC, vD, vE, vF, vG}, meth@BBBB, proto@HHHH (A: count)
// format: AG op BBBB FEDC HHHH
k45cc,
// op {VCCCC .. v(CCCC+AA-1)}, meth@BBBB, proto@HHHH (AA: count)
// format: AA op BBBB CCCC HHHH
k4rcc, // op {VCCCC .. v(CCCC+AA-1)}, meth@BBBB, proto@HHHH (AA: count)
k51l, // op vAA, #+BBBBBBBBBBBBBBBB
kInvalidFormat,
};
enum IndexType : uint8_t {
kIndexUnknown = 0,
kIndexNone, // has no index
kIndexTypeRef, // type reference index
kIndexStringRef, // string reference index
kIndexMethodRef, // method reference index
kIndexFieldRef, // field reference index
kIndexFieldOffset, // field offset (for static linked fields)
kIndexVtableOffset, // vtable offset (for static linked methods)
kIndexMethodAndProtoRef, // method and a proto reference index (for invoke-polymorphic)
kIndexCallSiteRef, // call site reference index
kIndexMethodHandleRef, // constant method handle reference index
kIndexProtoRef, // prototype reference index
};
enum Flags : uint8_t {
kBranch = 0x01, // conditional or unconditional branch
kContinue = 0x02, // flow can continue to next statement
kSwitch = 0x04, // switch statement
kThrow = 0x08, // could cause an exception to be thrown
kReturn = 0x10, // returns, no additional statements
kInvoke = 0x20, // a flavor of invoke
kUnconditional = 0x40, // unconditional branch
kExperimental = 0x80, // is an experimental opcode
};
// Old flags. Keeping them around in case we might need them again some day.
enum ExtendedFlags : uint32_t {
kAdd = 0x0000080, // addition
kSubtract = 0x0000100, // subtract
kMultiply = 0x0000200, // multiply
kDivide = 0x0000400, // division
kRemainder = 0x0000800, // remainder
kAnd = 0x0001000, // and
kOr = 0x0002000, // or
kXor = 0x0004000, // xor
kShl = 0x0008000, // shl
kShr = 0x0010000, // shr
kUshr = 0x0020000, // ushr
kCast = 0x0040000, // cast
kStore = 0x0080000, // store opcode
kLoad = 0x0100000, // load opcode
kClobber = 0x0200000, // clobbers memory in a big way (not just a write)
kRegCFieldOrConstant = 0x0400000, // is the third virtual register a field or literal constant (vC)
kRegBFieldOrConstant = 0x0800000, // is the second virtual register a field or literal constant (vB)
};
enum VerifyFlag : uint32_t {
kVerifyNothing = 0x0000000,
kVerifyRegA = 0x0000001,
kVerifyRegAWide = 0x0000002,
kVerifyRegB = 0x0000004,
kVerifyRegBField = 0x0000008,
kVerifyRegBMethod = 0x0000010,
kVerifyRegBNewInstance = 0x0000020,
kVerifyRegBString = 0x0000040,
kVerifyRegBType = 0x0000080,
kVerifyRegBWide = 0x0000100,
kVerifyRegC = 0x0000200,
kVerifyRegCField = 0x0000400,
kVerifyRegCNewArray = 0x0000800,
kVerifyRegCType = 0x0001000,
kVerifyRegCWide = 0x0002000,
kVerifyArrayData = 0x0004000,
kVerifyBranchTarget = 0x0008000,
kVerifySwitchTargets = 0x0010000,
kVerifyVarArg = 0x0020000,
kVerifyVarArgNonZero = 0x0040000,
kVerifyVarArgRange = 0x0080000,
kVerifyVarArgRangeNonZero = 0x0100000,
kVerifyRuntimeOnly = 0x0200000,
kVerifyError = 0x0400000,
kVerifyRegHPrototype = 0x0800000,
kVerifyRegBCallSite = 0x1000000,
kVerifyRegBMethodHandle = 0x2000000,
kVerifyRegBPrototype = 0x4000000,
};
// Collect the enums in a struct for better locality.
struct InstructionDescriptor {
uint32_t verify_flags; // Set of VerifyFlag.
Format format;
IndexType index_type;
uint8_t flags; // Set of Flags.
int8_t size_in_code_units;
};
static constexpr uint32_t kMaxVarArgRegs = 5;
static constexpr bool kHaveExperimentalInstructions = false;
// Returns the size (in 2 byte code units) of this instruction.
size_t SizeInCodeUnits() const {
int8_t result = kInstructionDescriptors[Opcode()].size_in_code_units;
if (UNLIKELY(result < 0)) {
return SizeInCodeUnitsComplexOpcode();
} else {
return static_cast<size_t>(result);
}
}
// Returns the size (in 2 byte code units) of the given instruction format.
ALWAYS_INLINE static constexpr size_t SizeInCodeUnits(Format format);
// Code units required to calculate the size of the instruction.
size_t CodeUnitsRequiredForSizeComputation() const {
const int8_t result = kInstructionDescriptors[Opcode()].size_in_code_units;
return UNLIKELY(result < 0) ? CodeUnitsRequiredForSizeOfComplexOpcode() : 1;
}
// Reads an instruction out of the stream at the specified address.
static const Instruction* At(const uint16_t* code) {
DCHECK(code != nullptr);
return reinterpret_cast<const Instruction*>(code);
}
// Reads an instruction out of the stream from the current address plus an offset.
const Instruction* RelativeAt(int32_t offset) const WARN_UNUSED {
return At(reinterpret_cast<const uint16_t*>(this) + offset);
}
// Returns a pointer to the next instruction in the stream.
const Instruction* Next() const {
return RelativeAt(SizeInCodeUnits());
}
// Returns a pointer to the instruction after this 1xx instruction in the stream.
const Instruction* Next_1xx() const {
DCHECK(FormatOf(Opcode()) >= k10x && FormatOf(Opcode()) <= k10t);
return RelativeAt(1);
}
// Returns a pointer to the instruction after this 2xx instruction in the stream.
const Instruction* Next_2xx() const {
DCHECK(FormatOf(Opcode()) >= k20t && FormatOf(Opcode()) <= k22c);
return RelativeAt(2);
}
// Returns a pointer to the instruction after this 3xx instruction in the stream.
const Instruction* Next_3xx() const {
DCHECK(FormatOf(Opcode()) >= k32x && FormatOf(Opcode()) <= k3rc);
return RelativeAt(3);
}
// Returns a pointer to the instruction after this 4xx instruction in the stream.
const Instruction* Next_4xx() const {
DCHECK(FormatOf(Opcode()) >= k45cc && FormatOf(Opcode()) <= k4rcc);
return RelativeAt(4);
}
// Returns a pointer to the instruction after this 51l instruction in the stream.
const Instruction* Next_51l() const {
DCHECK(FormatOf(Opcode()) == k51l);
return RelativeAt(5);
}
// Returns the name of this instruction's opcode.
const char* Name() const {
return Instruction::Name(Opcode());
}
// Returns the name of the given opcode.
static const char* Name(Code opcode) {
return kInstructionNames[opcode];
}
// VRegA
bool HasVRegA() const;
ALWAYS_INLINE int32_t VRegA() const;
ALWAYS_INLINE int32_t VRegA(Format format, uint16_t inst_data) const;
int8_t VRegA_10t() const {
return VRegA_10t(Fetch16(0));
}
uint8_t VRegA_10x() const {
return VRegA_10x(Fetch16(0));
}
uint4_t VRegA_11n() const {
return VRegA_11n(Fetch16(0));
}
uint8_t VRegA_11x() const {
return VRegA_11x(Fetch16(0));
}
uint4_t VRegA_12x() const {
return VRegA_12x(Fetch16(0));
}
int16_t VRegA_20t() const;
uint8_t VRegA_21c() const {
return VRegA_21c(Fetch16(0));
}
uint8_t VRegA_21h() const {
return VRegA_21h(Fetch16(0));
}
uint8_t VRegA_21s() const {
return VRegA_21s(Fetch16(0));
}
uint8_t VRegA_21t() const {
return VRegA_21t(Fetch16(0));
}
uint8_t VRegA_22b() const {
return VRegA_22b(Fetch16(0));
}
uint4_t VRegA_22c() const {
return VRegA_22c(Fetch16(0));
}
uint4_t VRegA_22s() const {
return VRegA_22s(Fetch16(0));
}
uint4_t VRegA_22t() const {
return VRegA_22t(Fetch16(0));
}
uint8_t VRegA_22x() const {
return VRegA_22x(Fetch16(0));
}
uint8_t VRegA_23x() const {
return VRegA_23x(Fetch16(0));
}
int32_t VRegA_30t() const;
uint8_t VRegA_31c() const {
return VRegA_31c(Fetch16(0));
}
uint8_t VRegA_31i() const {
return VRegA_31i(Fetch16(0));
}
uint8_t VRegA_31t() const {
return VRegA_31t(Fetch16(0));
}
uint16_t VRegA_32x() const;
uint4_t VRegA_35c() const {
return VRegA_35c(Fetch16(0));
}
uint8_t VRegA_3rc() const {
return VRegA_3rc(Fetch16(0));
}
uint8_t VRegA_51l() const {
return VRegA_51l(Fetch16(0));
}
uint4_t VRegA_45cc() const {
return VRegA_45cc(Fetch16(0));
}
uint8_t VRegA_4rcc() const {
return VRegA_4rcc(Fetch16(0));
}
// The following methods return the vA operand for various instruction formats. The "inst_data"
// parameter holds the first 16 bits of instruction which the returned value is decoded from.
int8_t VRegA_10t(uint16_t inst_data) const;
uint8_t VRegA_10x(uint16_t inst_data) const;
uint4_t VRegA_11n(uint16_t inst_data) const;
uint8_t VRegA_11x(uint16_t inst_data) const;
uint4_t VRegA_12x(uint16_t inst_data) const;
uint8_t VRegA_21c(uint16_t inst_data) const;
uint8_t VRegA_21h(uint16_t inst_data) const;
uint8_t VRegA_21s(uint16_t inst_data) const;
uint8_t VRegA_21t(uint16_t inst_data) const;
uint8_t VRegA_22b(uint16_t inst_data) const;
uint4_t VRegA_22c(uint16_t inst_data) const;
uint4_t VRegA_22s(uint16_t inst_data) const;
uint4_t VRegA_22t(uint16_t inst_data) const;
uint8_t VRegA_22x(uint16_t inst_data) const;
uint8_t VRegA_23x(uint16_t inst_data) const;
uint8_t VRegA_31c(uint16_t inst_data) const;
uint8_t VRegA_31i(uint16_t inst_data) const;
uint8_t VRegA_31t(uint16_t inst_data) const;
uint4_t VRegA_35c(uint16_t inst_data) const;
uint8_t VRegA_3rc(uint16_t inst_data) const;
uint8_t VRegA_51l(uint16_t inst_data) const;
uint4_t VRegA_45cc(uint16_t inst_data) const;
uint8_t VRegA_4rcc(uint16_t inst_data) const;
// VRegB
bool HasVRegB() const;
ALWAYS_INLINE int32_t VRegB() const;
ALWAYS_INLINE int32_t VRegB(Format format, uint16_t inst_data) const;
bool HasWideVRegB() const;
uint64_t WideVRegB() const;
int4_t VRegB_11n() const {
return VRegB_11n(Fetch16(0));
}
uint4_t VRegB_12x() const {
return VRegB_12x(Fetch16(0));
}
uint16_t VRegB_21c() const;
uint16_t VRegB_21h() const;
int16_t VRegB_21s() const;
int16_t VRegB_21t() const;
uint8_t VRegB_22b() const;
uint4_t VRegB_22c() const {
return VRegB_22c(Fetch16(0));
}
uint4_t VRegB_22s() const {
return VRegB_22s(Fetch16(0));
}
uint4_t VRegB_22t() const {
return VRegB_22t(Fetch16(0));
}
uint16_t VRegB_22x() const;
uint8_t VRegB_23x() const;
uint32_t VRegB_31c() const;
int32_t VRegB_31i() const;
int32_t VRegB_31t() const;
uint16_t VRegB_32x() const;
uint16_t VRegB_35c() const;
uint16_t VRegB_3rc() const;
uint64_t VRegB_51l() const; // vB_wide
uint16_t VRegB_45cc() const;
uint16_t VRegB_4rcc() const;
// The following methods return the vB operand for all instruction formats where it is encoded in
// the first 16 bits of instruction. The "inst_data" parameter holds these 16 bits. The returned
// value is decoded from it.
int4_t VRegB_11n(uint16_t inst_data) const;
uint4_t VRegB_12x(uint16_t inst_data) const;
uint4_t VRegB_22c(uint16_t inst_data) const;
uint4_t VRegB_22s(uint16_t inst_data) const;
uint4_t VRegB_22t(uint16_t inst_data) const;
// VRegC
bool HasVRegC() const;
ALWAYS_INLINE int32_t VRegC() const;
ALWAYS_INLINE int32_t VRegC(Format format) const;
int8_t VRegC_22b() const;
uint16_t VRegC_22c() const;
int16_t VRegC_22s() const;
int16_t VRegC_22t() const;
uint8_t VRegC_23x() const;
uint4_t VRegC_35c() const;
uint16_t VRegC_3rc() const;
uint4_t VRegC_45cc() const;
uint16_t VRegC_4rcc() const;
// VRegH
bool HasVRegH() const;
int32_t VRegH() const;
uint16_t VRegH_45cc() const;
uint16_t VRegH_4rcc() const;
// Fills the given array with the 'arg' array of the instruction.
bool HasVarArgs() const;
uint32_t GetVarArgs(uint32_t args[kMaxVarArgRegs], uint16_t inst_data) const;
uint32_t GetVarArgs(uint32_t args[kMaxVarArgRegs]) const {
return GetVarArgs(args, Fetch16(0));
}
// Returns the opcode field of the instruction. The given "inst_data" parameter must be the first
// 16 bits of instruction.
Code Opcode(uint16_t inst_data) const {
DCHECK_EQ(inst_data, Fetch16(0));
return static_cast<Code>(inst_data & 0xFF);
}
// Returns the opcode field of the instruction from the first 16 bits of instruction.
Code Opcode() const {
return Opcode(Fetch16(0));
}
void SetOpcode(Code opcode) {
DCHECK_LT(static_cast<uint16_t>(opcode), 256u);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[0] = (insns[0] & 0xff00) | static_cast<uint16_t>(opcode);
}
void SetVRegA_10x(uint8_t val) {
DCHECK(FormatOf(Opcode()) == k10x);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[0] = (val << 8) | (insns[0] & 0x00ff);
}
void SetVRegB_3rc(uint16_t val) {
DCHECK(FormatOf(Opcode()) == k3rc);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[1] = val;
}
void SetVRegB_35c(uint16_t val) {
DCHECK(FormatOf(Opcode()) == k35c);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[1] = val;
}
void SetVRegC_22c(uint16_t val) {
DCHECK(FormatOf(Opcode()) == k22c);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[1] = val;
}
void SetVRegA_21c(uint8_t val) {
DCHECK(FormatOf(Opcode()) == k21c);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[0] = (val << 8) | (insns[0] & 0x00ff);
}
void SetVRegB_21c(uint16_t val) {
DCHECK(FormatOf(Opcode()) == k21c);
uint16_t* insns = reinterpret_cast<uint16_t*>(this);
insns[1] = val;
}
// Returns the format of the given opcode.
static Format FormatOf(Code opcode) {
return kInstructionDescriptors[opcode].format;
}
// Returns the index type of the given opcode.
static IndexType IndexTypeOf(Code opcode) {
return kInstructionDescriptors[opcode].index_type;
}
// Returns the flags for the given opcode.
static uint8_t FlagsOf(Code opcode) {
return kInstructionDescriptors[opcode].flags;
}
// Return the verify flags for the given opcode.
static uint32_t VerifyFlagsOf(Code opcode) {
return kInstructionDescriptors[opcode].verify_flags;
}
// Returns true if this instruction is a branch.
bool IsBranch() const {
return (kInstructionDescriptors[Opcode()].flags & kBranch) != 0;
}
// Returns true if this instruction is a unconditional branch.
bool IsUnconditional() const {
return (kInstructionDescriptors[Opcode()].flags & kUnconditional) != 0;
}
// Returns the branch offset if this instruction is a branch.
int32_t GetTargetOffset() const;
// Returns true if the instruction allows control flow to go to the following instruction.
bool CanFlowThrough() const;
// Returns true if the instruction is a quickened instruction.
bool IsQuickened() const {
return (kInstructionDescriptors[Opcode()].index_type == kIndexFieldOffset) ||
(kInstructionDescriptors[Opcode()].index_type == kIndexVtableOffset);
}
// Returns true if this instruction is a switch.
bool IsSwitch() const {
return (kInstructionDescriptors[Opcode()].flags & kSwitch) != 0;
}
// Returns true if this instruction can throw.
bool IsThrow() const {
return (kInstructionDescriptors[Opcode()].flags & kThrow) != 0;
}
// Determine if the instruction is any of 'return' instructions.
bool IsReturn() const {
return (kInstructionDescriptors[Opcode()].flags & kReturn) != 0;
}
// Determine if this instruction ends execution of its basic block.
bool IsBasicBlockEnd() const {
return IsBranch() || IsReturn() || Opcode() == THROW;
}
// Determine if this instruction is an invoke.
bool IsInvoke() const {
return (kInstructionDescriptors[Opcode()].flags & kInvoke) != 0;
}
// Determine if this instruction is experimental.
bool IsExperimental() const {
return (kInstructionDescriptors[Opcode()].flags & kExperimental) != 0;
}
int GetVerifyTypeArgumentA() const {
return (kInstructionDescriptors[Opcode()].verify_flags & (kVerifyRegA | kVerifyRegAWide));
}
int GetVerifyTypeArgumentB() const {
return (kInstructionDescriptors[Opcode()].verify_flags & (kVerifyRegB | kVerifyRegBField |
kVerifyRegBMethod | kVerifyRegBNewInstance | kVerifyRegBString | kVerifyRegBType |
kVerifyRegBWide));
}
int GetVerifyTypeArgumentC() const {
return (kInstructionDescriptors[Opcode()].verify_flags & (kVerifyRegC | kVerifyRegCField |
kVerifyRegCNewArray | kVerifyRegCType | kVerifyRegCWide));
}
int GetVerifyTypeArgumentH() const {
return (kInstructionDescriptors[Opcode()].verify_flags & kVerifyRegHPrototype);
}
int GetVerifyExtraFlags() const {
return (kInstructionDescriptors[Opcode()].verify_flags & (kVerifyArrayData |
kVerifyBranchTarget | kVerifySwitchTargets | kVerifyVarArg | kVerifyVarArgNonZero |
kVerifyVarArgRange | kVerifyVarArgRangeNonZero | kVerifyError));
}
bool GetVerifyIsRuntimeOnly() const {
return (kInstructionDescriptors[Opcode()].verify_flags & kVerifyRuntimeOnly) != 0;
}
// Get the dex PC of this instruction as a offset in code units from the beginning of insns.
uint32_t GetDexPc(const uint16_t* insns) const {
return (reinterpret_cast<const uint16_t*>(this) - insns);
}
// Dump decoded version of instruction
std::string DumpString(const DexFile*) const;
// Dump code_units worth of this instruction, padding to code_units for shorter instructions
std::string DumpHex(size_t code_units) const;
// Little-endian dump code_units worth of this instruction, padding to code_units for
// shorter instructions
std::string DumpHexLE(size_t instr_code_units) const;
uint16_t Fetch16(size_t offset) const {
const uint16_t* insns = reinterpret_cast<const uint16_t*>(this);
return insns[offset];
}
private:
size_t SizeInCodeUnitsComplexOpcode() const;
// Return how many code unit words are required to compute the size of the opcode.
size_t CodeUnitsRequiredForSizeOfComplexOpcode() const;
uint32_t Fetch32(size_t offset) const {
return (Fetch16(offset) | ((uint32_t) Fetch16(offset + 1) << 16));
}
uint4_t InstA() const {
return InstA(Fetch16(0));
}
uint4_t InstB() const {
return InstB(Fetch16(0));
}
uint8_t InstAA() const {
return InstAA(Fetch16(0));
}
uint4_t InstA(uint16_t inst_data) const {
DCHECK_EQ(inst_data, Fetch16(0));
return static_cast<uint4_t>((inst_data >> 8) & 0x0f);
}
uint4_t InstB(uint16_t inst_data) const {
DCHECK_EQ(inst_data, Fetch16(0));
return static_cast<uint4_t>(inst_data >> 12);
}
uint8_t InstAA(uint16_t inst_data) const {
DCHECK_EQ(inst_data, Fetch16(0));
return static_cast<uint8_t>(inst_data >> 8);
}
static const char* const kInstructionNames[];
static const InstructionDescriptor kInstructionDescriptors[];
DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
};
std::ostream& operator<<(std::ostream& os, const Instruction::Code& code);
std::ostream& operator<<(std::ostream& os, const Instruction::Format& format);
std::ostream& operator<<(std::ostream& os, const Instruction::Flags& flags);
std::ostream& operator<<(std::ostream& os, const Instruction::VerifyFlag& vflags);
// Base class for accessing instruction operands. Unifies operand
// access for instructions that have range and varargs forms
// (e.g. invoke-polymoprhic/range and invoke-polymorphic).
class InstructionOperands {
public:
explicit InstructionOperands(size_t num_operands) : num_operands_(num_operands) {}
virtual ~InstructionOperands() {}
virtual uint32_t GetOperand(size_t index) const = 0;
size_t GetNumberOfOperands() const { return num_operands_; }
private:
const size_t num_operands_;
DISALLOW_IMPLICIT_CONSTRUCTORS(InstructionOperands);
};
// Class for accessing operands for instructions with a range format
// (e.g. 3rc and 4rcc).
class RangeInstructionOperands final : public InstructionOperands {
public:
RangeInstructionOperands(uint32_t first_operand, size_t num_operands)
: InstructionOperands(num_operands), first_operand_(first_operand) {}
~RangeInstructionOperands() {}
uint32_t GetOperand(size_t operand_index) const override;
private:
const uint32_t first_operand_;
DISALLOW_IMPLICIT_CONSTRUCTORS(RangeInstructionOperands);
};
// Class for accessing operands for instructions with a variable
// number of arguments format (e.g. 35c and 45cc).
class VarArgsInstructionOperands final : public InstructionOperands {
public:
VarArgsInstructionOperands(const uint32_t (&operands)[Instruction::kMaxVarArgRegs],
size_t num_operands)
: InstructionOperands(num_operands), operands_(operands) {}
~VarArgsInstructionOperands() {}
uint32_t GetOperand(size_t operand_index) const override;
private:
const uint32_t (&operands_)[Instruction::kMaxVarArgRegs];
DISALLOW_IMPLICIT_CONSTRUCTORS(VarArgsInstructionOperands);
};
// Class for accessing operands without the receiver by wrapping an
// existing InstructionOperands instance.
class NoReceiverInstructionOperands final : public InstructionOperands {
public:
explicit NoReceiverInstructionOperands(const InstructionOperands* const inner)
: InstructionOperands(inner->GetNumberOfOperands() - 1), inner_(inner) {}
~NoReceiverInstructionOperands() {}
uint32_t GetOperand(size_t operand_index) const override;
private:
const InstructionOperands* const inner_;
DISALLOW_IMPLICIT_CONSTRUCTORS(NoReceiverInstructionOperands);
};
} // namespace art
#endif // ART_LIBDEXFILE_DEX_DEX_INSTRUCTION_H_
|