File: fault_handler_x86.cc

package info (click to toggle)
android-platform-art 11.0.0%2Br48-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 78,932 kB
  • sloc: cpp: 459,858; java: 163,268; asm: 22,644; python: 9,815; sh: 6,330; ansic: 4,117; xml: 2,855; perl: 77; makefile: 73
file content (475 lines) | stat: -rw-r--r-- 14,665 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "fault_handler.h"

#include <sys/ucontext.h>

#include "arch/instruction_set.h"
#include "art_method.h"
#include "base/enums.h"
#include "base/hex_dump.h"
#include "base/logging.h"  // For VLOG.
#include "base/macros.h"
#include "base/safe_copy.h"
#include "runtime_globals.h"
#include "thread-current-inl.h"

#if defined(__APPLE__)
#define ucontext __darwin_ucontext

#if defined(__x86_64__)
// 64 bit mac build.
#define CTX_ESP uc_mcontext->__ss.__rsp
#define CTX_EIP uc_mcontext->__ss.__rip
#define CTX_EAX uc_mcontext->__ss.__rax
#define CTX_METHOD uc_mcontext->__ss.__rdi
#define CTX_RDI uc_mcontext->__ss.__rdi
#define CTX_JMP_BUF uc_mcontext->__ss.__rdi
#else
// 32 bit mac build.
#define CTX_ESP uc_mcontext->__ss.__esp
#define CTX_EIP uc_mcontext->__ss.__eip
#define CTX_EAX uc_mcontext->__ss.__eax
#define CTX_METHOD uc_mcontext->__ss.__eax
#define CTX_JMP_BUF uc_mcontext->__ss.__eax
#endif

#elif defined(__x86_64__)
// 64 bit linux build.
#define CTX_ESP uc_mcontext.gregs[REG_RSP]
#define CTX_EIP uc_mcontext.gregs[REG_RIP]
#define CTX_EAX uc_mcontext.gregs[REG_RAX]
#define CTX_METHOD uc_mcontext.gregs[REG_RDI]
#define CTX_RDI uc_mcontext.gregs[REG_RDI]
#define CTX_JMP_BUF uc_mcontext.gregs[REG_RDI]
#else
// 32 bit linux build.
#define CTX_ESP uc_mcontext.gregs[REG_ESP]
#define CTX_EIP uc_mcontext.gregs[REG_EIP]
#define CTX_EAX uc_mcontext.gregs[REG_EAX]
#define CTX_METHOD uc_mcontext.gregs[REG_EAX]
#define CTX_JMP_BUF uc_mcontext.gregs[REG_EAX]
#endif

//
// X86 (and X86_64) specific fault handler functions.
//

namespace art {

extern "C" void art_quick_throw_null_pointer_exception_from_signal();
extern "C" void art_quick_throw_stack_overflow();
extern "C" void art_quick_test_suspend();

// Get the size of an instruction in bytes.
// Return 0 if the instruction is not handled.
static uint32_t GetInstructionSize(const uint8_t* pc) {
  // Don't segfault if pc points to garbage.
  char buf[15];  // x86/x86-64 have a maximum instruction length of 15 bytes.
  ssize_t bytes = SafeCopy(buf, pc, sizeof(buf));

  if (bytes == 0) {
    // Nothing was readable.
    return 0;
  }

  if (bytes == -1) {
    // SafeCopy not supported, assume that the entire range is readable.
    bytes = 16;
  } else {
    pc = reinterpret_cast<uint8_t*>(buf);
  }

#define INCREMENT_PC()          \
  do {                          \
    pc++;                       \
    if (pc - startpc > bytes) { \
      return 0;                 \
    }                           \
  } while (0)

#if defined(__x86_64)
  const bool x86_64 = true;
#else
  const bool x86_64 = false;
#endif

  const uint8_t* startpc = pc;

  uint8_t opcode = *pc;
  INCREMENT_PC();
  uint8_t modrm;
  bool has_modrm = false;
  bool two_byte = false;
  uint32_t displacement_size = 0;
  uint32_t immediate_size = 0;
  bool operand_size_prefix = false;

  // Prefixes.
  while (true) {
    bool prefix_present = false;
    switch (opcode) {
      // Group 3
      case 0x66:
        operand_size_prefix = true;
        FALLTHROUGH_INTENDED;

      // Group 1
      case 0xf0:
      case 0xf2:
      case 0xf3:

      // Group 2
      case 0x2e:
      case 0x36:
      case 0x3e:
      case 0x26:
      case 0x64:
      case 0x65:

      // Group 4
      case 0x67:
        opcode = *pc;
        INCREMENT_PC();
        prefix_present = true;
        break;
    }
    if (!prefix_present) {
      break;
    }
  }

  if (x86_64 && opcode >= 0x40 && opcode <= 0x4f) {
    opcode = *pc;
    INCREMENT_PC();
  }

  if (opcode == 0x0f) {
    // Two byte opcode
    two_byte = true;
    opcode = *pc;
    INCREMENT_PC();
  }

  bool unhandled_instruction = false;

  if (two_byte) {
    switch (opcode) {
      case 0x10:        // vmovsd/ss
      case 0x11:        // vmovsd/ss
      case 0xb6:        // movzx
      case 0xb7:
      case 0xbe:        // movsx
      case 0xbf:
        modrm = *pc;
        INCREMENT_PC();
        has_modrm = true;
        break;
      default:
        unhandled_instruction = true;
        break;
    }
  } else {
    switch (opcode) {
      case 0x88:        // mov byte
      case 0x89:        // mov
      case 0x8b:
      case 0x38:        // cmp with memory.
      case 0x39:
      case 0x3a:
      case 0x3b:
      case 0x3c:
      case 0x3d:
      case 0x85:        // test.
        modrm = *pc;
        INCREMENT_PC();
        has_modrm = true;
        break;

      case 0x80:        // group 1, byte immediate.
      case 0x83:
      case 0xc6:
        modrm = *pc;
        INCREMENT_PC();
        has_modrm = true;
        immediate_size = 1;
        break;

      case 0x81:        // group 1, word immediate.
      case 0xc7:        // mov
        modrm = *pc;
        INCREMENT_PC();
        has_modrm = true;
        immediate_size = operand_size_prefix ? 2 : 4;
        break;

      case 0xf6:
      case 0xf7:
        modrm = *pc;
        INCREMENT_PC();
        has_modrm = true;
        switch ((modrm >> 3) & 7) {  // Extract "reg/opcode" from "modr/m".
          case 0:  // test
            immediate_size = (opcode == 0xf6) ? 1 : (operand_size_prefix ? 2 : 4);
            break;
          case 2:  // not
          case 3:  // neg
          case 4:  // mul
          case 5:  // imul
          case 6:  // div
          case 7:  // idiv
            break;
          default:
            unhandled_instruction = true;
            break;
        }
        break;

      default:
        unhandled_instruction = true;
        break;
    }
  }

  if (unhandled_instruction) {
    VLOG(signals) << "Unhandled x86 instruction with opcode " << static_cast<int>(opcode);
    return 0;
  }

  if (has_modrm) {
    uint8_t mod = (modrm >> 6) & 3U /* 0b11 */;

    // Check for SIB.
    if (mod != 3U /* 0b11 */ && (modrm & 7U /* 0b111 */) == 4) {
      INCREMENT_PC();     // SIB
    }

    switch (mod) {
      case 0U /* 0b00 */: break;
      case 1U /* 0b01 */: displacement_size = 1; break;
      case 2U /* 0b10 */: displacement_size = 4; break;
      case 3U /* 0b11 */:
        break;
    }
  }

  // Skip displacement and immediate.
  pc += displacement_size + immediate_size;

  VLOG(signals) << "x86 instruction length calculated as " << (pc - startpc);
  if (pc - startpc > bytes) {
    return 0;
  }
  return pc - startpc;
}

void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo, void* context,
                                             ArtMethod** out_method,
                                             uintptr_t* out_return_pc,
                                             uintptr_t* out_sp,
                                             bool* out_is_stack_overflow) {
  struct ucontext_t* uc = reinterpret_cast<struct ucontext_t*>(context);
  *out_sp = static_cast<uintptr_t>(uc->CTX_ESP);
  VLOG(signals) << "sp: " << std::hex << *out_sp;
  if (*out_sp == 0) {
    return;
  }

  // In the case of a stack overflow, the stack is not valid and we can't
  // get the method from the top of the stack.  However it's in EAX(x86)/RDI(x86_64).
  uintptr_t* fault_addr = reinterpret_cast<uintptr_t*>(siginfo->si_addr);
  uintptr_t* overflow_addr = reinterpret_cast<uintptr_t*>(
#if defined(__x86_64__)
      reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(InstructionSet::kX86_64));
#else
      reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(InstructionSet::kX86));
#endif
  if (overflow_addr == fault_addr) {
    *out_method = reinterpret_cast<ArtMethod*>(uc->CTX_METHOD);
    *out_is_stack_overflow = true;
  } else {
    // The method is at the top of the stack.
    *out_method = *reinterpret_cast<ArtMethod**>(*out_sp);
    *out_is_stack_overflow = false;
  }

  uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
  VLOG(signals) << HexDump(pc, 32, true, "PC ");

  if (pc == nullptr) {
    // Somebody jumped to 0x0. Definitely not ours, and will definitely segfault below.
    *out_method = nullptr;
    return;
  }

  uint32_t instr_size = GetInstructionSize(pc);
  if (instr_size == 0) {
    // Unknown instruction, tell caller it's not ours.
    *out_method = nullptr;
    return;
  }
  *out_return_pc = reinterpret_cast<uintptr_t>(pc + instr_size);
}

bool NullPointerHandler::Action(int, siginfo_t* sig, void* context) {
  if (!IsValidImplicitCheck(sig)) {
    return false;
  }
  struct ucontext_t *uc = reinterpret_cast<struct ucontext_t*>(context);
  uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
  uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP);

  uint32_t instr_size = GetInstructionSize(pc);
  if (instr_size == 0) {
    // Unknown instruction, can't really happen.
    return false;
  }

  // We need to arrange for the signal handler to return to the null pointer
  // exception generator.  The return address must be the address of the
  // next instruction (this instruction + instruction size).  The return address
  // is on the stack at the top address of the current frame.

  // Push the return address and fault address onto the stack.
  uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + instr_size);
  uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - 2 * sizeof(uintptr_t));
  next_sp[1] = retaddr;
  next_sp[0] = reinterpret_cast<uintptr_t>(sig->si_addr);
  uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);

  uc->CTX_EIP = reinterpret_cast<uintptr_t>(
      art_quick_throw_null_pointer_exception_from_signal);
  VLOG(signals) << "Generating null pointer exception";
  return true;
}

// A suspend check is done using the following instruction sequence:
// (x86)
// 0xf720f1df:         648B058C000000      mov     eax, fs:[0x8c]  ; suspend_trigger
// .. some intervening instructions.
// 0xf720f1e6:                   8500      test    eax, [eax]
// (x86_64)
// 0x7f579de45d9e: 65488B0425A8000000      movq    rax, gs:[0xa8]  ; suspend_trigger
// .. some intervening instructions.
// 0x7f579de45da7:               8500      test    eax, [eax]

// The offset from fs is Thread::ThreadSuspendTriggerOffset().
// To check for a suspend check, we examine the instructions that caused
// the fault.
bool SuspensionHandler::Action(int, siginfo_t*, void* context) {
  // These are the instructions to check for.  The first one is the mov eax, fs:[xxx]
  // where xxx is the offset of the suspend trigger.
  uint32_t trigger = Thread::ThreadSuspendTriggerOffset<kRuntimePointerSize>().Int32Value();

  VLOG(signals) << "Checking for suspension point";
#if defined(__x86_64__)
  uint8_t checkinst1[] = {0x65, 0x48, 0x8b, 0x04, 0x25, static_cast<uint8_t>(trigger & 0xff),
      static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
#else
  uint8_t checkinst1[] = {0x64, 0x8b, 0x05, static_cast<uint8_t>(trigger & 0xff),
      static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
#endif
  uint8_t checkinst2[] = {0x85, 0x00};

  struct ucontext_t *uc = reinterpret_cast<struct ucontext_t*>(context);
  uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
  uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP);

  if (pc[0] != checkinst2[0] || pc[1] != checkinst2[1]) {
    // Second instruction is not correct (test eax,[eax]).
    VLOG(signals) << "Not a suspension point";
    return false;
  }

  // The first instruction can a little bit up the stream due to load hoisting
  // in the compiler.
  uint8_t* limit = pc - 100;   // Compiler will hoist to a max of 20 instructions.
  uint8_t* ptr = pc - sizeof(checkinst1);
  bool found = false;
  while (ptr > limit) {
    if (memcmp(ptr, checkinst1, sizeof(checkinst1)) == 0) {
      found = true;
      break;
    }
    ptr -= 1;
  }

  if (found) {
    VLOG(signals) << "suspend check match";

    // We need to arrange for the signal handler to return to the null pointer
    // exception generator.  The return address must be the address of the
    // next instruction (this instruction + 2).  The return address
    // is on the stack at the top address of the current frame.

    // Push the return address onto the stack.
    uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + 2);
    uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - sizeof(uintptr_t));
    *next_sp = retaddr;
    uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);

    uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_quick_test_suspend);

    // Now remove the suspend trigger that caused this fault.
    Thread::Current()->RemoveSuspendTrigger();
    VLOG(signals) << "removed suspend trigger invoking test suspend";
    return true;
  }
  VLOG(signals) << "Not a suspend check match, first instruction mismatch";
  return false;
}

// The stack overflow check is done using the following instruction:
// test eax, [esp+ -xxx]
// where 'xxx' is the size of the overflow area.
//
// This is done before any frame is established in the method.  The return
// address for the previous method is on the stack at ESP.

bool StackOverflowHandler::Action(int, siginfo_t* info, void* context) {
  struct ucontext_t *uc = reinterpret_cast<struct ucontext_t*>(context);
  uintptr_t sp = static_cast<uintptr_t>(uc->CTX_ESP);

  uintptr_t fault_addr = reinterpret_cast<uintptr_t>(info->si_addr);
  VLOG(signals) << "fault_addr: " << std::hex << fault_addr;
  VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp <<
    ", fault_addr: " << fault_addr;

#if defined(__x86_64__)
  uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kX86_64);
#else
  uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kX86);
#endif

  // Check that the fault address is the value expected for a stack overflow.
  if (fault_addr != overflow_addr) {
    VLOG(signals) << "Not a stack overflow";
    return false;
  }

  VLOG(signals) << "Stack overflow found";

  // Since the compiler puts the implicit overflow
  // check before the callee save instructions, the SP is already pointing to
  // the previous frame.

  // Now arrange for the signal handler to return to art_quick_throw_stack_overflow.
  uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_quick_throw_stack_overflow);

  return true;
}
}       // namespace art