File: mutex.h

package info (click to toggle)
android-platform-art 11.0.0%2Br48-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 78,932 kB
  • sloc: cpp: 459,858; java: 163,268; asm: 22,644; python: 9,815; sh: 6,330; ansic: 4,117; xml: 2,855; perl: 77; makefile: 73
file content (539 lines) | stat: -rw-r--r-- 20,183 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_BASE_MUTEX_H_
#define ART_RUNTIME_BASE_MUTEX_H_

#include <limits.h>  // for INT_MAX
#include <pthread.h>
#include <stdint.h>
#include <unistd.h>  // for pid_t

#include <iosfwd>
#include <string>

#include <android-base/logging.h>

#include "base/aborting.h"
#include "base/atomic.h"
#include "runtime_globals.h"
#include "base/macros.h"
#include "locks.h"

#if defined(__linux__)
#define ART_USE_FUTEXES 1
#else
#define ART_USE_FUTEXES 0
#endif

// Currently Darwin doesn't support locks with timeouts.
#if !defined(__APPLE__)
#define HAVE_TIMED_RWLOCK 1
#else
#define HAVE_TIMED_RWLOCK 0
#endif

namespace art {

class SHARED_LOCKABLE ReaderWriterMutex;
class SHARED_LOCKABLE MutatorMutex;
class ScopedContentionRecorder;
class Thread;
class LOCKABLE Mutex;

constexpr bool kDebugLocking = kIsDebugBuild;

// Record Log contention information, dumpable via SIGQUIT.
#if ART_USE_FUTEXES
// To enable lock contention logging, set this to true.
constexpr bool kLogLockContentions = false;
// FUTEX_WAKE first argument:
constexpr int kWakeOne = 1;
constexpr int kWakeAll = INT_MAX;
#else
// Keep this false as lock contention logging is supported only with
// futex.
constexpr bool kLogLockContentions = false;
#endif
constexpr size_t kContentionLogSize = 4;
constexpr size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0;
constexpr size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0;

// Base class for all Mutex implementations
class BaseMutex {
 public:
  const char* GetName() const {
    return name_;
  }

  virtual bool IsMutex() const { return false; }
  virtual bool IsReaderWriterMutex() const { return false; }
  virtual bool IsMutatorMutex() const { return false; }

  virtual void Dump(std::ostream& os) const = 0;

  static void DumpAll(std::ostream& os);

  bool ShouldRespondToEmptyCheckpointRequest() const {
    return should_respond_to_empty_checkpoint_request_;
  }

  void SetShouldRespondToEmptyCheckpointRequest(bool value) {
    should_respond_to_empty_checkpoint_request_ = value;
  }

  virtual void WakeupToRespondToEmptyCheckpoint() = 0;

 protected:
  friend class ConditionVariable;

  BaseMutex(const char* name, LockLevel level);
  virtual ~BaseMutex();

  // Add this mutex to those owned by self, and perform appropriate checking.
  // For this call only, self may also be another suspended thread.
  void RegisterAsLocked(Thread* self);

  void RegisterAsUnlocked(Thread* self);
  void CheckSafeToWait(Thread* self);

  friend class ScopedContentionRecorder;

  void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked);
  void DumpContention(std::ostream& os) const;

  const char* const name_;

  // A log entry that records contention but makes no guarantee that either tid will be held live.
  struct ContentionLogEntry {
    ContentionLogEntry() : blocked_tid(0), owner_tid(0) {}
    uint64_t blocked_tid;
    uint64_t owner_tid;
    AtomicInteger count;
  };
  struct ContentionLogData {
    ContentionLogEntry contention_log[kContentionLogSize];
    // The next entry in the contention log to be updated. Value ranges from 0 to
    // kContentionLogSize - 1.
    AtomicInteger cur_content_log_entry;
    // Number of times the Mutex has been contended.
    AtomicInteger contention_count;
    // Sum of time waited by all contenders in ns.
    Atomic<uint64_t> wait_time;
    void AddToWaitTime(uint64_t value);
    ContentionLogData() : wait_time(0) {}
  };
  ContentionLogData contention_log_data_[kContentionLogDataSize];

  const LockLevel level_;  // Support for lock hierarchy.
  bool should_respond_to_empty_checkpoint_request_;

 public:
  bool HasEverContended() const {
    if (kLogLockContentions) {
      return contention_log_data_->contention_count.load(std::memory_order_seq_cst) > 0;
    }
    return false;
  }
};

// A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain
// exclusive access to what it guards. A Mutex can be in one of two states:
// - Free - not owned by any thread,
// - Exclusive - owned by a single thread.
//
// The effect of locking and unlocking operations on the state is:
// State     | ExclusiveLock | ExclusiveUnlock
// -------------------------------------------
// Free      | Exclusive     | error
// Exclusive | Block*        | Free
// * Mutex is not reentrant unless recursive is true. An attempt to ExclusiveLock on a
// recursive=false Mutex on a thread already owning the Mutex results in an error.
//
// TODO(b/140590186): Remove support for recursive == true.
//
// Some mutexes, including those associated with Java monitors may be accessed (in particular
// acquired) by a thread in suspended state. Suspending all threads does NOT prevent mutex state
// from changing.
std::ostream& operator<<(std::ostream& os, const Mutex& mu);
class LOCKABLE Mutex : public BaseMutex {
 public:
  explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false);
  ~Mutex();

  bool IsMutex() const override { return true; }

  // Block until mutex is free then acquire exclusive access.
  void ExclusiveLock(Thread* self) ACQUIRE();
  void Lock(Thread* self) ACQUIRE() {  ExclusiveLock(self); }

  // Returns true if acquires exclusive access, false otherwise.
  bool ExclusiveTryLock(Thread* self) TRY_ACQUIRE(true);
  bool TryLock(Thread* self) TRY_ACQUIRE(true) { return ExclusiveTryLock(self); }
  // Equivalent to ExclusiveTryLock, but retry for a short period before giving up.
  bool ExclusiveTryLockWithSpinning(Thread* self) TRY_ACQUIRE(true);

  // Release exclusive access.
  void ExclusiveUnlock(Thread* self) RELEASE();
  void Unlock(Thread* self) RELEASE() {  ExclusiveUnlock(self); }

  // Is the current thread the exclusive holder of the Mutex.
  ALWAYS_INLINE bool IsExclusiveHeld(const Thread* self) const;

  // Assert that the Mutex is exclusively held by the current thread.
  ALWAYS_INLINE void AssertExclusiveHeld(const Thread* self) const ASSERT_CAPABILITY(this);
  ALWAYS_INLINE void AssertHeld(const Thread* self) const ASSERT_CAPABILITY(this);

  // Assert that the Mutex is not held by the current thread.
  void AssertNotHeldExclusive(const Thread* self) ASSERT_CAPABILITY(!*this) {
    if (kDebugLocking && (gAborting == 0)) {
      CHECK(!IsExclusiveHeld(self)) << *this;
    }
  }
  void AssertNotHeld(const Thread* self) ASSERT_CAPABILITY(!*this) {
    AssertNotHeldExclusive(self);
  }

  // Id associated with exclusive owner. No memory ordering semantics if called from a thread
  // other than the owner. GetTid() == GetExclusiveOwnerTid() is a reliable way to determine
  // whether we hold the lock; any other information may be invalidated before we return.
  pid_t GetExclusiveOwnerTid() const;

  // Returns how many times this Mutex has been locked, it is typically better to use
  // AssertHeld/NotHeld. For a simply held mutex this method returns 1. Should only be called
  // while holding the mutex or threads are suspended.
  unsigned int GetDepth() const {
    return recursion_count_;
  }

  void Dump(std::ostream& os) const override;

  // For negative capabilities in clang annotations.
  const Mutex& operator!() const { return *this; }

  void WakeupToRespondToEmptyCheckpoint() override;

#if ART_USE_FUTEXES
  // Acquire the mutex, possibly on behalf of another thread. Acquisition must be
  // uncontended. New_owner must be current thread or suspended.
  // Mutex must be at level kMonitorLock.
  // Not implementable for the pthreads version, so we must avoid calling it there.
  void ExclusiveLockUncontendedFor(Thread* new_owner);

  // Undo the effect of the previous calling, setting the mutex back to unheld.
  // Still assumes no concurrent access.
  void ExclusiveUnlockUncontended();
#endif  // ART_USE_FUTEXES

 private:
#if ART_USE_FUTEXES
  // Low order bit: 0 is unheld, 1 is held.
  // High order bits: Number of waiting contenders.
  AtomicInteger state_and_contenders_;

  static constexpr int32_t kHeldMask = 1;

  static constexpr int32_t kContenderShift = 1;

  static constexpr int32_t kContenderIncrement = 1 << kContenderShift;

  void increment_contenders() {
    state_and_contenders_.fetch_add(kContenderIncrement);
  }

  void decrement_contenders() {
    state_and_contenders_.fetch_sub(kContenderIncrement);
  }

  int32_t get_contenders() {
    // Result is guaranteed to include any contention added by this thread; otherwise approximate.
    // Treat contenders as unsigned because we're paranoid about overflow; should never matter.
    return static_cast<uint32_t>(state_and_contenders_.load(std::memory_order_relaxed))
        >> kContenderShift;
  }

  // Exclusive owner.
  Atomic<pid_t> exclusive_owner_;
#else
  pthread_mutex_t mutex_;
  Atomic<pid_t> exclusive_owner_;  // Guarded by mutex_. Asynchronous reads are OK.
#endif

  unsigned int recursion_count_;
  const bool recursive_;  // Can the lock be recursively held?

  friend class ConditionVariable;
  DISALLOW_COPY_AND_ASSIGN(Mutex);
};

// A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex.
// Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader)
// access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a
// condition variable. A ReaderWriterMutex can be in one of three states:
// - Free - not owned by any thread,
// - Exclusive - owned by a single thread,
// - Shared(n) - shared amongst n threads.
//
// The effect of locking and unlocking operations on the state is:
//
// State     | ExclusiveLock | ExclusiveUnlock | SharedLock       | SharedUnlock
// ----------------------------------------------------------------------------
// Free      | Exclusive     | error           | SharedLock(1)    | error
// Exclusive | Block         | Free            | Block            | error
// Shared(n) | Block         | error           | SharedLock(n+1)* | Shared(n-1) or Free
// * for large values of n the SharedLock may block.
std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu);
class SHARED_LOCKABLE ReaderWriterMutex : public BaseMutex {
 public:
  explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel);
  ~ReaderWriterMutex();

  bool IsReaderWriterMutex() const override { return true; }

  // Block until ReaderWriterMutex is free then acquire exclusive access.
  void ExclusiveLock(Thread* self) ACQUIRE();
  void WriterLock(Thread* self) ACQUIRE() {  ExclusiveLock(self); }

  // Release exclusive access.
  void ExclusiveUnlock(Thread* self) RELEASE();
  void WriterUnlock(Thread* self) RELEASE() {  ExclusiveUnlock(self); }

  // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success
  // or false if timeout is reached.
#if HAVE_TIMED_RWLOCK
  bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns)
      EXCLUSIVE_TRYLOCK_FUNCTION(true);
#endif

  // Block until ReaderWriterMutex is shared or free then acquire a share on the access.
  void SharedLock(Thread* self) ACQUIRE_SHARED() ALWAYS_INLINE;
  void ReaderLock(Thread* self) ACQUIRE_SHARED() { SharedLock(self); }

  // Try to acquire share of ReaderWriterMutex.
  bool SharedTryLock(Thread* self) SHARED_TRYLOCK_FUNCTION(true);

  // Release a share of the access.
  void SharedUnlock(Thread* self) RELEASE_SHARED() ALWAYS_INLINE;
  void ReaderUnlock(Thread* self) RELEASE_SHARED() { SharedUnlock(self); }

  // Is the current thread the exclusive holder of the ReaderWriterMutex.
  ALWAYS_INLINE bool IsExclusiveHeld(const Thread* self) const;

  // Assert the current thread has exclusive access to the ReaderWriterMutex.
  ALWAYS_INLINE void AssertExclusiveHeld(const Thread* self) const ASSERT_CAPABILITY(this);
  ALWAYS_INLINE void AssertWriterHeld(const Thread* self) const ASSERT_CAPABILITY(this);

  // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex.
  void AssertNotExclusiveHeld(const Thread* self) ASSERT_CAPABILITY(!this) {
    if (kDebugLocking && (gAborting == 0)) {
      CHECK(!IsExclusiveHeld(self)) << *this;
    }
  }
  void AssertNotWriterHeld(const Thread* self) ASSERT_CAPABILITY(!this) {
    AssertNotExclusiveHeld(self);
  }

  // Is the current thread a shared holder of the ReaderWriterMutex.
  bool IsSharedHeld(const Thread* self) const;

  // Assert the current thread has shared access to the ReaderWriterMutex.
  ALWAYS_INLINE void AssertSharedHeld(const Thread* self) ASSERT_SHARED_CAPABILITY(this) {
    if (kDebugLocking && (gAborting == 0)) {
      // TODO: we can only assert this well when self != null.
      CHECK(IsSharedHeld(self) || self == nullptr) << *this;
    }
  }
  ALWAYS_INLINE void AssertReaderHeld(const Thread* self) ASSERT_SHARED_CAPABILITY(this) {
    AssertSharedHeld(self);
  }

  // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive
  // mode.
  ALWAYS_INLINE void AssertNotHeld(const Thread* self) ASSERT_CAPABILITY(!this) {
    if (kDebugLocking && (gAborting == 0)) {
      CHECK(!IsExclusiveHeld(self)) << *this;
      CHECK(!IsSharedHeld(self)) << *this;
    }
  }

  // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
  // than the owner. Returns 0 if the lock is not held. Returns either 0 or -1 if it is held by
  // one or more readers.
  pid_t GetExclusiveOwnerTid() const;

  void Dump(std::ostream& os) const override;

  // For negative capabilities in clang annotations.
  const ReaderWriterMutex& operator!() const { return *this; }

  void WakeupToRespondToEmptyCheckpoint() override;

 private:
#if ART_USE_FUTEXES
  // Out-of-inline path for handling contention for a SharedLock.
  void HandleSharedLockContention(Thread* self, int32_t cur_state);

  // -1 implies held exclusive, >= 0: shared held by state_ many owners.
  AtomicInteger state_;
  // Exclusive owner. Modification guarded by this mutex.
  Atomic<pid_t> exclusive_owner_;
  // Number of contenders waiting for either a reader share or exclusive access.  We only maintain
  // the sum, since we would otherwise need to read both in all unlock operations.
  // We keep this separate from the state, since futexes are limited to 32 bits, and obvious
  // approaches to combining with state_ risk overflow.
  AtomicInteger num_contenders_;
#else
  pthread_rwlock_t rwlock_;
  Atomic<pid_t> exclusive_owner_;  // Writes guarded by rwlock_. Asynchronous reads are OK.
#endif
  DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex);
};

// MutatorMutex is a special kind of ReaderWriterMutex created specifically for the
// Locks::mutator_lock_ mutex. The behaviour is identical to the ReaderWriterMutex except that
// thread state changes also play a part in lock ownership. The mutator_lock_ will not be truly
// held by any mutator threads. However, a thread in the kRunnable state is considered to have
// shared ownership of the mutator lock and therefore transitions in and out of the kRunnable
// state have associated implications on lock ownership. Extra methods to handle the state
// transitions have been added to the interface but are only accessible to the methods dealing
// with state transitions. The thread state and flags attributes are used to ensure thread state
// transitions are consistent with the permitted behaviour of the mutex.
//
// *) The most important consequence of this behaviour is that all threads must be in one of the
// suspended states before exclusive ownership of the mutator mutex is sought.
//
std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu);
class SHARED_LOCKABLE MutatorMutex : public ReaderWriterMutex {
 public:
  explicit MutatorMutex(const char* name, LockLevel level = kDefaultMutexLevel)
    : ReaderWriterMutex(name, level) {}
  ~MutatorMutex() {}

  virtual bool IsMutatorMutex() const { return true; }

  // For negative capabilities in clang annotations.
  const MutatorMutex& operator!() const { return *this; }

 private:
  friend class Thread;
  void TransitionFromRunnableToSuspended(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE;
  void TransitionFromSuspendedToRunnable(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE;

  DISALLOW_COPY_AND_ASSIGN(MutatorMutex);
};

// ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually
// (Signal) or all at once (Broadcast).
class ConditionVariable {
 public:
  ConditionVariable(const char* name, Mutex& mutex);
  ~ConditionVariable();

  // Requires the mutex to be held.
  void Broadcast(Thread* self);
  // Requires the mutex to be held.
  void Signal(Thread* self);
  // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their
  //       pointer copy, thereby defeating annotalysis.
  void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
  bool TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS;
  // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held
  // when waiting.
  // TODO: remove this.
  void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS;

  void CheckSafeToWait(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
    if (kDebugLocking) {
      guard_.CheckSafeToWait(self);
    }
  }

 private:
  const char* const name_;
  // The Mutex being used by waiters. It is an error to mix condition variables between different
  // Mutexes.
  Mutex& guard_;
#if ART_USE_FUTEXES
  // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up
  // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_
  // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait
  // without guard_ held.
  AtomicInteger sequence_;
  // Number of threads that have come into to wait, not the length of the waiters on the futex as
  // waiters may have been requeued onto guard_. Guarded by guard_.
  int32_t num_waiters_;

  void RequeueWaiters(int32_t count);
#else
  pthread_cond_t cond_;
#endif
  DISALLOW_COPY_AND_ASSIGN(ConditionVariable);
};

// Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it
// upon destruction.
class SCOPED_CAPABILITY MutexLock {
 public:
  MutexLock(Thread* self, Mutex& mu) ACQUIRE(mu) : self_(self), mu_(mu) {
    mu_.ExclusiveLock(self_);
  }

  ~MutexLock() RELEASE() {
    mu_.ExclusiveUnlock(self_);
  }

 private:
  Thread* const self_;
  Mutex& mu_;
  DISALLOW_COPY_AND_ASSIGN(MutexLock);
};

// Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon
// construction and releases it upon destruction.
class SCOPED_CAPABILITY ReaderMutexLock {
 public:
  ALWAYS_INLINE ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) ACQUIRE(mu);

  ALWAYS_INLINE ~ReaderMutexLock() RELEASE();

 private:
  Thread* const self_;
  ReaderWriterMutex& mu_;
  DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock);
};

// Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon
// construction and releases it upon destruction.
class SCOPED_CAPABILITY WriterMutexLock {
 public:
  WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
      self_(self), mu_(mu) {
    mu_.ExclusiveLock(self_);
  }

  ~WriterMutexLock() UNLOCK_FUNCTION() {
    mu_.ExclusiveUnlock(self_);
  }

 private:
  Thread* const self_;
  ReaderWriterMutex& mu_;
  DISALLOW_COPY_AND_ASSIGN(WriterMutexLock);
};

}  // namespace art

#endif  // ART_RUNTIME_BASE_MUTEX_H_