1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
|
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cha.h"
#include "art_method-inl.h"
#include "base/logging.h" // For VLOG
#include "base/mutex.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "linear_alloc.h"
#include "mirror/class_loader.h"
#include "runtime.h"
#include "scoped_thread_state_change-inl.h"
#include "stack.h"
#include "thread.h"
#include "thread_list.h"
#include "thread_pool.h"
namespace art {
void ClassHierarchyAnalysis::AddDependency(ArtMethod* method,
ArtMethod* dependent_method,
OatQuickMethodHeader* dependent_header) {
const auto it = cha_dependency_map_.insert(
decltype(cha_dependency_map_)::value_type(method, ListOfDependentPairs())).first;
it->second.push_back({dependent_method, dependent_header});
}
static const ClassHierarchyAnalysis::ListOfDependentPairs s_empty_vector;
const ClassHierarchyAnalysis::ListOfDependentPairs& ClassHierarchyAnalysis::GetDependents(
ArtMethod* method) {
auto it = cha_dependency_map_.find(method);
if (it != cha_dependency_map_.end()) {
return it->second;
}
return s_empty_vector;
}
void ClassHierarchyAnalysis::RemoveAllDependenciesFor(ArtMethod* method) {
cha_dependency_map_.erase(method);
}
void ClassHierarchyAnalysis::RemoveDependentsWithMethodHeaders(
const std::unordered_set<OatQuickMethodHeader*>& method_headers) {
// Iterate through all entries in the dependency map and remove any entry that
// contains one of those in method_headers.
for (auto map_it = cha_dependency_map_.begin(); map_it != cha_dependency_map_.end(); ) {
ListOfDependentPairs& dependents = map_it->second;
dependents.erase(
std::remove_if(
dependents.begin(),
dependents.end(),
[&method_headers](MethodAndMethodHeaderPair& dependent) {
return method_headers.find(dependent.second) != method_headers.end();
}),
dependents.end());
// Remove the map entry if there are no more dependents.
if (dependents.empty()) {
map_it = cha_dependency_map_.erase(map_it);
} else {
map_it++;
}
}
}
void ClassHierarchyAnalysis::ResetSingleImplementationInHierarchy(ObjPtr<mirror::Class> klass,
const LinearAlloc* alloc,
const PointerSize pointer_size)
const {
// Presumably called from some sort of class visitor, no null pointers expected.
DCHECK(klass != nullptr);
DCHECK(alloc != nullptr);
// Skip interfaces since they cannot provide SingleImplementations to work with.
if (klass->IsInterface()) {
return;
}
// This method is called while visiting classes in the class table of a class loader.
// That means, some 'klass'es can belong to other classloaders. Argument 'alloc'
// allows to explicitly indicate a classloader, which is going to be deleted.
// Filter out classes, that do not belong to it.
if (!alloc->ContainsUnsafe(klass->GetMethodsPtr())) {
return;
}
// CHA analysis is only applied to resolved classes.
if (!klass->IsResolved()) {
return;
}
ObjPtr<mirror::Class> super = klass->GetSuperClass<kDefaultVerifyFlags, kWithoutReadBarrier>();
// Skip Object class and primitive classes.
if (super == nullptr) {
return;
}
// The class is going to be deleted. Iterate over the virtual methods of its superclasses to see
// if they have SingleImplementations methods defined by 'klass'.
// Skip all virtual methods that do not override methods from super class since they cannot be
// SingleImplementations for anything.
int32_t vtbl_size = super->GetVTableLength<kDefaultVerifyFlags>();
ObjPtr<mirror::ClassLoader> loader =
klass->GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>();
for (int vtbl_index = 0; vtbl_index < vtbl_size; ++vtbl_index) {
ArtMethod* method =
klass->GetVTableEntry<kDefaultVerifyFlags, kWithoutReadBarrier>(vtbl_index, pointer_size);
if (!alloc->ContainsUnsafe(method)) {
continue;
}
// Find all occurrences of virtual methods in parents' SingleImplementations fields
// and reset them.
// No need to reset SingleImplementations for the method itself (it will be cleared anyways),
// so start with a superclass and move up looking into a corresponding vtbl slot.
for (ObjPtr<mirror::Class> super_it = super;
super_it != nullptr &&
super_it->GetVTableLength<kDefaultVerifyFlags>() > vtbl_index;
super_it = super_it->GetSuperClass<kDefaultVerifyFlags, kWithoutReadBarrier>()) {
// Skip superclasses that are also going to be unloaded.
ObjPtr<mirror::ClassLoader> super_loader = super_it->
GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>();
if (super_loader == loader) {
continue;
}
ArtMethod* super_method = super_it->
GetVTableEntry<kDefaultVerifyFlags, kWithoutReadBarrier>(vtbl_index, pointer_size);
if (super_method->IsAbstract() &&
super_method->HasSingleImplementation<kWithoutReadBarrier>() &&
super_method->GetSingleImplementation(pointer_size) == method) {
// Do like there was no single implementation defined previously
// for this method of the superclass.
super_method->SetSingleImplementation(nullptr, pointer_size);
} else {
// No related SingleImplementations could possibly be found any further.
DCHECK(!super_method->HasSingleImplementation<kWithoutReadBarrier>());
break;
}
}
}
// Check all possible interface methods too.
ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kDefaultVerifyFlags, kWithoutReadBarrier>();
const size_t ifcount = klass->GetIfTableCount<kDefaultVerifyFlags>();
for (size_t i = 0; i < ifcount; ++i) {
ObjPtr<mirror::Class> interface =
iftable->GetInterface<kDefaultVerifyFlags, kWithoutReadBarrier>(i);
for (size_t j = 0,
count = iftable->GetMethodArrayCount<kDefaultVerifyFlags, kWithoutReadBarrier>(i);
j < count;
++j) {
ArtMethod* method = interface->GetVirtualMethod(j, pointer_size);
if (method->HasSingleImplementation<kWithoutReadBarrier>() &&
alloc->ContainsUnsafe(method->GetSingleImplementation(pointer_size)) &&
!method->IsDefault()) {
// Do like there was no single implementation defined previously for this method.
method->SetSingleImplementation(nullptr, pointer_size);
}
}
}
}
// This stack visitor walks the stack and for compiled code with certain method
// headers, sets the should_deoptimize flag on stack to 1.
// TODO: also set the register value to 1 when should_deoptimize is allocated in
// a register.
class CHAStackVisitor final : public StackVisitor {
public:
CHAStackVisitor(Thread* thread_in,
Context* context,
const std::unordered_set<OatQuickMethodHeader*>& method_headers)
: StackVisitor(thread_in, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
method_headers_(method_headers) {
}
bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* method = GetMethod();
// Avoid types of methods that do not have an oat quick method header.
if (method == nullptr ||
method->IsRuntimeMethod() ||
method->IsNative() ||
method->IsProxyMethod()) {
return true;
}
if (GetCurrentQuickFrame() == nullptr) {
// Not compiled code.
return true;
}
// Method may have multiple versions of compiled code. Check
// the method header to see if it has should_deoptimize flag.
const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
DCHECK(method_header != nullptr);
if (!method_header->HasShouldDeoptimizeFlag()) {
// This compiled version doesn't have should_deoptimize flag. Skip.
return true;
}
auto it = std::find(method_headers_.begin(), method_headers_.end(), method_header);
if (it == method_headers_.end()) {
// Not in the list of method headers that should be deoptimized.
return true;
}
// The compiled code on stack is not valid anymore. Need to deoptimize.
SetShouldDeoptimizeFlag();
return true;
}
private:
void SetShouldDeoptimizeFlag() REQUIRES_SHARED(Locks::mutator_lock_) {
QuickMethodFrameInfo frame_info = GetCurrentQuickFrameInfo();
size_t frame_size = frame_info.FrameSizeInBytes();
uint8_t* sp = reinterpret_cast<uint8_t*>(GetCurrentQuickFrame());
size_t core_spill_size = POPCOUNT(frame_info.CoreSpillMask()) *
GetBytesPerGprSpillLocation(kRuntimeISA);
size_t fpu_spill_size = POPCOUNT(frame_info.FpSpillMask()) *
GetBytesPerFprSpillLocation(kRuntimeISA);
size_t offset = frame_size - core_spill_size - fpu_spill_size - kShouldDeoptimizeFlagSize;
uint8_t* should_deoptimize_addr = sp + offset;
// Set deoptimization flag to 1.
DCHECK(*should_deoptimize_addr == 0 || *should_deoptimize_addr == 1);
*should_deoptimize_addr = 1;
}
// Set of method headers for compiled code that should be deoptimized.
const std::unordered_set<OatQuickMethodHeader*>& method_headers_;
DISALLOW_COPY_AND_ASSIGN(CHAStackVisitor);
};
class CHACheckpoint final : public Closure {
public:
explicit CHACheckpoint(const std::unordered_set<OatQuickMethodHeader*>& method_headers)
: barrier_(0),
method_headers_(method_headers) {}
void Run(Thread* thread) override {
// Note thread and self may not be equal if thread was already suspended at
// the point of the request.
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
CHAStackVisitor visitor(thread, nullptr, method_headers_);
visitor.WalkStack();
barrier_.Pass(self);
}
void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
Thread* self = Thread::Current();
ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
barrier_.Increment(self, threads_running_checkpoint);
}
private:
// The barrier to be passed through and for the requestor to wait upon.
Barrier barrier_;
// List of method headers for invalidated compiled code.
const std::unordered_set<OatQuickMethodHeader*>& method_headers_;
DISALLOW_COPY_AND_ASSIGN(CHACheckpoint);
};
static void VerifyNonSingleImplementation(ObjPtr<mirror::Class> verify_class,
uint16_t verify_index,
ArtMethod* excluded_method)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!kIsDebugBuild) {
return;
}
// Grab cha_lock_ to make sure all single-implementation updates are seen.
MutexLock cha_mu(Thread::Current(), *Locks::cha_lock_);
PointerSize image_pointer_size =
Runtime::Current()->GetClassLinker()->GetImagePointerSize();
ObjPtr<mirror::Class> input_verify_class = verify_class;
while (verify_class != nullptr) {
if (verify_index >= verify_class->GetVTableLength()) {
return;
}
ArtMethod* verify_method = verify_class->GetVTableEntry(verify_index, image_pointer_size);
if (verify_method != excluded_method) {
auto construct_parent_chain = [](ObjPtr<mirror::Class> failed, ObjPtr<mirror::Class> in)
REQUIRES_SHARED(Locks::mutator_lock_) {
std::string tmp = in->PrettyClass();
while (in != failed) {
in = in->GetSuperClass();
tmp = tmp + "->" + in->PrettyClass();
}
return tmp;
};
DCHECK(!verify_method->HasSingleImplementation())
<< "class: " << verify_class->PrettyClass()
<< " verify_method: " << verify_method->PrettyMethod(true)
<< " (" << construct_parent_chain(verify_class, input_verify_class) << ")"
<< " excluded_method: " << ArtMethod::PrettyMethod(excluded_method);
if (verify_method->IsAbstract()) {
DCHECK(verify_method->GetSingleImplementation(image_pointer_size) == nullptr);
}
}
verify_class = verify_class->GetSuperClass();
}
}
void ClassHierarchyAnalysis::CheckVirtualMethodSingleImplementationInfo(
Handle<mirror::Class> klass,
ArtMethod* virtual_method,
ArtMethod* method_in_super,
std::unordered_set<ArtMethod*>& invalidated_single_impl_methods,
PointerSize pointer_size) {
// TODO: if klass is not instantiable, virtual_method isn't invocable yet so
// even if it overrides, it doesn't invalidate single-implementation
// assumption.
DCHECK((virtual_method != method_in_super) || virtual_method->IsAbstract());
DCHECK(method_in_super->GetDeclaringClass()->IsResolved()) << "class isn't resolved";
// If virtual_method doesn't come from a default interface method, it should
// be supplied by klass.
DCHECK(virtual_method == method_in_super ||
virtual_method->IsCopied() ||
virtual_method->GetDeclaringClass() == klass.Get());
// To make updating single-implementation flags simple, we always maintain the following
// invariant:
// Say all virtual methods in the same vtable slot, starting from the bottom child class
// to super classes, is a sequence of unique methods m3, m2, m1, ... (after removing duplicate
// methods for inherited methods).
// For example for the following class hierarchy,
// class A { void m() { ... } }
// class B extends A { void m() { ... } }
// class C extends B {}
// class D extends C { void m() { ... } }
// the sequence is D.m(), B.m(), A.m().
// The single-implementation status for that sequence of methods begin with one or two true's,
// then become all falses. The only case where two true's are possible is for one abstract
// method m and one non-abstract method mImpl that overrides method m.
// With the invariant, when linking in a new class, we only need to at most update one or
// two methods in the sequence for their single-implementation status, in order to maintain
// the invariant.
if (!method_in_super->HasSingleImplementation()) {
// method_in_super already has multiple implementations. All methods in the
// same vtable slots in its super classes should have
// non-single-implementation already.
VerifyNonSingleImplementation(klass->GetSuperClass()->GetSuperClass(),
method_in_super->GetMethodIndex(),
/* excluded_method= */ nullptr);
return;
}
uint16_t method_index = method_in_super->GetMethodIndex();
if (method_in_super->IsAbstract()) {
// An abstract method should have made all methods in the same vtable
// slot above it in the class hierarchy having non-single-implementation.
VerifyNonSingleImplementation(klass->GetSuperClass()->GetSuperClass(),
method_index,
method_in_super);
if (virtual_method->IsAbstract()) {
// SUPER: abstract, VIRTUAL: abstract.
if (method_in_super == virtual_method) {
DCHECK(klass->IsInstantiable());
// An instantiable subclass hasn't provided a concrete implementation of
// the abstract method. Invoking method_in_super may throw AbstractMethodError.
// This is an uncommon case, so we simply treat method_in_super as not
// having single-implementation.
invalidated_single_impl_methods.insert(method_in_super);
return;
} else {
// One abstract method overrides another abstract method. This is an uncommon
// case. We simply treat method_in_super as not having single-implementation.
invalidated_single_impl_methods.insert(method_in_super);
return;
}
} else {
// SUPER: abstract, VIRTUAL: non-abstract.
// A non-abstract method overrides an abstract method.
if (method_in_super->GetSingleImplementation(pointer_size) == nullptr) {
// Abstract method_in_super has no implementation yet.
// We need to grab cha_lock_ since there may be multiple class linking
// going on that can check/modify the single-implementation flag/method
// of method_in_super.
MutexLock cha_mu(Thread::Current(), *Locks::cha_lock_);
if (!method_in_super->HasSingleImplementation()) {
return;
}
if (method_in_super->GetSingleImplementation(pointer_size) == nullptr) {
// virtual_method becomes the first implementation for method_in_super.
method_in_super->SetSingleImplementation(virtual_method, pointer_size);
// Keep method_in_super's single-implementation status.
return;
}
// Fall through to invalidate method_in_super's single-implementation status.
}
// Abstract method_in_super already got one implementation.
// Invalidate method_in_super's single-implementation status.
invalidated_single_impl_methods.insert(method_in_super);
return;
}
} else {
if (virtual_method->IsAbstract()) {
// SUPER: non-abstract, VIRTUAL: abstract.
// An abstract method overrides a non-abstract method. This is an uncommon
// case, we simply treat both methods as not having single-implementation.
invalidated_single_impl_methods.insert(virtual_method);
// Fall-through to handle invalidating method_in_super of its
// single-implementation status.
}
// SUPER: non-abstract, VIRTUAL: non-abstract/abstract(fall-through from previous if).
// Invalidate method_in_super's single-implementation status.
invalidated_single_impl_methods.insert(method_in_super);
// method_in_super might be the single-implementation of another abstract method,
// which should be also invalidated of its single-implementation status.
ObjPtr<mirror::Class> super_super = klass->GetSuperClass()->GetSuperClass();
while (super_super != nullptr &&
method_index < super_super->GetVTableLength()) {
ArtMethod* method_in_super_super = super_super->GetVTableEntry(method_index, pointer_size);
if (method_in_super_super != method_in_super) {
if (method_in_super_super->IsAbstract()) {
if (method_in_super_super->HasSingleImplementation()) {
// Invalidate method_in_super's single-implementation status.
invalidated_single_impl_methods.insert(method_in_super_super);
// No need to further traverse up the class hierarchy since if there
// are cases that one abstract method overrides another method, we
// should have made that method having non-single-implementation already.
} else {
// method_in_super_super is already non-single-implementation.
// No need to further traverse up the class hierarchy.
}
} else {
DCHECK(!method_in_super_super->HasSingleImplementation());
// No need to further traverse up the class hierarchy since two non-abstract
// methods (method_in_super and method_in_super_super) should have set all
// other methods (abstract or not) in the vtable slot to be non-single-implementation.
}
VerifyNonSingleImplementation(super_super->GetSuperClass(),
method_index,
method_in_super_super);
// No need to go any further.
return;
} else {
super_super = super_super->GetSuperClass();
}
}
}
}
void ClassHierarchyAnalysis::CheckInterfaceMethodSingleImplementationInfo(
Handle<mirror::Class> klass,
ArtMethod* interface_method,
ArtMethod* implementation_method,
std::unordered_set<ArtMethod*>& invalidated_single_impl_methods,
PointerSize pointer_size) {
DCHECK(klass->IsInstantiable());
DCHECK(interface_method->IsAbstract() || interface_method->IsDefault());
if (!interface_method->HasSingleImplementation()) {
return;
}
if (implementation_method->IsAbstract()) {
// An instantiable class doesn't supply an implementation for
// interface_method. Invoking the interface method on the class will throw
// AbstractMethodError. This is an uncommon case, so we simply treat
// interface_method as not having single-implementation.
invalidated_single_impl_methods.insert(interface_method);
return;
}
// We need to grab cha_lock_ since there may be multiple class linking going
// on that can check/modify the single-implementation flag/method of
// interface_method.
MutexLock cha_mu(Thread::Current(), *Locks::cha_lock_);
// Do this check again after we grab cha_lock_.
if (!interface_method->HasSingleImplementation()) {
return;
}
ArtMethod* single_impl = interface_method->GetSingleImplementation(pointer_size);
if (single_impl == nullptr) {
// implementation_method becomes the first implementation for
// interface_method.
interface_method->SetSingleImplementation(implementation_method, pointer_size);
// Keep interface_method's single-implementation status.
return;
}
DCHECK(!single_impl->IsAbstract());
if ((single_impl->GetDeclaringClass() == implementation_method->GetDeclaringClass()) &&
!implementation_method->IsDefaultConflicting()) {
// Same implementation. Since implementation_method may be a copy of a default
// method, we need to check the declaring class for equality.
return;
}
// Another implementation for interface_method.
invalidated_single_impl_methods.insert(interface_method);
}
void ClassHierarchyAnalysis::InitSingleImplementationFlag(Handle<mirror::Class> klass,
ArtMethod* method,
PointerSize pointer_size) {
DCHECK(method->IsCopied() || method->GetDeclaringClass() == klass.Get());
if (klass->IsFinal() || method->IsFinal()) {
// Final classes or methods do not need CHA for devirtualization.
// This frees up modifier bits for intrinsics which currently are only
// used for static methods or methods of final classes.
return;
}
if (method->IsAbstract()) {
// single-implementation of abstract method shares the same field
// that's used for JNI function of native method. It's fine since a method
// cannot be both abstract and native.
DCHECK(!method->IsNative()) << "Abstract method cannot be native";
if (method->GetDeclaringClass()->IsInstantiable()) {
// Rare case, but we do accept it (such as 800-smali/smali/b_26143249.smali).
// Do not attempt to devirtualize it.
method->SetHasSingleImplementation(false);
DCHECK(method->GetSingleImplementation(pointer_size) == nullptr);
} else {
// Abstract method starts with single-implementation flag set and null
// implementation method.
method->SetHasSingleImplementation(true);
DCHECK(method->GetSingleImplementation(pointer_size) == nullptr);
}
// Default conflicting methods cannot be treated with single implementations,
// as we need to call them (and not inline them) in case of ICCE.
// See class_linker.cc:EnsureThrowsInvocationError.
} else if (!method->IsDefaultConflicting()) {
method->SetHasSingleImplementation(true);
// Single implementation of non-abstract method is itself.
DCHECK_EQ(method->GetSingleImplementation(pointer_size), method);
}
}
void ClassHierarchyAnalysis::UpdateAfterLoadingOf(Handle<mirror::Class> klass) {
PointerSize image_pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
if (klass->IsInterface()) {
for (ArtMethod& method : klass->GetDeclaredVirtualMethods(image_pointer_size)) {
DCHECK(method.IsAbstract() || method.IsDefault());
InitSingleImplementationFlag(klass, &method, image_pointer_size);
}
return;
}
ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
if (super_class == nullptr) {
return;
}
// Keeps track of all methods whose single-implementation assumption
// is invalidated by linking `klass`.
std::unordered_set<ArtMethod*> invalidated_single_impl_methods;
// Do an entry-by-entry comparison of vtable contents with super's vtable.
for (int32_t i = 0; i < super_class->GetVTableLength(); ++i) {
ArtMethod* method = klass->GetVTableEntry(i, image_pointer_size);
ArtMethod* method_in_super = super_class->GetVTableEntry(i, image_pointer_size);
if (method == method_in_super) {
// vtable slot entry is inherited from super class.
if (method->IsAbstract() && klass->IsInstantiable()) {
// An instantiable class that inherits an abstract method is treated as
// supplying an implementation that throws AbstractMethodError.
CheckVirtualMethodSingleImplementationInfo(klass,
method,
method_in_super,
invalidated_single_impl_methods,
image_pointer_size);
}
continue;
}
InitSingleImplementationFlag(klass, method, image_pointer_size);
CheckVirtualMethodSingleImplementationInfo(klass,
method,
method_in_super,
invalidated_single_impl_methods,
image_pointer_size);
}
// For new virtual methods that don't override.
for (int32_t i = super_class->GetVTableLength(); i < klass->GetVTableLength(); ++i) {
ArtMethod* method = klass->GetVTableEntry(i, image_pointer_size);
InitSingleImplementationFlag(klass, method, image_pointer_size);
}
if (klass->IsInstantiable()) {
ObjPtr<mirror::IfTable> iftable = klass->GetIfTable();
const size_t ifcount = klass->GetIfTableCount();
for (size_t i = 0; i < ifcount; ++i) {
ObjPtr<mirror::Class> interface = iftable->GetInterface(i);
for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) {
ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size);
ObjPtr<mirror::PointerArray> method_array = iftable->GetMethodArray(i);
ArtMethod* implementation_method =
method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size);
DCHECK(implementation_method != nullptr) << klass->PrettyClass();
CheckInterfaceMethodSingleImplementationInfo(klass,
interface_method,
implementation_method,
invalidated_single_impl_methods,
image_pointer_size);
}
}
}
InvalidateSingleImplementationMethods(invalidated_single_impl_methods);
}
void ClassHierarchyAnalysis::InvalidateSingleImplementationMethods(
std::unordered_set<ArtMethod*>& invalidated_single_impl_methods) {
if (!invalidated_single_impl_methods.empty()) {
Runtime* const runtime = Runtime::Current();
Thread *self = Thread::Current();
// Method headers for compiled code to be invalidated.
std::unordered_set<OatQuickMethodHeader*> dependent_method_headers;
PointerSize image_pointer_size =
Runtime::Current()->GetClassLinker()->GetImagePointerSize();
{
// We do this under cha_lock_. Committing code also grabs this lock to
// make sure the code is only committed when all single-implementation
// assumptions are still true.
std::vector<std::pair<ArtMethod*, OatQuickMethodHeader*>> headers;
{
MutexLock cha_mu(self, *Locks::cha_lock_);
// Invalidate compiled methods that assume some virtual calls have only
// single implementations.
for (ArtMethod* invalidated : invalidated_single_impl_methods) {
if (!invalidated->HasSingleImplementation()) {
// It might have been invalidated already when other class linking is
// going on.
continue;
}
invalidated->SetHasSingleImplementation(false);
if (invalidated->IsAbstract()) {
// Clear the single implementation method.
invalidated->SetSingleImplementation(nullptr, image_pointer_size);
}
if (runtime->IsAotCompiler()) {
// No need to invalidate any compiled code as the AotCompiler doesn't
// run any code.
continue;
}
// Invalidate all dependents.
for (const auto& dependent : GetDependents(invalidated)) {
ArtMethod* method = dependent.first;;
OatQuickMethodHeader* method_header = dependent.second;
VLOG(class_linker) << "CHA invalidated compiled code for " << method->PrettyMethod();
DCHECK(runtime->UseJitCompilation());
// We need to call JitCodeCache::InvalidateCompiledCodeFor but we cannot do it here
// since it would run into problems with lock-ordering. We don't want to re-order the
// locks since that would make code-commit racy.
headers.push_back({method, method_header});
dependent_method_headers.insert(method_header);
}
RemoveAllDependenciesFor(invalidated);
}
}
// Since we are still loading the class that invalidated the code it's fine we have this after
// getting rid of the dependency. Any calls would need to be with the old version (since the
// new one isn't loaded yet) which still works fine. We will deoptimize just after this to
// ensure everything gets the new state.
jit::Jit* jit = Runtime::Current()->GetJit();
if (jit != nullptr) {
jit::JitCodeCache* code_cache = jit->GetCodeCache();
for (const auto& pair : headers) {
code_cache->InvalidateCompiledCodeFor(pair.first, pair.second);
}
}
}
if (dependent_method_headers.empty()) {
return;
}
// Deoptimze compiled code on stack that should have been invalidated.
CHACheckpoint checkpoint(dependent_method_headers);
size_t threads_running_checkpoint = runtime->GetThreadList()->RunCheckpoint(&checkpoint);
if (threads_running_checkpoint != 0) {
checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
}
}
}
void ClassHierarchyAnalysis::RemoveDependenciesForLinearAlloc(const LinearAlloc* linear_alloc) {
MutexLock mu(Thread::Current(), *Locks::cha_lock_);
for (auto it = cha_dependency_map_.begin(); it != cha_dependency_map_.end(); ) {
// Use unsafe to avoid locking since the allocator is going to be deleted.
if (linear_alloc->ContainsUnsafe(it->first)) {
// About to delete the ArtMethod, erase the entry from the map.
it = cha_dependency_map_.erase(it);
} else {
++it;
}
}
}
} // namespace art
|