1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
|
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rosalloc-inl.h"
#include <list>
#include <map>
#include <sstream>
#include <vector>
#include "android-base/stringprintf.h"
#include "base/logging.h" // For VLOG
#include "base/memory_tool.h"
#include "base/mem_map.h"
#include "base/mutex-inl.h"
#include "gc/space/memory_tool_settings.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object.h"
#include "thread-current-inl.h"
#include "thread_list.h"
namespace art {
namespace gc {
namespace allocator {
using android::base::StringPrintf;
static constexpr bool kUsePrefetchDuringAllocRun = false;
static constexpr bool kPrefetchNewRunDataByZeroing = false;
static constexpr size_t kPrefetchStride = 64;
size_t RosAlloc::bracketSizes[kNumOfSizeBrackets];
size_t RosAlloc::numOfPages[kNumOfSizeBrackets];
size_t RosAlloc::numOfSlots[kNumOfSizeBrackets];
size_t RosAlloc::headerSizes[kNumOfSizeBrackets];
bool RosAlloc::initialized_ = false;
size_t RosAlloc::dedicated_full_run_storage_[kPageSize / sizeof(size_t)] = { 0 };
RosAlloc::Run* RosAlloc::dedicated_full_run_ =
reinterpret_cast<RosAlloc::Run*>(dedicated_full_run_storage_);
RosAlloc::RosAlloc(void* base, size_t capacity, size_t max_capacity,
PageReleaseMode page_release_mode, bool running_on_memory_tool,
size_t page_release_size_threshold)
: base_(reinterpret_cast<uint8_t*>(base)), footprint_(capacity),
capacity_(capacity), max_capacity_(max_capacity),
lock_("rosalloc global lock", kRosAllocGlobalLock),
bulk_free_lock_("rosalloc bulk free lock", kRosAllocBulkFreeLock),
page_release_mode_(page_release_mode),
page_release_size_threshold_(page_release_size_threshold),
is_running_on_memory_tool_(running_on_memory_tool) {
DCHECK_ALIGNED(base, kPageSize);
DCHECK_EQ(RoundUp(capacity, kPageSize), capacity);
DCHECK_EQ(RoundUp(max_capacity, kPageSize), max_capacity);
CHECK_LE(capacity, max_capacity);
CHECK_ALIGNED(page_release_size_threshold_, kPageSize);
// Zero the memory explicitly (don't rely on that the mem map is zero-initialized).
if (!kMadviseZeroes) {
memset(base_, 0, max_capacity);
}
CHECK_EQ(madvise(base_, max_capacity, MADV_DONTNEED), 0);
if (!initialized_) {
Initialize();
}
VLOG(heap) << "RosAlloc base="
<< std::hex << (intptr_t)base_ << ", end="
<< std::hex << (intptr_t)(base_ + capacity_)
<< ", capacity=" << std::dec << capacity_
<< ", max_capacity=" << std::dec << max_capacity_;
for (size_t i = 0; i < kNumOfSizeBrackets; i++) {
size_bracket_lock_names_[i] =
StringPrintf("an rosalloc size bracket %d lock", static_cast<int>(i));
size_bracket_locks_[i] = new Mutex(size_bracket_lock_names_[i].c_str(), kRosAllocBracketLock);
current_runs_[i] = dedicated_full_run_;
}
DCHECK_EQ(footprint_, capacity_);
size_t num_of_pages = footprint_ / kPageSize;
size_t max_num_of_pages = max_capacity_ / kPageSize;
std::string error_msg;
page_map_mem_map_ = MemMap::MapAnonymous("rosalloc page map",
RoundUp(max_num_of_pages, kPageSize),
PROT_READ | PROT_WRITE,
/*low_4gb=*/ false,
&error_msg);
CHECK(page_map_mem_map_.IsValid()) << "Couldn't allocate the page map : " << error_msg;
page_map_ = page_map_mem_map_.Begin();
page_map_size_ = num_of_pages;
max_page_map_size_ = max_num_of_pages;
free_page_run_size_map_.resize(num_of_pages);
FreePageRun* free_pages = reinterpret_cast<FreePageRun*>(base_);
if (kIsDebugBuild) {
free_pages->magic_num_ = kMagicNumFree;
}
free_pages->SetByteSize(this, capacity_);
DCHECK_EQ(capacity_ % kPageSize, static_cast<size_t>(0));
DCHECK(free_pages->IsFree());
free_pages->ReleasePages(this);
DCHECK(free_pages->IsFree());
free_page_runs_.insert(free_pages);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::RosAlloc() : Inserted run 0x" << std::hex
<< reinterpret_cast<intptr_t>(free_pages)
<< " into free_page_runs_";
}
}
RosAlloc::~RosAlloc() {
for (size_t i = 0; i < kNumOfSizeBrackets; i++) {
delete size_bracket_locks_[i];
}
if (is_running_on_memory_tool_) {
MEMORY_TOOL_MAKE_DEFINED(base_, capacity_);
}
}
void* RosAlloc::AllocPages(Thread* self, size_t num_pages, uint8_t page_map_type) {
lock_.AssertHeld(self);
DCHECK(page_map_type == kPageMapRun || page_map_type == kPageMapLargeObject);
FreePageRun* res = nullptr;
const size_t req_byte_size = num_pages * kPageSize;
// Find the lowest address free page run that's large enough.
for (auto it = free_page_runs_.begin(); it != free_page_runs_.end(); ) {
FreePageRun* fpr = *it;
DCHECK(fpr->IsFree());
size_t fpr_byte_size = fpr->ByteSize(this);
DCHECK_EQ(fpr_byte_size % kPageSize, static_cast<size_t>(0));
if (req_byte_size <= fpr_byte_size) {
// Found one.
it = free_page_runs_.erase(it);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::AllocPages() : Erased run 0x"
<< std::hex << reinterpret_cast<intptr_t>(fpr)
<< " from free_page_runs_";
}
if (req_byte_size < fpr_byte_size) {
// Split.
FreePageRun* remainder =
reinterpret_cast<FreePageRun*>(reinterpret_cast<uint8_t*>(fpr) + req_byte_size);
if (kIsDebugBuild) {
remainder->magic_num_ = kMagicNumFree;
}
remainder->SetByteSize(this, fpr_byte_size - req_byte_size);
DCHECK_EQ(remainder->ByteSize(this) % kPageSize, static_cast<size_t>(0));
// Don't need to call madvise on remainder here.
free_page_runs_.insert(remainder);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::AllocPages() : Inserted run 0x" << std::hex
<< reinterpret_cast<intptr_t>(remainder)
<< " into free_page_runs_";
}
fpr->SetByteSize(this, req_byte_size);
DCHECK_EQ(fpr->ByteSize(this) % kPageSize, static_cast<size_t>(0));
}
res = fpr;
break;
} else {
++it;
}
}
// Failed to allocate pages. Grow the footprint, if possible.
if (UNLIKELY(res == nullptr && capacity_ > footprint_)) {
FreePageRun* last_free_page_run = nullptr;
size_t last_free_page_run_size;
auto it = free_page_runs_.rbegin();
if (it != free_page_runs_.rend() && (last_free_page_run = *it)->End(this) == base_ + footprint_) {
// There is a free page run at the end.
DCHECK(last_free_page_run->IsFree());
DCHECK(IsFreePage(ToPageMapIndex(last_free_page_run)));
last_free_page_run_size = last_free_page_run->ByteSize(this);
} else {
// There is no free page run at the end.
last_free_page_run_size = 0;
}
DCHECK_LT(last_free_page_run_size, req_byte_size);
if (capacity_ - footprint_ + last_free_page_run_size >= req_byte_size) {
// If we grow the heap, we can allocate it.
size_t increment = std::min(std::max(2 * MB, req_byte_size - last_free_page_run_size),
capacity_ - footprint_);
DCHECK_EQ(increment % kPageSize, static_cast<size_t>(0));
size_t new_footprint = footprint_ + increment;
size_t new_num_of_pages = new_footprint / kPageSize;
DCHECK_LT(page_map_size_, new_num_of_pages);
DCHECK_LT(free_page_run_size_map_.size(), new_num_of_pages);
page_map_size_ = new_num_of_pages;
DCHECK_LE(page_map_size_, max_page_map_size_);
free_page_run_size_map_.resize(new_num_of_pages);
ArtRosAllocMoreCore(this, increment);
if (last_free_page_run_size > 0) {
// There was a free page run at the end. Expand its size.
DCHECK_EQ(last_free_page_run_size, last_free_page_run->ByteSize(this));
last_free_page_run->SetByteSize(this, last_free_page_run_size + increment);
DCHECK_EQ(last_free_page_run->ByteSize(this) % kPageSize, static_cast<size_t>(0));
DCHECK_EQ(last_free_page_run->End(this), base_ + new_footprint);
} else {
// Otherwise, insert a new free page run at the end.
FreePageRun* new_free_page_run = reinterpret_cast<FreePageRun*>(base_ + footprint_);
if (kIsDebugBuild) {
new_free_page_run->magic_num_ = kMagicNumFree;
}
new_free_page_run->SetByteSize(this, increment);
DCHECK_EQ(new_free_page_run->ByteSize(this) % kPageSize, static_cast<size_t>(0));
free_page_runs_.insert(new_free_page_run);
DCHECK_EQ(*free_page_runs_.rbegin(), new_free_page_run);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::AlloPages() : Grew the heap by inserting run 0x"
<< std::hex << reinterpret_cast<intptr_t>(new_free_page_run)
<< " into free_page_runs_";
}
}
DCHECK_LE(footprint_ + increment, capacity_);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::AllocPages() : increased the footprint from "
<< footprint_ << " to " << new_footprint;
}
footprint_ = new_footprint;
// And retry the last free page run.
it = free_page_runs_.rbegin();
DCHECK(it != free_page_runs_.rend());
FreePageRun* fpr = *it;
if (kIsDebugBuild && last_free_page_run_size > 0) {
DCHECK(last_free_page_run != nullptr);
DCHECK_EQ(last_free_page_run, fpr);
}
size_t fpr_byte_size = fpr->ByteSize(this);
DCHECK_EQ(fpr_byte_size % kPageSize, static_cast<size_t>(0));
DCHECK_LE(req_byte_size, fpr_byte_size);
free_page_runs_.erase(fpr);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::AllocPages() : Erased run 0x" << std::hex << reinterpret_cast<intptr_t>(fpr)
<< " from free_page_runs_";
}
if (req_byte_size < fpr_byte_size) {
// Split if there's a remainder.
FreePageRun* remainder = reinterpret_cast<FreePageRun*>(reinterpret_cast<uint8_t*>(fpr) + req_byte_size);
if (kIsDebugBuild) {
remainder->magic_num_ = kMagicNumFree;
}
remainder->SetByteSize(this, fpr_byte_size - req_byte_size);
DCHECK_EQ(remainder->ByteSize(this) % kPageSize, static_cast<size_t>(0));
free_page_runs_.insert(remainder);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::AllocPages() : Inserted run 0x" << std::hex
<< reinterpret_cast<intptr_t>(remainder)
<< " into free_page_runs_";
}
fpr->SetByteSize(this, req_byte_size);
DCHECK_EQ(fpr->ByteSize(this) % kPageSize, static_cast<size_t>(0));
}
res = fpr;
}
}
if (LIKELY(res != nullptr)) {
// Update the page map.
size_t page_map_idx = ToPageMapIndex(res);
for (size_t i = 0; i < num_pages; i++) {
DCHECK(IsFreePage(page_map_idx + i));
}
switch (page_map_type) {
case kPageMapRun:
page_map_[page_map_idx] = kPageMapRun;
for (size_t i = 1; i < num_pages; i++) {
page_map_[page_map_idx + i] = kPageMapRunPart;
}
break;
case kPageMapLargeObject:
page_map_[page_map_idx] = kPageMapLargeObject;
for (size_t i = 1; i < num_pages; i++) {
page_map_[page_map_idx + i] = kPageMapLargeObjectPart;
}
break;
default:
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(page_map_type);
UNREACHABLE();
}
if (kIsDebugBuild) {
// Clear the first page since it is not madvised due to the magic number.
memset(res, 0, kPageSize);
}
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::AllocPages() : 0x" << std::hex << reinterpret_cast<intptr_t>(res)
<< "-0x" << (reinterpret_cast<intptr_t>(res) + num_pages * kPageSize)
<< "(" << std::dec << (num_pages * kPageSize) << ")";
}
return res;
}
// Fail.
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::AllocPages() : nullptr";
}
return nullptr;
}
size_t RosAlloc::FreePages(Thread* self, void* ptr, bool already_zero) {
lock_.AssertHeld(self);
size_t pm_idx = ToPageMapIndex(ptr);
DCHECK_LT(pm_idx, page_map_size_);
uint8_t pm_type = page_map_[pm_idx];
DCHECK(pm_type == kPageMapRun || pm_type == kPageMapLargeObject);
uint8_t pm_part_type;
switch (pm_type) {
case kPageMapRun:
pm_part_type = kPageMapRunPart;
break;
case kPageMapLargeObject:
pm_part_type = kPageMapLargeObjectPart;
break;
default:
LOG(FATAL) << "Unreachable - " << __PRETTY_FUNCTION__ << " : " << "pm_idx=" << pm_idx << ", pm_type="
<< static_cast<int>(pm_type) << ", ptr=" << std::hex
<< reinterpret_cast<intptr_t>(ptr);
UNREACHABLE();
}
// Update the page map and count the number of pages.
size_t num_pages = 1;
page_map_[pm_idx] = kPageMapEmpty;
size_t idx = pm_idx + 1;
size_t end = page_map_size_;
while (idx < end && page_map_[idx] == pm_part_type) {
page_map_[idx] = kPageMapEmpty;
num_pages++;
idx++;
}
const size_t byte_size = num_pages * kPageSize;
if (already_zero) {
if (ShouldCheckZeroMemory()) {
const uintptr_t* word_ptr = reinterpret_cast<uintptr_t*>(ptr);
for (size_t i = 0; i < byte_size / sizeof(uintptr_t); ++i) {
CHECK_EQ(word_ptr[i], 0U) << "words don't match at index " << i;
}
}
} else if (!DoesReleaseAllPages()) {
memset(ptr, 0, byte_size);
}
if (kTraceRosAlloc) {
LOG(INFO) << __PRETTY_FUNCTION__ << " : 0x" << std::hex << reinterpret_cast<intptr_t>(ptr)
<< "-0x" << (reinterpret_cast<intptr_t>(ptr) + byte_size)
<< "(" << std::dec << (num_pages * kPageSize) << ")";
}
// Turn it into a free run.
FreePageRun* fpr = reinterpret_cast<FreePageRun*>(ptr);
if (kIsDebugBuild) {
fpr->magic_num_ = kMagicNumFree;
}
fpr->SetByteSize(this, byte_size);
DCHECK_ALIGNED(fpr->ByteSize(this), kPageSize);
DCHECK(free_page_runs_.find(fpr) == free_page_runs_.end());
if (!free_page_runs_.empty()) {
// Try to coalesce in the higher address direction.
if (kTraceRosAlloc) {
LOG(INFO) << __PRETTY_FUNCTION__ << "RosAlloc::FreePages() : trying to coalesce a free page run 0x"
<< std::hex << reinterpret_cast<uintptr_t>(fpr) << " [" << std::dec << pm_idx << "] -0x"
<< std::hex << reinterpret_cast<uintptr_t>(fpr->End(this)) << " [" << std::dec
<< (fpr->End(this) == End() ? page_map_size_ : ToPageMapIndex(fpr->End(this))) << "]";
}
for (auto it = free_page_runs_.upper_bound(fpr); it != free_page_runs_.end(); ) {
FreePageRun* h = *it;
DCHECK_EQ(h->ByteSize(this) % kPageSize, static_cast<size_t>(0));
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::FreePages() : trying to coalesce with a higher free page run 0x"
<< std::hex << reinterpret_cast<uintptr_t>(h) << " [" << std::dec << ToPageMapIndex(h) << "] -0x"
<< std::hex << reinterpret_cast<uintptr_t>(h->End(this)) << " [" << std::dec
<< (h->End(this) == End() ? page_map_size_ : ToPageMapIndex(h->End(this))) << "]";
}
if (fpr->End(this) == h->Begin()) {
if (kTraceRosAlloc) {
LOG(INFO) << "Success";
}
// Clear magic num since this is no longer the start of a free page run.
if (kIsDebugBuild) {
h->magic_num_ = 0;
}
it = free_page_runs_.erase(it);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::FreePages() : (coalesce) Erased run 0x" << std::hex
<< reinterpret_cast<intptr_t>(h)
<< " from free_page_runs_";
}
fpr->SetByteSize(this, fpr->ByteSize(this) + h->ByteSize(this));
DCHECK_EQ(fpr->ByteSize(this) % kPageSize, static_cast<size_t>(0));
} else {
// Not adjacent. Stop.
if (kTraceRosAlloc) {
LOG(INFO) << "Fail";
}
break;
}
}
// Try to coalesce in the lower address direction.
for (auto it = free_page_runs_.upper_bound(fpr); it != free_page_runs_.begin(); ) {
--it;
FreePageRun* l = *it;
DCHECK_EQ(l->ByteSize(this) % kPageSize, static_cast<size_t>(0));
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::FreePages() : trying to coalesce with a lower free page run 0x"
<< std::hex << reinterpret_cast<uintptr_t>(l) << " [" << std::dec << ToPageMapIndex(l) << "] -0x"
<< std::hex << reinterpret_cast<uintptr_t>(l->End(this)) << " [" << std::dec
<< (l->End(this) == End() ? page_map_size_ : ToPageMapIndex(l->End(this))) << "]";
}
if (l->End(this) == fpr->Begin()) {
if (kTraceRosAlloc) {
LOG(INFO) << "Success";
}
it = free_page_runs_.erase(it);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::FreePages() : (coalesce) Erased run 0x" << std::hex
<< reinterpret_cast<intptr_t>(l)
<< " from free_page_runs_";
}
l->SetByteSize(this, l->ByteSize(this) + fpr->ByteSize(this));
DCHECK_EQ(l->ByteSize(this) % kPageSize, static_cast<size_t>(0));
// Clear magic num since this is no longer the start of a free page run.
if (kIsDebugBuild) {
fpr->magic_num_ = 0;
}
fpr = l;
} else {
// Not adjacent. Stop.
if (kTraceRosAlloc) {
LOG(INFO) << "Fail";
}
break;
}
}
}
// Insert it.
DCHECK_EQ(fpr->ByteSize(this) % kPageSize, static_cast<size_t>(0));
DCHECK(free_page_runs_.find(fpr) == free_page_runs_.end());
DCHECK(fpr->IsFree());
fpr->ReleasePages(this);
DCHECK(fpr->IsFree());
free_page_runs_.insert(fpr);
DCHECK(free_page_runs_.find(fpr) != free_page_runs_.end());
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::FreePages() : Inserted run 0x" << std::hex << reinterpret_cast<intptr_t>(fpr)
<< " into free_page_runs_";
}
return byte_size;
}
void* RosAlloc::AllocLargeObject(Thread* self, size_t size, size_t* bytes_allocated,
size_t* usable_size, size_t* bytes_tl_bulk_allocated) {
DCHECK(bytes_allocated != nullptr);
DCHECK(usable_size != nullptr);
DCHECK_GT(size, kLargeSizeThreshold);
size_t num_pages = RoundUp(size, kPageSize) / kPageSize;
void* r;
{
MutexLock mu(self, lock_);
r = AllocPages(self, num_pages, kPageMapLargeObject);
}
if (UNLIKELY(r == nullptr)) {
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::AllocLargeObject() : nullptr";
}
return nullptr;
}
const size_t total_bytes = num_pages * kPageSize;
*bytes_allocated = total_bytes;
*usable_size = total_bytes;
*bytes_tl_bulk_allocated = total_bytes;
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::AllocLargeObject() : 0x" << std::hex << reinterpret_cast<intptr_t>(r)
<< "-0x" << (reinterpret_cast<intptr_t>(r) + num_pages * kPageSize)
<< "(" << std::dec << (num_pages * kPageSize) << ")";
}
// Check if the returned memory is really all zero.
if (ShouldCheckZeroMemory()) {
CHECK_EQ(total_bytes % sizeof(uintptr_t), 0U);
const uintptr_t* words = reinterpret_cast<uintptr_t*>(r);
for (size_t i = 0; i < total_bytes / sizeof(uintptr_t); ++i) {
CHECK_EQ(words[i], 0U);
}
}
return r;
}
size_t RosAlloc::FreeInternal(Thread* self, void* ptr) {
DCHECK_LE(base_, ptr);
DCHECK_LT(ptr, base_ + footprint_);
size_t pm_idx = RoundDownToPageMapIndex(ptr);
Run* run = nullptr;
{
MutexLock mu(self, lock_);
DCHECK_LT(pm_idx, page_map_size_);
uint8_t page_map_entry = page_map_[pm_idx];
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::FreeInternal() : " << std::hex << ptr << ", pm_idx=" << std::dec << pm_idx
<< ", page_map_entry=" << static_cast<int>(page_map_entry);
}
switch (page_map_[pm_idx]) {
case kPageMapLargeObject:
return FreePages(self, ptr, false);
case kPageMapLargeObjectPart:
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(page_map_[pm_idx]);
UNREACHABLE();
case kPageMapRunPart: {
// Find the beginning of the run.
do {
--pm_idx;
DCHECK_LT(pm_idx, capacity_ / kPageSize);
} while (page_map_[pm_idx] != kPageMapRun);
FALLTHROUGH_INTENDED;
case kPageMapRun:
run = reinterpret_cast<Run*>(base_ + pm_idx * kPageSize);
DCHECK_EQ(run->magic_num_, kMagicNum);
break;
case kPageMapReleased:
case kPageMapEmpty:
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(page_map_[pm_idx]);
UNREACHABLE();
}
default:
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(page_map_[pm_idx]);
UNREACHABLE();
}
}
DCHECK(run != nullptr);
return FreeFromRun(self, ptr, run);
}
size_t RosAlloc::Free(Thread* self, void* ptr) {
ReaderMutexLock rmu(self, bulk_free_lock_);
return FreeInternal(self, ptr);
}
RosAlloc::Run* RosAlloc::AllocRun(Thread* self, size_t idx) {
RosAlloc::Run* new_run = nullptr;
{
MutexLock mu(self, lock_);
new_run = reinterpret_cast<Run*>(AllocPages(self, numOfPages[idx], kPageMapRun));
}
if (LIKELY(new_run != nullptr)) {
if (kIsDebugBuild) {
new_run->magic_num_ = kMagicNum;
}
new_run->size_bracket_idx_ = idx;
DCHECK(!new_run->IsThreadLocal());
DCHECK(!new_run->to_be_bulk_freed_);
if (kUsePrefetchDuringAllocRun && idx < kNumThreadLocalSizeBrackets) {
// Take ownership of the cache lines if we are likely to be thread local run.
if (kPrefetchNewRunDataByZeroing) {
// Zeroing the data is sometimes faster than prefetching but it increases memory usage
// since we end up dirtying zero pages which may have been madvised.
new_run->ZeroData();
} else {
const size_t num_of_slots = numOfSlots[idx];
const size_t bracket_size = bracketSizes[idx];
const size_t num_of_bytes = num_of_slots * bracket_size;
uint8_t* begin = reinterpret_cast<uint8_t*>(new_run) + headerSizes[idx];
for (size_t i = 0; i < num_of_bytes; i += kPrefetchStride) {
__builtin_prefetch(begin + i);
}
}
}
new_run->InitFreeList();
}
return new_run;
}
RosAlloc::Run* RosAlloc::RefillRun(Thread* self, size_t idx) {
// Get the lowest address non-full run from the binary tree.
auto* const bt = &non_full_runs_[idx];
if (!bt->empty()) {
// If there's one, use it as the current run.
auto it = bt->begin();
Run* non_full_run = *it;
DCHECK(non_full_run != nullptr);
DCHECK(!non_full_run->IsThreadLocal());
bt->erase(it);
return non_full_run;
}
// If there's none, allocate a new run and use it as the current run.
return AllocRun(self, idx);
}
inline void* RosAlloc::AllocFromCurrentRunUnlocked(Thread* self, size_t idx) {
Run* current_run = current_runs_[idx];
DCHECK(current_run != nullptr);
void* slot_addr = current_run->AllocSlot();
if (UNLIKELY(slot_addr == nullptr)) {
// The current run got full. Try to refill it.
DCHECK(current_run->IsFull());
if (kIsDebugBuild && current_run != dedicated_full_run_) {
full_runs_[idx].insert(current_run);
if (kTraceRosAlloc) {
LOG(INFO) << __PRETTY_FUNCTION__ << " : Inserted run 0x" << std::hex
<< reinterpret_cast<intptr_t>(current_run)
<< " into full_runs_[" << std::dec << idx << "]";
}
DCHECK(non_full_runs_[idx].find(current_run) == non_full_runs_[idx].end());
DCHECK(full_runs_[idx].find(current_run) != full_runs_[idx].end());
}
current_run = RefillRun(self, idx);
if (UNLIKELY(current_run == nullptr)) {
// Failed to allocate a new run, make sure that it is the dedicated full run.
current_runs_[idx] = dedicated_full_run_;
return nullptr;
}
DCHECK(current_run != nullptr);
DCHECK(non_full_runs_[idx].find(current_run) == non_full_runs_[idx].end());
DCHECK(full_runs_[idx].find(current_run) == full_runs_[idx].end());
current_run->SetIsThreadLocal(false);
current_runs_[idx] = current_run;
DCHECK(!current_run->IsFull());
slot_addr = current_run->AllocSlot();
// Must succeed now with a new run.
DCHECK(slot_addr != nullptr);
}
return slot_addr;
}
void* RosAlloc::AllocFromRunThreadUnsafe(Thread* self, size_t size, size_t* bytes_allocated,
size_t* usable_size,
size_t* bytes_tl_bulk_allocated) {
DCHECK(bytes_allocated != nullptr);
DCHECK(usable_size != nullptr);
DCHECK(bytes_tl_bulk_allocated != nullptr);
DCHECK_LE(size, kLargeSizeThreshold);
size_t bracket_size;
size_t idx = SizeToIndexAndBracketSize(size, &bracket_size);
Locks::mutator_lock_->AssertExclusiveHeld(self);
void* slot_addr = AllocFromCurrentRunUnlocked(self, idx);
if (LIKELY(slot_addr != nullptr)) {
*bytes_allocated = bracket_size;
*usable_size = bracket_size;
*bytes_tl_bulk_allocated = bracket_size;
}
// Caller verifies that it is all 0.
return slot_addr;
}
void* RosAlloc::AllocFromRun(Thread* self, size_t size, size_t* bytes_allocated,
size_t* usable_size, size_t* bytes_tl_bulk_allocated) {
DCHECK(bytes_allocated != nullptr);
DCHECK(usable_size != nullptr);
DCHECK(bytes_tl_bulk_allocated != nullptr);
DCHECK_LE(size, kLargeSizeThreshold);
size_t bracket_size;
size_t idx = SizeToIndexAndBracketSize(size, &bracket_size);
void* slot_addr;
if (LIKELY(idx < kNumThreadLocalSizeBrackets)) {
// Use a thread-local run.
Run* thread_local_run = reinterpret_cast<Run*>(self->GetRosAllocRun(idx));
// Allow invalid since this will always fail the allocation.
if (kIsDebugBuild) {
// Need the lock to prevent race conditions.
MutexLock mu(self, *size_bracket_locks_[idx]);
CHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end());
CHECK(full_runs_[idx].find(thread_local_run) == full_runs_[idx].end());
}
DCHECK(thread_local_run != nullptr);
DCHECK(thread_local_run->IsThreadLocal() || thread_local_run == dedicated_full_run_);
slot_addr = thread_local_run->AllocSlot();
// The allocation must fail if the run is invalid.
DCHECK(thread_local_run != dedicated_full_run_ || slot_addr == nullptr)
<< "allocated from an invalid run";
if (UNLIKELY(slot_addr == nullptr)) {
// The run got full. Try to free slots.
DCHECK(thread_local_run->IsFull());
MutexLock mu(self, *size_bracket_locks_[idx]);
bool is_all_free_after_merge;
// This is safe to do for the dedicated_full_run_ since the bitmaps are empty.
if (thread_local_run->MergeThreadLocalFreeListToFreeList(&is_all_free_after_merge)) {
DCHECK_NE(thread_local_run, dedicated_full_run_);
// Some slot got freed. Keep it.
DCHECK(!thread_local_run->IsFull());
DCHECK_EQ(is_all_free_after_merge, thread_local_run->IsAllFree());
} else {
// No slots got freed. Try to refill the thread-local run.
DCHECK(thread_local_run->IsFull());
if (thread_local_run != dedicated_full_run_) {
thread_local_run->SetIsThreadLocal(false);
if (kIsDebugBuild) {
full_runs_[idx].insert(thread_local_run);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::AllocFromRun() : Inserted run 0x" << std::hex
<< reinterpret_cast<intptr_t>(thread_local_run)
<< " into full_runs_[" << std::dec << idx << "]";
}
}
DCHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end());
DCHECK(full_runs_[idx].find(thread_local_run) != full_runs_[idx].end());
}
thread_local_run = RefillRun(self, idx);
if (UNLIKELY(thread_local_run == nullptr)) {
self->SetRosAllocRun(idx, dedicated_full_run_);
return nullptr;
}
DCHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end());
DCHECK(full_runs_[idx].find(thread_local_run) == full_runs_[idx].end());
thread_local_run->SetIsThreadLocal(true);
self->SetRosAllocRun(idx, thread_local_run);
DCHECK(!thread_local_run->IsFull());
}
DCHECK(thread_local_run != nullptr);
DCHECK(!thread_local_run->IsFull());
DCHECK(thread_local_run->IsThreadLocal());
// Account for all the free slots in the new or refreshed thread local run.
*bytes_tl_bulk_allocated = thread_local_run->NumberOfFreeSlots() * bracket_size;
slot_addr = thread_local_run->AllocSlot();
// Must succeed now with a new run.
DCHECK(slot_addr != nullptr);
} else {
// The slot is already counted. Leave it as is.
*bytes_tl_bulk_allocated = 0;
}
DCHECK(slot_addr != nullptr);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::AllocFromRun() thread-local : 0x" << std::hex
<< reinterpret_cast<intptr_t>(slot_addr)
<< "-0x" << (reinterpret_cast<intptr_t>(slot_addr) + bracket_size)
<< "(" << std::dec << (bracket_size) << ")";
}
*bytes_allocated = bracket_size;
*usable_size = bracket_size;
} else {
// Use the (shared) current run.
MutexLock mu(self, *size_bracket_locks_[idx]);
slot_addr = AllocFromCurrentRunUnlocked(self, idx);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::AllocFromRun() : 0x" << std::hex
<< reinterpret_cast<intptr_t>(slot_addr)
<< "-0x" << (reinterpret_cast<intptr_t>(slot_addr) + bracket_size)
<< "(" << std::dec << (bracket_size) << ")";
}
if (LIKELY(slot_addr != nullptr)) {
*bytes_allocated = bracket_size;
*usable_size = bracket_size;
*bytes_tl_bulk_allocated = bracket_size;
}
}
// Caller verifies that it is all 0.
return slot_addr;
}
size_t RosAlloc::FreeFromRun(Thread* self, void* ptr, Run* run) {
DCHECK_EQ(run->magic_num_, kMagicNum);
DCHECK_LT(run, ptr);
DCHECK_LT(ptr, run->End());
const size_t idx = run->size_bracket_idx_;
const size_t bracket_size = bracketSizes[idx];
bool run_was_full = false;
MutexLock brackets_mu(self, *size_bracket_locks_[idx]);
if (kIsDebugBuild) {
run_was_full = run->IsFull();
}
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::FreeFromRun() : 0x" << std::hex << reinterpret_cast<intptr_t>(ptr);
}
if (LIKELY(run->IsThreadLocal())) {
// It's a thread-local run. Just mark the thread-local free bit map and return.
DCHECK_LT(run->size_bracket_idx_, kNumThreadLocalSizeBrackets);
DCHECK(non_full_runs_[idx].find(run) == non_full_runs_[idx].end());
DCHECK(full_runs_[idx].find(run) == full_runs_[idx].end());
run->AddToThreadLocalFreeList(ptr);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::FreeFromRun() : Freed a slot in a thread local run 0x" << std::hex
<< reinterpret_cast<intptr_t>(run);
}
// A thread local run will be kept as a thread local even if it's become all free.
return bracket_size;
}
// Free the slot in the run.
run->FreeSlot(ptr);
auto* non_full_runs = &non_full_runs_[idx];
if (run->IsAllFree()) {
// It has just become completely free. Free the pages of this run.
std::set<Run*>::iterator pos = non_full_runs->find(run);
if (pos != non_full_runs->end()) {
non_full_runs->erase(pos);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::FreeFromRun() : Erased run 0x" << std::hex
<< reinterpret_cast<intptr_t>(run) << " from non_full_runs_";
}
}
if (run == current_runs_[idx]) {
current_runs_[idx] = dedicated_full_run_;
}
DCHECK(non_full_runs_[idx].find(run) == non_full_runs_[idx].end());
DCHECK(full_runs_[idx].find(run) == full_runs_[idx].end());
run->ZeroHeaderAndSlotHeaders();
{
MutexLock lock_mu(self, lock_);
FreePages(self, run, true);
}
} else {
// It is not completely free. If it wasn't the current run or
// already in the non-full run set (i.e., it was full) insert it
// into the non-full run set.
if (run != current_runs_[idx]) {
auto* full_runs = kIsDebugBuild ? &full_runs_[idx] : nullptr;
auto pos = non_full_runs->find(run);
if (pos == non_full_runs->end()) {
DCHECK(run_was_full);
DCHECK(full_runs->find(run) != full_runs->end());
if (kIsDebugBuild) {
full_runs->erase(run);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::FreeFromRun() : Erased run 0x" << std::hex
<< reinterpret_cast<intptr_t>(run) << " from full_runs_";
}
}
non_full_runs->insert(run);
DCHECK(!run->IsFull());
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::FreeFromRun() : Inserted run 0x" << std::hex
<< reinterpret_cast<intptr_t>(run)
<< " into non_full_runs_[" << std::dec << idx << "]";
}
}
}
}
return bracket_size;
}
template<bool kUseTail>
std::string RosAlloc::Run::FreeListToStr(SlotFreeList<kUseTail>* free_list) {
std::string free_list_str;
const uint8_t idx = size_bracket_idx_;
const size_t bracket_size = bracketSizes[idx];
for (Slot* slot = free_list->Head(); slot != nullptr; slot = slot->Next()) {
bool is_last = slot->Next() == nullptr;
uintptr_t slot_offset = reinterpret_cast<uintptr_t>(slot) -
reinterpret_cast<uintptr_t>(FirstSlot());
DCHECK_EQ(slot_offset % bracket_size, 0U);
uintptr_t slot_idx = slot_offset / bracket_size;
if (!is_last) {
free_list_str.append(StringPrintf("%u-", static_cast<uint32_t>(slot_idx)));
} else {
free_list_str.append(StringPrintf("%u", static_cast<uint32_t>(slot_idx)));
}
}
return free_list_str;
}
std::string RosAlloc::Run::Dump() {
size_t idx = size_bracket_idx_;
std::ostringstream stream;
stream << "RosAlloc Run = " << reinterpret_cast<void*>(this)
<< "{ magic_num=" << static_cast<int>(magic_num_)
<< " size_bracket_idx=" << idx
<< " is_thread_local=" << static_cast<int>(is_thread_local_)
<< " to_be_bulk_freed=" << static_cast<int>(to_be_bulk_freed_)
<< " free_list=" << FreeListToStr(&free_list_)
<< " bulk_free_list=" << FreeListToStr(&bulk_free_list_)
<< " thread_local_list=" << FreeListToStr(&thread_local_free_list_)
<< " }" << std::endl;
return stream.str();
}
void RosAlloc::Run::FreeSlot(void* ptr) {
DCHECK(!IsThreadLocal());
const uint8_t idx = size_bracket_idx_;
const size_t bracket_size = bracketSizes[idx];
Slot* slot = ToSlot(ptr);
// Zero out the memory.
// TODO: Investigate alternate memset since ptr is guaranteed to be aligned to 16.
memset(slot, 0, bracket_size);
free_list_.Add(slot);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::Run::FreeSlot() : " << slot
<< ", bracket_size=" << std::dec << bracket_size << ", slot_idx=" << SlotIndex(slot);
}
}
inline bool RosAlloc::Run::MergeThreadLocalFreeListToFreeList(bool* is_all_free_after_out) {
DCHECK(IsThreadLocal());
// Merge the thread local free list into the free list and clear the thread local free list.
const uint8_t idx = size_bracket_idx_;
size_t thread_local_free_list_size = thread_local_free_list_.Size();
const size_t size_before = free_list_.Size();
free_list_.Merge(&thread_local_free_list_);
const size_t size_after = free_list_.Size();
DCHECK_EQ(size_before < size_after, thread_local_free_list_size > 0);
DCHECK_LE(size_before, size_after);
*is_all_free_after_out = free_list_.Size() == numOfSlots[idx];
// Return true at least one slot was added to the free list.
return size_before < size_after;
}
inline void RosAlloc::Run::MergeBulkFreeListToFreeList() {
DCHECK(!IsThreadLocal());
// Merge the bulk free list into the free list and clear the bulk free list.
free_list_.Merge(&bulk_free_list_);
}
inline void RosAlloc::Run::MergeBulkFreeListToThreadLocalFreeList() {
DCHECK(IsThreadLocal());
// Merge the bulk free list into the thread local free list and clear the bulk free list.
thread_local_free_list_.Merge(&bulk_free_list_);
}
inline void RosAlloc::Run::AddToThreadLocalFreeList(void* ptr) {
DCHECK(IsThreadLocal());
AddToFreeListShared(ptr, &thread_local_free_list_, __FUNCTION__);
}
inline size_t RosAlloc::Run::AddToBulkFreeList(void* ptr) {
return AddToFreeListShared(ptr, &bulk_free_list_, __FUNCTION__);
}
inline size_t RosAlloc::Run::AddToFreeListShared(void* ptr,
SlotFreeList<true>* free_list,
const char* caller_name) {
const uint8_t idx = size_bracket_idx_;
const size_t bracket_size = bracketSizes[idx];
Slot* slot = ToSlot(ptr);
memset(slot, 0, bracket_size);
free_list->Add(slot);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::Run::" << caller_name << "() : " << ptr
<< ", bracket_size=" << std::dec << bracket_size << ", slot_idx=" << SlotIndex(slot);
}
return bracket_size;
}
inline void RosAlloc::Run::ZeroHeaderAndSlotHeaders() {
DCHECK(IsAllFree());
const uint8_t idx = size_bracket_idx_;
// Zero the slot header (next pointers).
for (Slot* slot = free_list_.Head(); slot != nullptr; ) {
Slot* next_slot = slot->Next();
slot->Clear();
slot = next_slot;
}
// Zero the header.
memset(this, 0, headerSizes[idx]);
// Check that the entire run is all zero.
if (kIsDebugBuild) {
const size_t size = numOfPages[idx] * kPageSize;
const uintptr_t* word_ptr = reinterpret_cast<uintptr_t*>(this);
for (size_t i = 0; i < size / sizeof(uintptr_t); ++i) {
CHECK_EQ(word_ptr[i], 0U) << "words don't match at index " << i;
}
}
}
inline void RosAlloc::Run::ZeroData() {
const uint8_t idx = size_bracket_idx_;
uint8_t* slot_begin = reinterpret_cast<uint8_t*>(FirstSlot());
memset(slot_begin, 0, numOfSlots[idx] * bracketSizes[idx]);
}
void RosAlloc::Run::InspectAllSlots(void (*handler)(void* start, void* end, size_t used_bytes, void* callback_arg),
void* arg) {
size_t idx = size_bracket_idx_;
uint8_t* slot_base = reinterpret_cast<uint8_t*>(this) + headerSizes[idx];
size_t num_slots = numOfSlots[idx];
size_t bracket_size = IndexToBracketSize(idx);
DCHECK_EQ(slot_base + num_slots * bracket_size,
reinterpret_cast<uint8_t*>(this) + numOfPages[idx] * kPageSize);
// Free slots are on the free list and the allocated/used slots are not. We traverse the free list
// to find out and record which slots are free in the is_free array.
std::unique_ptr<bool[]> is_free(new bool[num_slots]()); // zero initialized
for (Slot* slot = free_list_.Head(); slot != nullptr; slot = slot->Next()) {
size_t slot_idx = SlotIndex(slot);
DCHECK_LT(slot_idx, num_slots);
is_free[slot_idx] = true;
}
if (IsThreadLocal()) {
for (Slot* slot = thread_local_free_list_.Head(); slot != nullptr; slot = slot->Next()) {
size_t slot_idx = SlotIndex(slot);
DCHECK_LT(slot_idx, num_slots);
is_free[slot_idx] = true;
}
}
for (size_t slot_idx = 0; slot_idx < num_slots; ++slot_idx) {
uint8_t* slot_addr = slot_base + slot_idx * bracket_size;
if (!is_free[slot_idx]) {
handler(slot_addr, slot_addr + bracket_size, bracket_size, arg);
} else {
handler(slot_addr, slot_addr + bracket_size, 0, arg);
}
}
}
// If true, read the page map entries in BulkFree() without using the
// lock for better performance, assuming that the existence of an
// allocated chunk/pointer being freed in BulkFree() guarantees that
// the page map entry won't change.
static constexpr bool kReadPageMapEntryWithoutLockInBulkFree = true;
size_t RosAlloc::BulkFree(Thread* self, void** ptrs, size_t num_ptrs) {
size_t freed_bytes = 0;
if ((false)) {
// Used only to test Free() as GC uses only BulkFree().
for (size_t i = 0; i < num_ptrs; ++i) {
freed_bytes += FreeInternal(self, ptrs[i]);
}
return freed_bytes;
}
WriterMutexLock wmu(self, bulk_free_lock_);
// First mark slots to free in the bulk free bit map without locking the
// size bracket locks. On host, unordered_set is faster than vector + flag.
#ifdef ART_TARGET_ANDROID
std::vector<Run*> runs;
#else
std::unordered_set<Run*, hash_run, eq_run> runs;
#endif
for (size_t i = 0; i < num_ptrs; i++) {
void* ptr = ptrs[i];
DCHECK_LE(base_, ptr);
DCHECK_LT(ptr, base_ + footprint_);
size_t pm_idx = RoundDownToPageMapIndex(ptr);
Run* run = nullptr;
if (kReadPageMapEntryWithoutLockInBulkFree) {
// Read the page map entries without locking the lock.
uint8_t page_map_entry = page_map_[pm_idx];
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::BulkFree() : " << std::hex << ptr << ", pm_idx="
<< std::dec << pm_idx
<< ", page_map_entry=" << static_cast<int>(page_map_entry);
}
if (LIKELY(page_map_entry == kPageMapRun)) {
run = reinterpret_cast<Run*>(base_ + pm_idx * kPageSize);
} else if (LIKELY(page_map_entry == kPageMapRunPart)) {
size_t pi = pm_idx;
// Find the beginning of the run.
do {
--pi;
DCHECK_LT(pi, capacity_ / kPageSize);
} while (page_map_[pi] != kPageMapRun);
run = reinterpret_cast<Run*>(base_ + pi * kPageSize);
} else if (page_map_entry == kPageMapLargeObject) {
MutexLock mu(self, lock_);
freed_bytes += FreePages(self, ptr, false);
continue;
} else {
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(page_map_entry);
}
} else {
// Read the page map entries with a lock.
MutexLock mu(self, lock_);
DCHECK_LT(pm_idx, page_map_size_);
uint8_t page_map_entry = page_map_[pm_idx];
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::BulkFree() : " << std::hex << ptr << ", pm_idx="
<< std::dec << pm_idx
<< ", page_map_entry=" << static_cast<int>(page_map_entry);
}
if (LIKELY(page_map_entry == kPageMapRun)) {
run = reinterpret_cast<Run*>(base_ + pm_idx * kPageSize);
} else if (LIKELY(page_map_entry == kPageMapRunPart)) {
size_t pi = pm_idx;
// Find the beginning of the run.
do {
--pi;
DCHECK_LT(pi, capacity_ / kPageSize);
} while (page_map_[pi] != kPageMapRun);
run = reinterpret_cast<Run*>(base_ + pi * kPageSize);
} else if (page_map_entry == kPageMapLargeObject) {
freed_bytes += FreePages(self, ptr, false);
continue;
} else {
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(page_map_entry);
}
}
DCHECK(run != nullptr);
DCHECK_EQ(run->magic_num_, kMagicNum);
// Set the bit in the bulk free bit map.
freed_bytes += run->AddToBulkFreeList(ptr);
#ifdef ART_TARGET_ANDROID
if (!run->to_be_bulk_freed_) {
run->to_be_bulk_freed_ = true;
runs.push_back(run);
}
#else
runs.insert(run);
#endif
}
// Now, iterate over the affected runs and update the alloc bit map
// based on the bulk free bit map (for non-thread-local runs) and
// union the bulk free bit map into the thread-local free bit map
// (for thread-local runs.)
for (Run* run : runs) {
#ifdef ART_TARGET_ANDROID
DCHECK(run->to_be_bulk_freed_);
run->to_be_bulk_freed_ = false;
#endif
size_t idx = run->size_bracket_idx_;
MutexLock brackets_mu(self, *size_bracket_locks_[idx]);
if (run->IsThreadLocal()) {
DCHECK_LT(run->size_bracket_idx_, kNumThreadLocalSizeBrackets);
DCHECK(non_full_runs_[idx].find(run) == non_full_runs_[idx].end());
DCHECK(full_runs_[idx].find(run) == full_runs_[idx].end());
run->MergeBulkFreeListToThreadLocalFreeList();
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::BulkFree() : Freed slot(s) in a thread local run 0x"
<< std::hex << reinterpret_cast<intptr_t>(run);
}
DCHECK(run->IsThreadLocal());
// A thread local run will be kept as a thread local even if
// it's become all free.
} else {
bool run_was_full = run->IsFull();
run->MergeBulkFreeListToFreeList();
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::BulkFree() : Freed slot(s) in a run 0x" << std::hex
<< reinterpret_cast<intptr_t>(run);
}
// Check if the run should be moved to non_full_runs_ or
// free_page_runs_.
auto* non_full_runs = &non_full_runs_[idx];
auto* full_runs = kIsDebugBuild ? &full_runs_[idx] : nullptr;
if (run->IsAllFree()) {
// It has just become completely free. Free the pages of the
// run.
bool run_was_current = run == current_runs_[idx];
if (run_was_current) {
DCHECK(full_runs->find(run) == full_runs->end());
DCHECK(non_full_runs->find(run) == non_full_runs->end());
// If it was a current run, reuse it.
} else if (run_was_full) {
// If it was full, remove it from the full run set (debug
// only.)
if (kIsDebugBuild) {
std::unordered_set<Run*, hash_run, eq_run>::iterator pos = full_runs->find(run);
DCHECK(pos != full_runs->end());
full_runs->erase(pos);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::BulkFree() : Erased run 0x" << std::hex
<< reinterpret_cast<intptr_t>(run)
<< " from full_runs_";
}
DCHECK(full_runs->find(run) == full_runs->end());
}
} else {
// If it was in a non full run set, remove it from the set.
DCHECK(full_runs->find(run) == full_runs->end());
DCHECK(non_full_runs->find(run) != non_full_runs->end());
non_full_runs->erase(run);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::BulkFree() : Erased run 0x" << std::hex
<< reinterpret_cast<intptr_t>(run)
<< " from non_full_runs_";
}
DCHECK(non_full_runs->find(run) == non_full_runs->end());
}
if (!run_was_current) {
run->ZeroHeaderAndSlotHeaders();
MutexLock lock_mu(self, lock_);
FreePages(self, run, true);
}
} else {
// It is not completely free. If it wasn't the current run or
// already in the non-full run set (i.e., it was full) insert
// it into the non-full run set.
if (run == current_runs_[idx]) {
DCHECK(non_full_runs->find(run) == non_full_runs->end());
DCHECK(full_runs->find(run) == full_runs->end());
// If it was a current run, keep it.
} else if (run_was_full) {
// If it was full, remove it from the full run set (debug
// only) and insert into the non-full run set.
DCHECK(full_runs->find(run) != full_runs->end());
DCHECK(non_full_runs->find(run) == non_full_runs->end());
if (kIsDebugBuild) {
full_runs->erase(run);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::BulkFree() : Erased run 0x" << std::hex
<< reinterpret_cast<intptr_t>(run)
<< " from full_runs_";
}
}
non_full_runs->insert(run);
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::BulkFree() : Inserted run 0x" << std::hex
<< reinterpret_cast<intptr_t>(run)
<< " into non_full_runs_[" << std::dec << idx;
}
} else {
// If it was not full, so leave it in the non full run set.
DCHECK(full_runs->find(run) == full_runs->end());
DCHECK(non_full_runs->find(run) != non_full_runs->end());
}
}
}
}
return freed_bytes;
}
std::string RosAlloc::DumpPageMap() {
std::ostringstream stream;
stream << "RosAlloc PageMap: " << std::endl;
lock_.AssertHeld(Thread::Current());
size_t end = page_map_size_;
FreePageRun* curr_fpr = nullptr;
size_t curr_fpr_size = 0;
size_t remaining_curr_fpr_size = 0;
size_t num_running_empty_pages = 0;
for (size_t i = 0; i < end; ++i) {
uint8_t pm = page_map_[i];
switch (pm) {
case kPageMapReleased:
// Fall-through.
case kPageMapEmpty: {
FreePageRun* fpr = reinterpret_cast<FreePageRun*>(base_ + i * kPageSize);
if (free_page_runs_.find(fpr) != free_page_runs_.end()) {
// Encountered a fresh free page run.
DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0));
DCHECK(fpr->IsFree());
DCHECK(curr_fpr == nullptr);
DCHECK_EQ(curr_fpr_size, static_cast<size_t>(0));
curr_fpr = fpr;
curr_fpr_size = fpr->ByteSize(this);
DCHECK_EQ(curr_fpr_size % kPageSize, static_cast<size_t>(0));
remaining_curr_fpr_size = curr_fpr_size - kPageSize;
stream << "[" << i << "]=" << (pm == kPageMapReleased ? "Released" : "Empty")
<< " (FPR start) fpr_size=" << curr_fpr_size
<< " remaining_fpr_size=" << remaining_curr_fpr_size << std::endl;
if (remaining_curr_fpr_size == 0) {
// Reset at the end of the current free page run.
curr_fpr = nullptr;
curr_fpr_size = 0;
}
stream << "curr_fpr=0x" << std::hex << reinterpret_cast<intptr_t>(curr_fpr) << std::endl;
DCHECK_EQ(num_running_empty_pages, static_cast<size_t>(0));
} else {
// Still part of the current free page run.
DCHECK_NE(num_running_empty_pages, static_cast<size_t>(0));
DCHECK(curr_fpr != nullptr && curr_fpr_size > 0 && remaining_curr_fpr_size > 0);
DCHECK_EQ(remaining_curr_fpr_size % kPageSize, static_cast<size_t>(0));
DCHECK_GE(remaining_curr_fpr_size, static_cast<size_t>(kPageSize));
remaining_curr_fpr_size -= kPageSize;
stream << "[" << i << "]=Empty (FPR part)"
<< " remaining_fpr_size=" << remaining_curr_fpr_size << std::endl;
if (remaining_curr_fpr_size == 0) {
// Reset at the end of the current free page run.
curr_fpr = nullptr;
curr_fpr_size = 0;
}
}
num_running_empty_pages++;
break;
}
case kPageMapLargeObject: {
DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0));
num_running_empty_pages = 0;
stream << "[" << i << "]=Large (start)" << std::endl;
break;
}
case kPageMapLargeObjectPart:
DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0));
num_running_empty_pages = 0;
stream << "[" << i << "]=Large (part)" << std::endl;
break;
case kPageMapRun: {
DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0));
num_running_empty_pages = 0;
Run* run = reinterpret_cast<Run*>(base_ + i * kPageSize);
size_t idx = run->size_bracket_idx_;
stream << "[" << i << "]=Run (start)"
<< " idx=" << idx
<< " numOfPages=" << numOfPages[idx]
<< " is_thread_local=" << run->is_thread_local_
<< " is_all_free=" << (run->IsAllFree() ? 1 : 0)
<< std::endl;
break;
}
case kPageMapRunPart:
DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0));
num_running_empty_pages = 0;
stream << "[" << i << "]=Run (part)" << std::endl;
break;
default:
stream << "[" << i << "]=Unrecognizable page map type: " << pm;
break;
}
}
return stream.str();
}
size_t RosAlloc::UsableSize(const void* ptr) {
DCHECK_LE(base_, ptr);
DCHECK_LT(ptr, base_ + footprint_);
size_t pm_idx = RoundDownToPageMapIndex(ptr);
MutexLock mu(Thread::Current(), lock_);
switch (page_map_[pm_idx]) {
case kPageMapReleased:
// Fall-through.
case kPageMapEmpty:
LOG(FATAL) << "Unreachable - " << __PRETTY_FUNCTION__ << ": pm_idx=" << pm_idx << ", ptr="
<< std::hex << reinterpret_cast<intptr_t>(ptr);
UNREACHABLE();
case kPageMapLargeObject: {
size_t num_pages = 1;
size_t idx = pm_idx + 1;
size_t end = page_map_size_;
while (idx < end && page_map_[idx] == kPageMapLargeObjectPart) {
num_pages++;
idx++;
}
return num_pages * kPageSize;
}
case kPageMapLargeObjectPart:
LOG(FATAL) << "Unreachable - " << __PRETTY_FUNCTION__ << ": pm_idx=" << pm_idx << ", ptr="
<< std::hex << reinterpret_cast<intptr_t>(ptr);
UNREACHABLE();
case kPageMapRun:
case kPageMapRunPart: {
// Find the beginning of the run.
while (page_map_[pm_idx] != kPageMapRun) {
pm_idx--;
DCHECK_LT(pm_idx, capacity_ / kPageSize);
}
DCHECK_EQ(page_map_[pm_idx], kPageMapRun);
Run* run = reinterpret_cast<Run*>(base_ + pm_idx * kPageSize);
DCHECK_EQ(run->magic_num_, kMagicNum);
size_t idx = run->size_bracket_idx_;
size_t offset_from_slot_base = reinterpret_cast<const uint8_t*>(ptr)
- (reinterpret_cast<uint8_t*>(run) + headerSizes[idx]);
DCHECK_EQ(offset_from_slot_base % bracketSizes[idx], static_cast<size_t>(0));
return IndexToBracketSize(idx);
}
default: {
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(page_map_[pm_idx]);
UNREACHABLE();
}
}
}
bool RosAlloc::Trim() {
MutexLock mu(Thread::Current(), lock_);
FreePageRun* last_free_page_run;
DCHECK_EQ(footprint_ % kPageSize, static_cast<size_t>(0));
auto it = free_page_runs_.rbegin();
if (it != free_page_runs_.rend() && (last_free_page_run = *it)->End(this) == base_ + footprint_) {
// Remove the last free page run, if any.
DCHECK(last_free_page_run->IsFree());
DCHECK(IsFreePage(ToPageMapIndex(last_free_page_run)));
DCHECK_EQ(last_free_page_run->ByteSize(this) % kPageSize, static_cast<size_t>(0));
DCHECK_EQ(last_free_page_run->End(this), base_ + footprint_);
free_page_runs_.erase(last_free_page_run);
size_t decrement = last_free_page_run->ByteSize(this);
size_t new_footprint = footprint_ - decrement;
DCHECK_EQ(new_footprint % kPageSize, static_cast<size_t>(0));
size_t new_num_of_pages = new_footprint / kPageSize;
DCHECK_GE(page_map_size_, new_num_of_pages);
// Zero out the tail of the page map.
uint8_t* zero_begin = const_cast<uint8_t*>(page_map_) + new_num_of_pages;
uint8_t* madvise_begin = AlignUp(zero_begin, kPageSize);
DCHECK_LE(madvise_begin, page_map_mem_map_.End());
size_t madvise_size = page_map_mem_map_.End() - madvise_begin;
if (madvise_size > 0) {
DCHECK_ALIGNED(madvise_begin, kPageSize);
DCHECK_EQ(RoundUp(madvise_size, kPageSize), madvise_size);
if (!kMadviseZeroes) {
memset(madvise_begin, 0, madvise_size);
}
CHECK_EQ(madvise(madvise_begin, madvise_size, MADV_DONTNEED), 0);
}
if (madvise_begin - zero_begin) {
memset(zero_begin, 0, madvise_begin - zero_begin);
}
page_map_size_ = new_num_of_pages;
free_page_run_size_map_.resize(new_num_of_pages);
DCHECK_EQ(free_page_run_size_map_.size(), new_num_of_pages);
ArtRosAllocMoreCore(this, -(static_cast<intptr_t>(decrement)));
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::Trim() : decreased the footprint from "
<< footprint_ << " to " << new_footprint;
}
DCHECK_LT(new_footprint, footprint_);
DCHECK_LT(new_footprint, capacity_);
footprint_ = new_footprint;
return true;
}
return false;
}
void RosAlloc::InspectAll(void (*handler)(void* start, void* end, size_t used_bytes, void* callback_arg),
void* arg) {
// Note: no need to use this to release pages as we already do so in FreePages().
if (handler == nullptr) {
return;
}
MutexLock mu(Thread::Current(), lock_);
size_t pm_end = page_map_size_;
size_t i = 0;
while (i < pm_end) {
uint8_t pm = page_map_[i];
switch (pm) {
case kPageMapReleased:
// Fall-through.
case kPageMapEmpty: {
// The start of a free page run.
FreePageRun* fpr = reinterpret_cast<FreePageRun*>(base_ + i * kPageSize);
DCHECK(free_page_runs_.find(fpr) != free_page_runs_.end());
size_t fpr_size = fpr->ByteSize(this);
DCHECK_ALIGNED(fpr_size, kPageSize);
void* start = fpr;
if (kIsDebugBuild) {
// In the debug build, the first page of a free page run
// contains a magic number for debugging. Exclude it.
start = reinterpret_cast<uint8_t*>(fpr) + kPageSize;
}
void* end = reinterpret_cast<uint8_t*>(fpr) + fpr_size;
handler(start, end, 0, arg);
size_t num_pages = fpr_size / kPageSize;
if (kIsDebugBuild) {
for (size_t j = i + 1; j < i + num_pages; ++j) {
DCHECK(IsFreePage(j));
}
}
i += fpr_size / kPageSize;
DCHECK_LE(i, pm_end);
break;
}
case kPageMapLargeObject: {
// The start of a large object.
size_t num_pages = 1;
size_t idx = i + 1;
while (idx < pm_end && page_map_[idx] == kPageMapLargeObjectPart) {
num_pages++;
idx++;
}
void* start = base_ + i * kPageSize;
void* end = base_ + (i + num_pages) * kPageSize;
size_t used_bytes = num_pages * kPageSize;
handler(start, end, used_bytes, arg);
if (kIsDebugBuild) {
for (size_t j = i + 1; j < i + num_pages; ++j) {
DCHECK_EQ(page_map_[j], kPageMapLargeObjectPart);
}
}
i += num_pages;
DCHECK_LE(i, pm_end);
break;
}
case kPageMapLargeObjectPart:
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(pm);
UNREACHABLE();
case kPageMapRun: {
// The start of a run.
Run* run = reinterpret_cast<Run*>(base_ + i * kPageSize);
DCHECK_EQ(run->magic_num_, kMagicNum);
// The dedicated full run doesn't contain any real allocations, don't visit the slots in
// there.
run->InspectAllSlots(handler, arg);
size_t num_pages = numOfPages[run->size_bracket_idx_];
if (kIsDebugBuild) {
for (size_t j = i + 1; j < i + num_pages; ++j) {
DCHECK_EQ(page_map_[j], kPageMapRunPart);
}
}
i += num_pages;
DCHECK_LE(i, pm_end);
break;
}
case kPageMapRunPart:
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(pm);
UNREACHABLE();
default:
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(pm);
UNREACHABLE();
}
}
}
size_t RosAlloc::Footprint() {
MutexLock mu(Thread::Current(), lock_);
return footprint_;
}
size_t RosAlloc::FootprintLimit() {
MutexLock mu(Thread::Current(), lock_);
return capacity_;
}
void RosAlloc::SetFootprintLimit(size_t new_capacity) {
MutexLock mu(Thread::Current(), lock_);
DCHECK_EQ(RoundUp(new_capacity, kPageSize), new_capacity);
// Only growing is supported here. But Trim() is supported.
if (capacity_ < new_capacity) {
CHECK_LE(new_capacity, max_capacity_);
capacity_ = new_capacity;
VLOG(heap) << "new capacity=" << capacity_;
}
}
// Below may be called by mutator itself just before thread termination.
size_t RosAlloc::RevokeThreadLocalRuns(Thread* thread) {
Thread* self = Thread::Current();
size_t free_bytes = 0U;
for (size_t idx = 0; idx < kNumThreadLocalSizeBrackets; idx++) {
MutexLock mu(self, *size_bracket_locks_[idx]);
Run* thread_local_run = reinterpret_cast<Run*>(thread->GetRosAllocRun(idx));
CHECK(thread_local_run != nullptr);
// Invalid means already revoked.
DCHECK(thread_local_run->IsThreadLocal());
if (thread_local_run != dedicated_full_run_) {
// Note the thread local run may not be full here.
thread->SetRosAllocRun(idx, dedicated_full_run_);
DCHECK_EQ(thread_local_run->magic_num_, kMagicNum);
// Count the number of free slots left.
size_t num_free_slots = thread_local_run->NumberOfFreeSlots();
free_bytes += num_free_slots * bracketSizes[idx];
// The above bracket index lock guards thread local free list to avoid race condition
// with unioning bulk free list to thread local free list by GC thread in BulkFree.
// If thread local run is true, GC thread will help update thread local free list
// in BulkFree. And the latest thread local free list will be merged to free list
// either when this thread local run is full or when revoking this run here. In this
// case the free list wll be updated. If thread local run is false, GC thread will help
// merge bulk free list in next BulkFree.
// Thus no need to merge bulk free list to free list again here.
bool dont_care;
thread_local_run->MergeThreadLocalFreeListToFreeList(&dont_care);
thread_local_run->SetIsThreadLocal(false);
DCHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end());
DCHECK(full_runs_[idx].find(thread_local_run) == full_runs_[idx].end());
RevokeRun(self, idx, thread_local_run);
}
}
return free_bytes;
}
void RosAlloc::RevokeRun(Thread* self, size_t idx, Run* run) {
size_bracket_locks_[idx]->AssertHeld(self);
DCHECK(run != dedicated_full_run_);
if (run->IsFull()) {
if (kIsDebugBuild) {
full_runs_[idx].insert(run);
DCHECK(full_runs_[idx].find(run) != full_runs_[idx].end());
if (kTraceRosAlloc) {
LOG(INFO) << __PRETTY_FUNCTION__ << " : Inserted run 0x" << std::hex
<< reinterpret_cast<intptr_t>(run)
<< " into full_runs_[" << std::dec << idx << "]";
}
}
} else if (run->IsAllFree()) {
run->ZeroHeaderAndSlotHeaders();
MutexLock mu(self, lock_);
FreePages(self, run, true);
} else {
non_full_runs_[idx].insert(run);
DCHECK(non_full_runs_[idx].find(run) != non_full_runs_[idx].end());
if (kTraceRosAlloc) {
LOG(INFO) << __PRETTY_FUNCTION__ << " : Inserted run 0x" << std::hex
<< reinterpret_cast<intptr_t>(run)
<< " into non_full_runs_[" << std::dec << idx << "]";
}
}
}
void RosAlloc::RevokeThreadUnsafeCurrentRuns() {
// Revoke the current runs which share the same idx as thread local runs.
Thread* self = Thread::Current();
for (size_t idx = 0; idx < kNumThreadLocalSizeBrackets; ++idx) {
MutexLock mu(self, *size_bracket_locks_[idx]);
if (current_runs_[idx] != dedicated_full_run_) {
RevokeRun(self, idx, current_runs_[idx]);
current_runs_[idx] = dedicated_full_run_;
}
}
}
size_t RosAlloc::RevokeAllThreadLocalRuns() {
// This is called when a mutator thread won't allocate such as at
// the Zygote creation time or during the GC pause.
MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
MutexLock mu2(Thread::Current(), *Locks::thread_list_lock_);
std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
size_t free_bytes = 0U;
for (Thread* thread : thread_list) {
free_bytes += RevokeThreadLocalRuns(thread);
}
RevokeThreadUnsafeCurrentRuns();
return free_bytes;
}
void RosAlloc::AssertThreadLocalRunsAreRevoked(Thread* thread) {
if (kIsDebugBuild) {
Thread* self = Thread::Current();
// Avoid race conditions on the bulk free bit maps with BulkFree() (GC).
ReaderMutexLock wmu(self, bulk_free_lock_);
for (size_t idx = 0; idx < kNumThreadLocalSizeBrackets; idx++) {
MutexLock mu(self, *size_bracket_locks_[idx]);
Run* thread_local_run = reinterpret_cast<Run*>(thread->GetRosAllocRun(idx));
DCHECK(thread_local_run == nullptr || thread_local_run == dedicated_full_run_);
}
}
}
void RosAlloc::AssertAllThreadLocalRunsAreRevoked() {
if (kIsDebugBuild) {
Thread* self = Thread::Current();
MutexLock shutdown_mu(self, *Locks::runtime_shutdown_lock_);
MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
for (Thread* t : thread_list) {
AssertThreadLocalRunsAreRevoked(t);
}
for (size_t idx = 0; idx < kNumThreadLocalSizeBrackets; ++idx) {
MutexLock brackets_mu(self, *size_bracket_locks_[idx]);
CHECK_EQ(current_runs_[idx], dedicated_full_run_);
}
}
}
void RosAlloc::Initialize() {
// bracketSizes.
static_assert(kNumRegularSizeBrackets == kNumOfSizeBrackets - 2,
"There should be two non-regular brackets");
for (size_t i = 0; i < kNumOfSizeBrackets; i++) {
if (i < kNumThreadLocalSizeBrackets) {
bracketSizes[i] = kThreadLocalBracketQuantumSize * (i + 1);
} else if (i < kNumRegularSizeBrackets) {
bracketSizes[i] = kBracketQuantumSize * (i - kNumThreadLocalSizeBrackets + 1) +
(kThreadLocalBracketQuantumSize * kNumThreadLocalSizeBrackets);
} else if (i == kNumOfSizeBrackets - 2) {
bracketSizes[i] = 1 * KB;
} else {
DCHECK_EQ(i, kNumOfSizeBrackets - 1);
bracketSizes[i] = 2 * KB;
}
if (kTraceRosAlloc) {
LOG(INFO) << "bracketSizes[" << i << "]=" << bracketSizes[i];
}
}
// numOfPages.
for (size_t i = 0; i < kNumOfSizeBrackets; i++) {
if (i < kNumThreadLocalSizeBrackets) {
numOfPages[i] = 1;
} else if (i < (kNumThreadLocalSizeBrackets + kNumRegularSizeBrackets) / 2) {
numOfPages[i] = 1;
} else if (i < kNumRegularSizeBrackets) {
numOfPages[i] = 1;
} else if (i == kNumOfSizeBrackets - 2) {
numOfPages[i] = 2;
} else {
DCHECK_EQ(i, kNumOfSizeBrackets - 1);
numOfPages[i] = 4;
}
if (kTraceRosAlloc) {
LOG(INFO) << "numOfPages[" << i << "]=" << numOfPages[i];
}
}
// Compute numOfSlots and slotOffsets.
for (size_t i = 0; i < kNumOfSizeBrackets; i++) {
size_t bracket_size = bracketSizes[i];
size_t run_size = kPageSize * numOfPages[i];
size_t max_num_of_slots = run_size / bracket_size;
// Compute the actual number of slots by taking the header and
// alignment into account.
size_t fixed_header_size = RoundUp(Run::fixed_header_size(), sizeof(uint64_t));
DCHECK_EQ(fixed_header_size, 80U);
size_t header_size = 0;
size_t num_of_slots = 0;
// Search for the maximum number of slots that allows enough space
// for the header.
for (int s = max_num_of_slots; s >= 0; s--) {
size_t tmp_slots_size = bracket_size * s;
size_t tmp_unaligned_header_size = fixed_header_size;
// Align up the unaligned header size. bracket_size may not be a power of two.
size_t tmp_header_size = (tmp_unaligned_header_size % bracket_size == 0) ?
tmp_unaligned_header_size :
tmp_unaligned_header_size + (bracket_size - tmp_unaligned_header_size % bracket_size);
DCHECK_EQ(tmp_header_size % bracket_size, 0U);
DCHECK_EQ(tmp_header_size % sizeof(uint64_t), 0U);
if (tmp_slots_size + tmp_header_size <= run_size) {
// Found the right number of slots, that is, there was enough
// space for the header (including the bit maps.)
num_of_slots = s;
header_size = tmp_header_size;
break;
}
}
DCHECK_GT(num_of_slots, 0U) << i;
DCHECK_GT(header_size, 0U) << i;
// Add the padding for the alignment remainder.
header_size += run_size % bracket_size;
DCHECK_EQ(header_size + num_of_slots * bracket_size, run_size);
numOfSlots[i] = num_of_slots;
headerSizes[i] = header_size;
if (kTraceRosAlloc) {
LOG(INFO) << "numOfSlots[" << i << "]=" << numOfSlots[i]
<< ", headerSizes[" << i << "]=" << headerSizes[i];
}
}
// Set up the dedicated full run so that nobody can successfully allocate from it.
if (kIsDebugBuild) {
dedicated_full_run_->magic_num_ = kMagicNum;
}
// It doesn't matter which size bracket we use since the main goal is to have the allocation
// fail 100% of the time you attempt to allocate into the dedicated full run.
dedicated_full_run_->size_bracket_idx_ = 0;
DCHECK_EQ(dedicated_full_run_->FreeList()->Size(), 0U); // It looks full.
dedicated_full_run_->SetIsThreadLocal(true);
// The smallest bracket size must be at least as large as the sizeof(Slot).
DCHECK_LE(sizeof(Slot), bracketSizes[0]) << "sizeof(Slot) <= the smallest bracket size";
// Check the invariants between the max bracket sizes and the number of brackets.
DCHECK_EQ(kMaxThreadLocalBracketSize, bracketSizes[kNumThreadLocalSizeBrackets - 1]);
DCHECK_EQ(kMaxRegularBracketSize, bracketSizes[kNumRegularSizeBrackets - 1]);
}
void RosAlloc::BytesAllocatedCallback(void* start ATTRIBUTE_UNUSED, void* end ATTRIBUTE_UNUSED,
size_t used_bytes, void* arg) {
if (used_bytes == 0) {
return;
}
size_t* bytes_allocated = reinterpret_cast<size_t*>(arg);
*bytes_allocated += used_bytes;
}
void RosAlloc::ObjectsAllocatedCallback(void* start ATTRIBUTE_UNUSED, void* end ATTRIBUTE_UNUSED,
size_t used_bytes, void* arg) {
if (used_bytes == 0) {
return;
}
size_t* objects_allocated = reinterpret_cast<size_t*>(arg);
++(*objects_allocated);
}
void RosAlloc::Verify() {
Thread* self = Thread::Current();
CHECK(Locks::mutator_lock_->IsExclusiveHeld(self))
<< "The mutator locks isn't exclusively locked at " << __PRETTY_FUNCTION__;
MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
ReaderMutexLock wmu(self, bulk_free_lock_);
std::vector<Run*> runs;
{
MutexLock lock_mu(self, lock_);
size_t pm_end = page_map_size_;
size_t i = 0;
size_t memory_tool_modifier = is_running_on_memory_tool_ ?
2 * ::art::gc::space::kDefaultMemoryToolRedZoneBytes : // Redzones before and after.
0;
while (i < pm_end) {
uint8_t pm = page_map_[i];
switch (pm) {
case kPageMapReleased:
// Fall-through.
case kPageMapEmpty: {
// The start of a free page run.
FreePageRun* fpr = reinterpret_cast<FreePageRun*>(base_ + i * kPageSize);
DCHECK_EQ(fpr->magic_num_, kMagicNumFree);
CHECK(free_page_runs_.find(fpr) != free_page_runs_.end())
<< "An empty page must belong to the free page run set";
size_t fpr_size = fpr->ByteSize(this);
CHECK_ALIGNED(fpr_size, kPageSize)
<< "A free page run size isn't page-aligned : " << fpr_size;
size_t num_pages = fpr_size / kPageSize;
CHECK_GT(num_pages, static_cast<uintptr_t>(0))
<< "A free page run size must be > 0 : " << fpr_size;
for (size_t j = i + 1; j < i + num_pages; ++j) {
CHECK(IsFreePage(j))
<< "A mismatch between the page map table for kPageMapEmpty "
<< " at page index " << j
<< " and the free page run size : page index range : "
<< i << " to " << (i + num_pages) << std::endl << DumpPageMap();
}
i += num_pages;
CHECK_LE(i, pm_end) << "Page map index " << i << " out of range < " << pm_end
<< std::endl << DumpPageMap();
break;
}
case kPageMapLargeObject: {
// The start of a large object.
size_t num_pages = 1;
size_t idx = i + 1;
while (idx < pm_end && page_map_[idx] == kPageMapLargeObjectPart) {
num_pages++;
idx++;
}
uint8_t* start = base_ + i * kPageSize;
if (is_running_on_memory_tool_) {
start += ::art::gc::space::kDefaultMemoryToolRedZoneBytes;
}
mirror::Object* obj = reinterpret_cast<mirror::Object*>(start);
size_t obj_size = obj->SizeOf();
CHECK_GT(obj_size + memory_tool_modifier, kLargeSizeThreshold)
<< "A rosalloc large object size must be > " << kLargeSizeThreshold;
CHECK_EQ(num_pages, RoundUp(obj_size + memory_tool_modifier, kPageSize) / kPageSize)
<< "A rosalloc large object size " << obj_size + memory_tool_modifier
<< " does not match the page map table " << (num_pages * kPageSize)
<< std::endl << DumpPageMap();
i += num_pages;
CHECK_LE(i, pm_end) << "Page map index " << i << " out of range < " << pm_end
<< std::endl << DumpPageMap();
break;
}
case kPageMapLargeObjectPart:
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(pm) << std::endl << DumpPageMap();
UNREACHABLE();
case kPageMapRun: {
// The start of a run.
Run* run = reinterpret_cast<Run*>(base_ + i * kPageSize);
DCHECK_EQ(run->magic_num_, kMagicNum);
size_t idx = run->size_bracket_idx_;
CHECK_LT(idx, kNumOfSizeBrackets) << "Out of range size bracket index : " << idx;
size_t num_pages = numOfPages[idx];
CHECK_GT(num_pages, static_cast<uintptr_t>(0))
<< "Run size must be > 0 : " << num_pages;
for (size_t j = i + 1; j < i + num_pages; ++j) {
CHECK_EQ(page_map_[j], kPageMapRunPart)
<< "A mismatch between the page map table for kPageMapRunPart "
<< " at page index " << j
<< " and the run size : page index range " << i << " to " << (i + num_pages)
<< std::endl << DumpPageMap();
}
// Don't verify the dedicated_full_run_ since it doesn't have any real allocations.
runs.push_back(run);
i += num_pages;
CHECK_LE(i, pm_end) << "Page map index " << i << " out of range < " << pm_end
<< std::endl << DumpPageMap();
break;
}
case kPageMapRunPart:
// Fall-through.
default:
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(pm) << std::endl << DumpPageMap();
UNREACHABLE();
}
}
}
std::list<Thread*> threads = Runtime::Current()->GetThreadList()->GetList();
for (Thread* thread : threads) {
for (size_t i = 0; i < kNumThreadLocalSizeBrackets; ++i) {
MutexLock brackets_mu(self, *size_bracket_locks_[i]);
Run* thread_local_run = reinterpret_cast<Run*>(thread->GetRosAllocRun(i));
CHECK(thread_local_run != nullptr);
CHECK(thread_local_run->IsThreadLocal());
CHECK(thread_local_run == dedicated_full_run_ ||
thread_local_run->size_bracket_idx_ == i);
}
}
for (size_t i = 0; i < kNumOfSizeBrackets; i++) {
MutexLock brackets_mu(self, *size_bracket_locks_[i]);
Run* current_run = current_runs_[i];
CHECK(current_run != nullptr);
if (current_run != dedicated_full_run_) {
// The dedicated full run is currently marked as thread local.
CHECK(!current_run->IsThreadLocal());
CHECK_EQ(current_run->size_bracket_idx_, i);
}
}
// Call Verify() here for the lock order.
for (auto& run : runs) {
run->Verify(self, this, is_running_on_memory_tool_);
}
}
void RosAlloc::Run::Verify(Thread* self, RosAlloc* rosalloc, bool running_on_memory_tool) {
DCHECK_EQ(magic_num_, kMagicNum) << "Bad magic number : " << Dump();
const size_t idx = size_bracket_idx_;
CHECK_LT(idx, kNumOfSizeBrackets) << "Out of range size bracket index : " << Dump();
uint8_t* slot_base = reinterpret_cast<uint8_t*>(this) + headerSizes[idx];
const size_t num_slots = numOfSlots[idx];
size_t bracket_size = IndexToBracketSize(idx);
CHECK_EQ(slot_base + num_slots * bracket_size,
reinterpret_cast<uint8_t*>(this) + numOfPages[idx] * kPageSize)
<< "Mismatch in the end address of the run " << Dump();
// Check that the bulk free list is empty. It's only used during BulkFree().
CHECK(IsBulkFreeListEmpty()) << "The bulk free isn't empty " << Dump();
// Check the thread local runs, the current runs, and the run sets.
if (IsThreadLocal()) {
// If it's a thread local run, then it must be pointed to by an owner thread.
bool owner_found = false;
std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
for (auto it = thread_list.begin(); it != thread_list.end(); ++it) {
Thread* thread = *it;
for (size_t i = 0; i < kNumThreadLocalSizeBrackets; i++) {
MutexLock mu(self, *rosalloc->size_bracket_locks_[i]);
Run* thread_local_run = reinterpret_cast<Run*>(thread->GetRosAllocRun(i));
if (thread_local_run == this) {
CHECK(!owner_found)
<< "A thread local run has more than one owner thread " << Dump();
CHECK_EQ(i, idx)
<< "A mismatching size bracket index in a thread local run " << Dump();
owner_found = true;
}
}
}
CHECK(owner_found) << "A thread local run has no owner thread " << Dump();
} else {
// If it's not thread local, check that the thread local free list is empty.
CHECK(IsThreadLocalFreeListEmpty())
<< "A non-thread-local run's thread local free list isn't empty "
<< Dump();
// Check if it's a current run for the size bracket.
bool is_current_run = false;
for (size_t i = 0; i < kNumOfSizeBrackets; i++) {
MutexLock mu(self, *rosalloc->size_bracket_locks_[i]);
Run* current_run = rosalloc->current_runs_[i];
if (idx == i) {
if (this == current_run) {
is_current_run = true;
}
} else {
// If the size bucket index does not match, then it must not
// be a current run.
CHECK_NE(this, current_run)
<< "A current run points to a run with a wrong size bracket index " << Dump();
}
}
// If it's neither a thread local or current run, then it must be
// in a run set.
if (!is_current_run) {
MutexLock mu(self, rosalloc->lock_);
auto& non_full_runs = rosalloc->non_full_runs_[idx];
// If it's all free, it must be a free page run rather than a run.
CHECK(!IsAllFree()) << "A free run must be in a free page run set " << Dump();
if (!IsFull()) {
// If it's not full, it must in the non-full run set.
CHECK(non_full_runs.find(this) != non_full_runs.end())
<< "A non-full run isn't in the non-full run set " << Dump();
} else {
// If it's full, it must in the full run set (debug build only.)
if (kIsDebugBuild) {
auto& full_runs = rosalloc->full_runs_[idx];
CHECK(full_runs.find(this) != full_runs.end())
<< " A full run isn't in the full run set " << Dump();
}
}
}
}
// Check each slot.
size_t memory_tool_modifier = running_on_memory_tool ?
2 * ::art::gc::space::kDefaultMemoryToolRedZoneBytes :
0U;
// TODO: reuse InspectAllSlots().
std::unique_ptr<bool[]> is_free(new bool[num_slots]()); // zero initialized
// Mark the free slots and the remaining ones are allocated.
for (Slot* slot = free_list_.Head(); slot != nullptr; slot = slot->Next()) {
size_t slot_idx = SlotIndex(slot);
DCHECK_LT(slot_idx, num_slots);
is_free[slot_idx] = true;
}
if (IsThreadLocal()) {
for (Slot* slot = thread_local_free_list_.Head(); slot != nullptr; slot = slot->Next()) {
size_t slot_idx = SlotIndex(slot);
DCHECK_LT(slot_idx, num_slots);
is_free[slot_idx] = true;
}
}
for (size_t slot_idx = 0; slot_idx < num_slots; ++slot_idx) {
uint8_t* slot_addr = slot_base + slot_idx * bracket_size;
if (running_on_memory_tool) {
slot_addr += ::art::gc::space::kDefaultMemoryToolRedZoneBytes;
}
if (!is_free[slot_idx]) {
// The slot is allocated
mirror::Object* obj = reinterpret_cast<mirror::Object*>(slot_addr);
size_t obj_size = obj->SizeOf();
CHECK_LE(obj_size + memory_tool_modifier, kLargeSizeThreshold)
<< "A run slot contains a large object " << Dump();
CHECK_EQ(SizeToIndex(obj_size + memory_tool_modifier), idx)
<< obj->PrettyTypeOf() << " "
<< "obj_size=" << obj_size << "(" << obj_size + memory_tool_modifier << "), idx=" << idx
<< " A run slot contains an object with wrong size " << Dump();
}
}
}
size_t RosAlloc::ReleasePages() {
VLOG(heap) << "RosAlloc::ReleasePages()";
DCHECK(!DoesReleaseAllPages());
Thread* self = Thread::Current();
size_t reclaimed_bytes = 0;
size_t i = 0;
// Check the page map size which might have changed due to grow/shrink.
while (i < page_map_size_) {
// Reading the page map without a lock is racy but the race is benign since it should only
// result in occasionally not releasing pages which we could release.
uint8_t pm = page_map_[i];
switch (pm) {
case kPageMapReleased:
// Fall through.
case kPageMapEmpty: {
// This is currently the start of a free page run.
// Acquire the lock to prevent other threads racing in and modifying the page map.
MutexLock mu(self, lock_);
// Check that it's still empty after we acquired the lock since another thread could have
// raced in and placed an allocation here.
if (IsFreePage(i)) {
// Free page runs can start with a released page if we coalesced a released page free
// page run with an empty page run.
FreePageRun* fpr = reinterpret_cast<FreePageRun*>(base_ + i * kPageSize);
// There is a race condition where FreePage can coalesce fpr with the previous
// free page run before we acquire lock_. In that case free_page_runs_.find will not find
// a run starting at fpr. To handle this race, we skip reclaiming the page range and go
// to the next page.
if (free_page_runs_.find(fpr) != free_page_runs_.end()) {
size_t fpr_size = fpr->ByteSize(this);
DCHECK_ALIGNED(fpr_size, kPageSize);
uint8_t* start = reinterpret_cast<uint8_t*>(fpr);
reclaimed_bytes += ReleasePageRange(start, start + fpr_size);
size_t pages = fpr_size / kPageSize;
CHECK_GT(pages, 0U) << "Infinite loop probable";
i += pages;
DCHECK_LE(i, page_map_size_);
break;
}
}
FALLTHROUGH_INTENDED;
}
case kPageMapLargeObject: // Fall through.
case kPageMapLargeObjectPart: // Fall through.
case kPageMapRun: // Fall through.
case kPageMapRunPart: // Fall through.
++i;
break; // Skip.
default:
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(pm);
UNREACHABLE();
}
}
return reclaimed_bytes;
}
size_t RosAlloc::ReleasePageRange(uint8_t* start, uint8_t* end) {
DCHECK_ALIGNED(start, kPageSize);
DCHECK_ALIGNED(end, kPageSize);
DCHECK_LT(start, end);
if (kIsDebugBuild) {
// In the debug build, the first page of a free page run
// contains a magic number for debugging. Exclude it.
start += kPageSize;
// Single pages won't be released.
if (start == end) {
return 0;
}
}
if (!kMadviseZeroes) {
// TODO: Do this when we resurrect the page instead.
memset(start, 0, end - start);
}
CHECK_EQ(madvise(start, end - start, MADV_DONTNEED), 0);
size_t pm_idx = ToPageMapIndex(start);
size_t reclaimed_bytes = 0;
// Calculate reclaimed bytes and upate page map.
const size_t max_idx = pm_idx + (end - start) / kPageSize;
for (; pm_idx < max_idx; ++pm_idx) {
DCHECK(IsFreePage(pm_idx));
if (page_map_[pm_idx] == kPageMapEmpty) {
// Mark the page as released and update how many bytes we released.
reclaimed_bytes += kPageSize;
page_map_[pm_idx] = kPageMapReleased;
}
}
return reclaimed_bytes;
}
void RosAlloc::LogFragmentationAllocFailure(std::ostream& os, size_t failed_alloc_bytes) {
Thread* self = Thread::Current();
size_t largest_continuous_free_pages = 0;
WriterMutexLock wmu(self, bulk_free_lock_);
MutexLock mu(self, lock_);
uint64_t total_free = 0;
for (FreePageRun* fpr : free_page_runs_) {
largest_continuous_free_pages = std::max(largest_continuous_free_pages,
fpr->ByteSize(this));
total_free += fpr->ByteSize(this);
}
size_t required_bytes = 0;
const char* new_buffer_msg = "";
if (failed_alloc_bytes > kLargeSizeThreshold) {
// Large allocation.
required_bytes = RoundUp(failed_alloc_bytes, kPageSize);
} else {
// Non-large allocation.
required_bytes = numOfPages[SizeToIndex(failed_alloc_bytes)] * kPageSize;
new_buffer_msg = " for a new buffer";
}
if (required_bytes > largest_continuous_free_pages) {
os << "; failed due to fragmentation ("
<< "required contiguous free " << required_bytes << " bytes" << new_buffer_msg
<< ", largest contiguous free " << largest_continuous_free_pages << " bytes"
<< ", total free pages " << total_free << " bytes"
<< ", space footprint " << footprint_ << " bytes"
<< ", space max capacity " << max_capacity_ << " bytes"
<< ")" << std::endl;
}
}
void RosAlloc::DumpStats(std::ostream& os) {
Thread* self = Thread::Current();
CHECK(Locks::mutator_lock_->IsExclusiveHeld(self))
<< "The mutator locks isn't exclusively locked at " << __PRETTY_FUNCTION__;
size_t num_large_objects = 0;
size_t num_pages_large_objects = 0;
// These arrays are zero initialized.
std::unique_ptr<size_t[]> num_runs(new size_t[kNumOfSizeBrackets]());
std::unique_ptr<size_t[]> num_pages_runs(new size_t[kNumOfSizeBrackets]());
std::unique_ptr<size_t[]> num_slots(new size_t[kNumOfSizeBrackets]());
std::unique_ptr<size_t[]> num_used_slots(new size_t[kNumOfSizeBrackets]());
std::unique_ptr<size_t[]> num_metadata_bytes(new size_t[kNumOfSizeBrackets]());
ReaderMutexLock rmu(self, bulk_free_lock_);
MutexLock lock_mu(self, lock_);
for (size_t i = 0; i < page_map_size_; ) {
uint8_t pm = page_map_[i];
switch (pm) {
case kPageMapReleased:
case kPageMapEmpty:
++i;
break;
case kPageMapLargeObject: {
size_t num_pages = 1;
size_t idx = i + 1;
while (idx < page_map_size_ && page_map_[idx] == kPageMapLargeObjectPart) {
num_pages++;
idx++;
}
num_large_objects++;
num_pages_large_objects += num_pages;
i += num_pages;
break;
}
case kPageMapLargeObjectPart:
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(pm) << std::endl
<< DumpPageMap();
UNREACHABLE();
case kPageMapRun: {
Run* run = reinterpret_cast<Run*>(base_ + i * kPageSize);
size_t idx = run->size_bracket_idx_;
size_t num_pages = numOfPages[idx];
num_runs[idx]++;
num_pages_runs[idx] += num_pages;
num_slots[idx] += numOfSlots[idx];
size_t num_free_slots = run->NumberOfFreeSlots();
num_used_slots[idx] += numOfSlots[idx] - num_free_slots;
num_metadata_bytes[idx] += headerSizes[idx];
i += num_pages;
break;
}
case kPageMapRunPart:
// Fall-through.
default:
LOG(FATAL) << "Unreachable - page map type: " << static_cast<int>(pm) << std::endl
<< DumpPageMap();
UNREACHABLE();
}
}
os << "RosAlloc stats:\n";
for (size_t i = 0; i < kNumOfSizeBrackets; ++i) {
os << "Bracket " << i << " (" << bracketSizes[i] << "):"
<< " #runs=" << num_runs[i]
<< " #pages=" << num_pages_runs[i]
<< " (" << PrettySize(num_pages_runs[i] * kPageSize) << ")"
<< " #metadata_bytes=" << PrettySize(num_metadata_bytes[i])
<< " #slots=" << num_slots[i] << " (" << PrettySize(num_slots[i] * bracketSizes[i]) << ")"
<< " #used_slots=" << num_used_slots[i]
<< " (" << PrettySize(num_used_slots[i] * bracketSizes[i]) << ")\n";
}
os << "Large #allocations=" << num_large_objects
<< " #pages=" << num_pages_large_objects
<< " (" << PrettySize(num_pages_large_objects * kPageSize) << ")\n";
size_t total_num_pages = 0;
size_t total_metadata_bytes = 0;
size_t total_allocated_bytes = 0;
for (size_t i = 0; i < kNumOfSizeBrackets; ++i) {
total_num_pages += num_pages_runs[i];
total_metadata_bytes += num_metadata_bytes[i];
total_allocated_bytes += num_used_slots[i] * bracketSizes[i];
}
total_num_pages += num_pages_large_objects;
total_allocated_bytes += num_pages_large_objects * kPageSize;
os << "Total #total_bytes=" << PrettySize(total_num_pages * kPageSize)
<< " #metadata_bytes=" << PrettySize(total_metadata_bytes)
<< " #used_bytes=" << PrettySize(total_allocated_bytes) << "\n";
os << "\n";
}
} // namespace allocator
} // namespace gc
} // namespace art
|