1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/mman.h>
#include "common_runtime_test.h"
#include "gc/collector/immune_spaces.h"
#include "gc/space/image_space.h"
#include "gc/space/space-inl.h"
#include "oat_file.h"
#include "thread-current-inl.h"
namespace art {
namespace mirror {
class Object;
} // namespace mirror
namespace gc {
namespace collector {
class DummyOatFile : public OatFile {
public:
DummyOatFile(uint8_t* begin, uint8_t* end) : OatFile("Location", /*executable=*/ false) {
begin_ = begin;
end_ = end;
}
};
class DummyImageSpace : public space::ImageSpace {
public:
DummyImageSpace(MemMap&& map,
accounting::ContinuousSpaceBitmap&& live_bitmap,
std::unique_ptr<DummyOatFile>&& oat_file,
MemMap&& oat_map)
: ImageSpace("DummyImageSpace",
/*image_location=*/"",
/*profile_file=*/"",
std::move(map),
std::move(live_bitmap),
map.End()),
oat_map_(std::move(oat_map)) {
oat_file_ = std::move(oat_file);
oat_file_non_owned_ = oat_file_.get();
}
private:
MemMap oat_map_;
};
class ImmuneSpacesTest : public CommonRuntimeTest {
static constexpr size_t kMaxBitmaps = 10;
public:
ImmuneSpacesTest() {}
void ReserveBitmaps() {
// Create a bunch of dummy bitmaps since these are required to create image spaces. The bitmaps
// do not need to cover the image spaces though.
for (size_t i = 0; i < kMaxBitmaps; ++i) {
accounting::ContinuousSpaceBitmap bitmap(
accounting::ContinuousSpaceBitmap::Create("bitmap",
reinterpret_cast<uint8_t*>(kPageSize),
kPageSize));
CHECK(bitmap.IsValid());
live_bitmaps_.push_back(std::move(bitmap));
}
}
// Create an image space, the oat file is optional.
DummyImageSpace* CreateImageSpace(size_t image_size,
size_t oat_size,
MemMap* image_reservation,
MemMap* oat_reservation) {
DCHECK(image_reservation != nullptr);
DCHECK(oat_reservation != nullptr);
std::string error_str;
MemMap image_map = MemMap::MapAnonymous("DummyImageSpace",
image_size,
PROT_READ | PROT_WRITE,
/*low_4gb=*/ true,
/*reservation=*/ image_reservation,
&error_str);
if (!image_map.IsValid()) {
LOG(ERROR) << error_str;
return nullptr;
}
CHECK(!live_bitmaps_.empty());
accounting::ContinuousSpaceBitmap live_bitmap(std::move(live_bitmaps_.back()));
live_bitmaps_.pop_back();
MemMap oat_map = MemMap::MapAnonymous("OatMap",
oat_size,
PROT_READ | PROT_WRITE,
/*low_4gb=*/ true,
/*reservation=*/ oat_reservation,
&error_str);
if (!oat_map.IsValid()) {
LOG(ERROR) << error_str;
return nullptr;
}
std::unique_ptr<DummyOatFile> oat_file(new DummyOatFile(oat_map.Begin(), oat_map.End()));
// Create image header.
ImageSection sections[ImageHeader::kSectionCount];
new (image_map.Begin()) ImageHeader(
/*image_reservation_size=*/ image_size,
/*component_count=*/ 1u,
/*image_begin=*/ PointerToLowMemUInt32(image_map.Begin()),
/*image_size=*/ image_size,
sections,
/*image_roots=*/ PointerToLowMemUInt32(image_map.Begin()) + 1,
/*oat_checksum=*/ 0u,
// The oat file data in the header is always right after the image space.
/*oat_file_begin=*/ PointerToLowMemUInt32(oat_map.Begin()),
/*oat_data_begin=*/ PointerToLowMemUInt32(oat_map.Begin()),
/*oat_data_end=*/ PointerToLowMemUInt32(oat_map.Begin() + oat_size),
/*oat_file_end=*/ PointerToLowMemUInt32(oat_map.Begin() + oat_size),
/*boot_image_begin=*/ 0u,
/*boot_image_size=*/ 0u,
/*boot_image_component_count=*/ 0u,
/*boot_image_checksum=*/ 0u,
/*pointer_size=*/ sizeof(void*));
return new DummyImageSpace(std::move(image_map),
std::move(live_bitmap),
std::move(oat_file),
std::move(oat_map));
}
private:
// Bitmap pool for pre-allocated dummy bitmaps. We need to pre-allocate them since we don't want
// them to randomly get placed somewhere where we want an image space.
std::vector<accounting::ContinuousSpaceBitmap> live_bitmaps_;
};
class DummySpace : public space::ContinuousSpace {
public:
DummySpace(uint8_t* begin, uint8_t* end)
: ContinuousSpace("DummySpace",
space::kGcRetentionPolicyNeverCollect,
begin,
end,
/*limit=*/end) {}
space::SpaceType GetType() const override {
return space::kSpaceTypeMallocSpace;
}
bool CanMoveObjects() const override {
return false;
}
accounting::ContinuousSpaceBitmap* GetLiveBitmap() override {
return nullptr;
}
accounting::ContinuousSpaceBitmap* GetMarkBitmap() override {
return nullptr;
}
};
TEST_F(ImmuneSpacesTest, AppendBasic) {
ImmuneSpaces spaces;
uint8_t* const base = reinterpret_cast<uint8_t*>(0x1000);
DummySpace a(base, base + 45 * KB);
DummySpace b(a.Limit(), a.Limit() + 813 * KB);
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
spaces.AddSpace(&a);
spaces.AddSpace(&b);
}
EXPECT_TRUE(spaces.ContainsSpace(&a));
EXPECT_TRUE(spaces.ContainsSpace(&b));
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()), a.Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()), b.Limit());
}
// Tests [image][oat][space] producing a single large immune region.
TEST_F(ImmuneSpacesTest, AppendAfterImage) {
ReserveBitmaps();
ImmuneSpaces spaces;
constexpr size_t kImageSize = 123 * kPageSize;
constexpr size_t kImageOatSize = 321 * kPageSize;
constexpr size_t kOtherSpaceSize = 100 * kPageSize;
std::string error_str;
MemMap reservation = MemMap::MapAnonymous("reserve",
kImageSize + kImageOatSize + kOtherSpaceSize,
PROT_READ | PROT_WRITE,
/*low_4gb=*/ true,
&error_str);
ASSERT_TRUE(reservation.IsValid()) << "Failed to allocate memory region " << error_str;
MemMap image_reservation = reservation.TakeReservedMemory(kImageSize);
ASSERT_TRUE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
std::unique_ptr<DummyImageSpace> image_space(CreateImageSpace(kImageSize,
kImageOatSize,
&image_reservation,
&reservation));
ASSERT_TRUE(image_space != nullptr);
ASSERT_FALSE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
const ImageHeader& image_header = image_space->GetImageHeader();
DummySpace space(image_header.GetOatFileEnd(), image_header.GetOatFileEnd() + kOtherSpaceSize);
EXPECT_EQ(image_header.GetImageSize(), kImageSize);
EXPECT_EQ(static_cast<size_t>(image_header.GetOatFileEnd() - image_header.GetOatFileBegin()),
kImageOatSize);
EXPECT_EQ(image_space->GetOatFile()->Size(), kImageOatSize);
// Check that we do not include the oat if there is no space after.
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
spaces.AddSpace(image_space.get());
}
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()),
image_space->Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()),
image_space->Limit());
// Add another space and ensure it gets appended.
EXPECT_NE(image_space->Limit(), space.Begin());
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
spaces.AddSpace(&space);
}
EXPECT_TRUE(spaces.ContainsSpace(image_space.get()));
EXPECT_TRUE(spaces.ContainsSpace(&space));
// CreateLargestImmuneRegion should have coalesced the two spaces since the oat code after the
// image prevents gaps.
// Check that we have a continuous region.
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()),
image_space->Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()), space.Limit());
}
// Test [image1][image2][image1 oat][image2 oat][image3] producing a single large immune region.
TEST_F(ImmuneSpacesTest, MultiImage) {
ReserveBitmaps();
// Image 2 needs to be smaller or else it may be chosen for immune region.
constexpr size_t kImage1Size = kPageSize * 17;
constexpr size_t kImage2Size = kPageSize * 13;
constexpr size_t kImage3Size = kPageSize * 3;
constexpr size_t kImage1OatSize = kPageSize * 5;
constexpr size_t kImage2OatSize = kPageSize * 8;
constexpr size_t kImage3OatSize = kPageSize;
constexpr size_t kImageBytes = kImage1Size + kImage2Size + kImage3Size;
constexpr size_t kMemorySize = kImageBytes + kImage1OatSize + kImage2OatSize + kImage3OatSize;
std::string error_str;
MemMap reservation = MemMap::MapAnonymous("reserve",
kMemorySize,
PROT_READ | PROT_WRITE,
/*low_4gb=*/ true,
&error_str);
ASSERT_TRUE(reservation.IsValid()) << "Failed to allocate memory region " << error_str;
MemMap image_reservation = reservation.TakeReservedMemory(kImage1Size + kImage2Size);
ASSERT_TRUE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
std::unique_ptr<DummyImageSpace> space1(CreateImageSpace(kImage1Size,
kImage1OatSize,
&image_reservation,
&reservation));
ASSERT_TRUE(space1 != nullptr);
ASSERT_TRUE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
std::unique_ptr<DummyImageSpace> space2(CreateImageSpace(kImage2Size,
kImage2OatSize,
&image_reservation,
&reservation));
ASSERT_TRUE(space2 != nullptr);
ASSERT_FALSE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
// Finally put a 3rd image space.
image_reservation = reservation.TakeReservedMemory(kImage3Size);
ASSERT_TRUE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
std::unique_ptr<DummyImageSpace> space3(CreateImageSpace(kImage3Size,
kImage3OatSize,
&image_reservation,
&reservation));
ASSERT_TRUE(space3 != nullptr);
ASSERT_FALSE(image_reservation.IsValid());
ASSERT_FALSE(reservation.IsValid());
// Check that we do not include the oat if there is no space after.
ImmuneSpaces spaces;
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
LOG(INFO) << "Adding space1 " << reinterpret_cast<const void*>(space1->Begin());
spaces.AddSpace(space1.get());
LOG(INFO) << "Adding space2 " << reinterpret_cast<const void*>(space2->Begin());
spaces.AddSpace(space2.get());
}
// There are no more heap bytes, the immune region should only be the first 2 image spaces and
// should exclude the image oat files.
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()),
space1->Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()),
space2->Limit());
// Add another space after the oat files, now it should contain the entire memory region.
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
LOG(INFO) << "Adding space3 " << reinterpret_cast<const void*>(space3->Begin());
spaces.AddSpace(space3.get());
}
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()),
space1->Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()),
space3->Limit());
// Add a smaller non-adjacent space and ensure it does not become part of the immune region.
// Image size is kImageBytes - kPageSize
// Oat size is kPageSize.
// Guard pages to ensure it is not adjacent to an existing immune region.
// Layout: [guard page][image][oat][guard page]
constexpr size_t kGuardSize = kPageSize;
constexpr size_t kImage4Size = kImageBytes - kPageSize;
constexpr size_t kImage4OatSize = kPageSize;
reservation = MemMap::MapAnonymous("reserve",
kImage4Size + kImage4OatSize + kGuardSize * 2,
PROT_READ | PROT_WRITE,
/*low_4gb=*/ true,
&error_str);
ASSERT_TRUE(reservation.IsValid()) << "Failed to allocate memory region " << error_str;
MemMap guard = reservation.TakeReservedMemory(kGuardSize);
ASSERT_TRUE(guard.IsValid());
ASSERT_TRUE(reservation.IsValid());
guard.Reset(); // Release the guard memory.
image_reservation = reservation.TakeReservedMemory(kImage4Size);
ASSERT_TRUE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
std::unique_ptr<DummyImageSpace> space4(CreateImageSpace(kImage4Size,
kImage4OatSize,
&image_reservation,
&reservation));
ASSERT_TRUE(space4 != nullptr);
ASSERT_FALSE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
ASSERT_EQ(reservation.Size(), kGuardSize);
reservation.Reset(); // Release the guard memory.
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
LOG(INFO) << "Adding space4 " << reinterpret_cast<const void*>(space4->Begin());
spaces.AddSpace(space4.get());
}
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()),
space1->Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()),
space3->Limit());
// Add a larger non-adjacent space and ensure it becomes the new largest immune region.
// Image size is kImageBytes + kPageSize
// Oat size is kPageSize.
// Guard pages to ensure it is not adjacent to an existing immune region.
// Layout: [guard page][image][oat][guard page]
constexpr size_t kImage5Size = kImageBytes + kPageSize;
constexpr size_t kImage5OatSize = kPageSize;
reservation = MemMap::MapAnonymous("reserve",
kImage5Size + kImage5OatSize + kGuardSize * 2,
PROT_READ | PROT_WRITE,
/*low_4gb=*/ true,
&error_str);
ASSERT_TRUE(reservation.IsValid()) << "Failed to allocate memory region " << error_str;
guard = reservation.TakeReservedMemory(kGuardSize);
ASSERT_TRUE(guard.IsValid());
ASSERT_TRUE(reservation.IsValid());
guard.Reset(); // Release the guard memory.
image_reservation = reservation.TakeReservedMemory(kImage5Size);
ASSERT_TRUE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
std::unique_ptr<DummyImageSpace> space5(CreateImageSpace(kImage5Size,
kImage5OatSize,
&image_reservation,
&reservation));
ASSERT_TRUE(space5 != nullptr);
ASSERT_FALSE(image_reservation.IsValid());
ASSERT_TRUE(reservation.IsValid());
ASSERT_EQ(reservation.Size(), kGuardSize);
reservation.Reset(); // Release the guard memory.
{
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
LOG(INFO) << "Adding space5 " << reinterpret_cast<const void*>(space5->Begin());
spaces.AddSpace(space5.get());
}
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().Begin()), space5->Begin());
EXPECT_EQ(reinterpret_cast<uint8_t*>(spaces.GetLargestImmuneRegion().End()), space5->Limit());
}
} // namespace collector
} // namespace gc
} // namespace art
|