1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
|
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_HEAP_H_
#define ART_RUNTIME_GC_HEAP_H_
#include <iosfwd>
#include <string>
#include <unordered_set>
#include <vector>
#include <android-base/logging.h>
#include "allocator_type.h"
#include "base/atomic.h"
#include "base/macros.h"
#include "base/mutex.h"
#include "base/runtime_debug.h"
#include "base/safe_map.h"
#include "base/time_utils.h"
#include "gc/collector/gc_type.h"
#include "gc/collector/iteration.h"
#include "gc/collector_type.h"
#include "gc/gc_cause.h"
#include "gc/space/image_space_loading_order.h"
#include "gc/space/large_object_space.h"
#include "handle.h"
#include "obj_ptr.h"
#include "offsets.h"
#include "process_state.h"
#include "read_barrier_config.h"
#include "runtime_globals.h"
#include "verify_object.h"
namespace art {
class ConditionVariable;
enum class InstructionSet;
class IsMarkedVisitor;
class Mutex;
class ReflectiveValueVisitor;
class RootVisitor;
class StackVisitor;
class Thread;
class ThreadPool;
class TimingLogger;
class VariableSizedHandleScope;
namespace mirror {
class Class;
class Object;
} // namespace mirror
namespace gc {
class AllocationListener;
class AllocRecordObjectMap;
class GcPauseListener;
class HeapTask;
class ReferenceProcessor;
class TaskProcessor;
class Verification;
namespace accounting {
template <typename T> class AtomicStack;
typedef AtomicStack<mirror::Object> ObjectStack;
class CardTable;
class HeapBitmap;
class ModUnionTable;
class ReadBarrierTable;
class RememberedSet;
} // namespace accounting
namespace collector {
class ConcurrentCopying;
class GarbageCollector;
class MarkSweep;
class SemiSpace;
} // namespace collector
namespace allocator {
class RosAlloc;
} // namespace allocator
namespace space {
class AllocSpace;
class BumpPointerSpace;
class ContinuousMemMapAllocSpace;
class DiscontinuousSpace;
class DlMallocSpace;
class ImageSpace;
class LargeObjectSpace;
class MallocSpace;
class RegionSpace;
class RosAllocSpace;
class Space;
class ZygoteSpace;
} // namespace space
enum HomogeneousSpaceCompactResult {
// Success.
kSuccess,
// Reject due to disabled moving GC.
kErrorReject,
// Unsupported due to the current configuration.
kErrorUnsupported,
// System is shutting down.
kErrorVMShuttingDown,
};
// If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
static constexpr bool kUseRosAlloc = true;
// If true, use thread-local allocation stack.
static constexpr bool kUseThreadLocalAllocationStack = true;
class Heap {
public:
// How much we grow the TLAB if we can do it.
static constexpr size_t kPartialTlabSize = 16 * KB;
static constexpr bool kUsePartialTlabs = true;
static constexpr size_t kDefaultStartingSize = kPageSize;
static constexpr size_t kDefaultInitialSize = 2 * MB;
static constexpr size_t kDefaultMaximumSize = 256 * MB;
static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB;
static constexpr size_t kDefaultMaxFree = 2 * MB;
static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);
static constexpr size_t kDefaultTLABSize = 32 * KB;
static constexpr double kDefaultTargetUtilization = 0.75;
static constexpr double kDefaultHeapGrowthMultiplier = 2.0;
// Primitive arrays larger than this size are put in the large object space.
static constexpr size_t kMinLargeObjectThreshold = 3 * kPageSize;
static constexpr size_t kDefaultLargeObjectThreshold = kMinLargeObjectThreshold;
// Whether or not parallel GC is enabled. If not, then we never create the thread pool.
static constexpr bool kDefaultEnableParallelGC = false;
static uint8_t* const kPreferredAllocSpaceBegin;
// Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR
// since this means that we have to use the slow msync loop in MemMap::MapAnonymous.
static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType =
USE_ART_LOW_4G_ALLOCATOR ?
space::LargeObjectSpaceType::kFreeList
: space::LargeObjectSpaceType::kMap;
// Used so that we don't overflow the allocation time atomic integer.
static constexpr size_t kTimeAdjust = 1024;
// Client should call NotifyNativeAllocation every kNotifyNativeInterval allocations.
// Should be chosen so that time_to_call_mallinfo / kNotifyNativeInterval is on the same order
// as object allocation time. time_to_call_mallinfo seems to be on the order of 1 usec.
#ifdef __ANDROID__
static constexpr uint32_t kNotifyNativeInterval = 32;
#else
// Some host mallinfo() implementations are slow. And memory is less scarce.
static constexpr uint32_t kNotifyNativeInterval = 512;
#endif
// RegisterNativeAllocation checks immediately whether GC is needed if size exceeds the
// following. kCheckImmediatelyThreshold * kNotifyNativeInterval should be small enough to
// make it safe to allocate that many bytes between checks.
static constexpr size_t kCheckImmediatelyThreshold = 300000;
// How often we allow heap trimming to happen (nanoseconds).
static constexpr uint64_t kHeapTrimWait = MsToNs(5000);
// How long we wait after a transition request to perform a collector transition (nanoseconds).
static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000);
// Whether the transition-wait applies or not. Zero wait will stress the
// transition code and collector, but increases jank probability.
DECLARE_RUNTIME_DEBUG_FLAG(kStressCollectorTransition);
// Create a heap with the requested sizes. The possible empty
// image_file_names names specify Spaces to load based on
// ImageWriter output.
Heap(size_t initial_size,
size_t growth_limit,
size_t min_free,
size_t max_free,
double target_utilization,
double foreground_heap_growth_multiplier,
size_t stop_for_native_allocs,
size_t capacity,
size_t non_moving_space_capacity,
const std::vector<std::string>& boot_class_path,
const std::vector<std::string>& boot_class_path_locations,
const std::string& image_file_name,
InstructionSet image_instruction_set,
CollectorType foreground_collector_type,
CollectorType background_collector_type,
space::LargeObjectSpaceType large_object_space_type,
size_t large_object_threshold,
size_t parallel_gc_threads,
size_t conc_gc_threads,
bool low_memory_mode,
size_t long_pause_threshold,
size_t long_gc_threshold,
bool ignore_target_footprint,
bool use_tlab,
bool verify_pre_gc_heap,
bool verify_pre_sweeping_heap,
bool verify_post_gc_heap,
bool verify_pre_gc_rosalloc,
bool verify_pre_sweeping_rosalloc,
bool verify_post_gc_rosalloc,
bool gc_stress_mode,
bool measure_gc_performance,
bool use_homogeneous_space_compaction,
bool use_generational_cc,
uint64_t min_interval_homogeneous_space_compaction_by_oom,
bool dump_region_info_before_gc,
bool dump_region_info_after_gc,
space::ImageSpaceLoadingOrder image_space_loading_order);
~Heap();
// Allocates and initializes storage for an object instance.
template <bool kInstrumented = true, typename PreFenceVisitor>
mirror::Object* AllocObject(Thread* self,
ObjPtr<mirror::Class> klass,
size_t num_bytes,
const PreFenceVisitor& pre_fence_visitor)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!*gc_complete_lock_,
!*pending_task_lock_,
!*backtrace_lock_,
!process_state_update_lock_,
!Roles::uninterruptible_) {
return AllocObjectWithAllocator<kInstrumented>(self,
klass,
num_bytes,
GetCurrentAllocator(),
pre_fence_visitor);
}
template <bool kInstrumented = true, typename PreFenceVisitor>
mirror::Object* AllocNonMovableObject(Thread* self,
ObjPtr<mirror::Class> klass,
size_t num_bytes,
const PreFenceVisitor& pre_fence_visitor)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!*gc_complete_lock_,
!*pending_task_lock_,
!*backtrace_lock_,
!process_state_update_lock_,
!Roles::uninterruptible_) {
return AllocObjectWithAllocator<kInstrumented>(self,
klass,
num_bytes,
GetCurrentNonMovingAllocator(),
pre_fence_visitor);
}
template <bool kInstrumented = true, bool kCheckLargeObject = true, typename PreFenceVisitor>
ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self,
ObjPtr<mirror::Class> klass,
size_t byte_count,
AllocatorType allocator,
const PreFenceVisitor& pre_fence_visitor)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!*gc_complete_lock_,
!*pending_task_lock_,
!*backtrace_lock_,
!process_state_update_lock_,
!Roles::uninterruptible_);
AllocatorType GetCurrentAllocator() const {
return current_allocator_;
}
AllocatorType GetCurrentNonMovingAllocator() const {
return current_non_moving_allocator_;
}
// Visit all of the live objects in the heap.
template <typename Visitor>
ALWAYS_INLINE void VisitObjects(Visitor&& visitor)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
template <typename Visitor>
ALWAYS_INLINE void VisitObjectsPaused(Visitor&& visitor)
REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
void VisitReflectiveTargets(ReflectiveValueVisitor* visitor)
REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
void CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count)
REQUIRES_SHARED(Locks::mutator_lock_);
// Inform the garbage collector of a non-malloc allocated native memory that might become
// reclaimable in the future as a result of Java garbage collection.
void RegisterNativeAllocation(JNIEnv* env, size_t bytes)
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
void RegisterNativeFree(JNIEnv* env, size_t bytes);
// Notify the garbage collector of malloc allocations that might be reclaimable
// as a result of Java garbage collection. Each such call represents approximately
// kNotifyNativeInterval such allocations.
void NotifyNativeAllocations(JNIEnv* env)
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
uint32_t GetNotifyNativeInterval() {
return kNotifyNativeInterval;
}
// Change the allocator, updates entrypoints.
void ChangeAllocator(AllocatorType allocator)
REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_);
// Change the collector to be one of the possible options (MS, CMS, SS).
void ChangeCollector(CollectorType collector_type)
REQUIRES(Locks::mutator_lock_);
// The given reference is believed to be to an object in the Java heap, check the soundness of it.
// TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a
// proper lock ordering for it.
void VerifyObjectBody(ObjPtr<mirror::Object> o) NO_THREAD_SAFETY_ANALYSIS;
// Check sanity of all live references.
void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_);
// Returns how many failures occured.
size_t VerifyHeapReferences(bool verify_referents = true)
REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
bool VerifyMissingCardMarks()
REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
// A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
// and doesn't abort on error, allowing the caller to report more
// meaningful diagnostics.
bool IsValidObjectAddress(const void* obj) const REQUIRES_SHARED(Locks::mutator_lock_);
// Faster alternative to IsHeapAddress since finding if an object is in the large object space is
// very slow.
bool IsNonDiscontinuousSpaceHeapAddress(const void* addr) const
REQUIRES_SHARED(Locks::mutator_lock_);
// Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
// Requires the heap lock to be held.
bool IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
bool search_allocation_stack = true,
bool search_live_stack = true,
bool sorted = false)
REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
// Returns true if there is any chance that the object (obj) will move.
bool IsMovableObject(ObjPtr<mirror::Object> obj) const REQUIRES_SHARED(Locks::mutator_lock_);
// Enables us to compacting GC until objects are released.
void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
// Temporarily disable thread flip for JNI critical calls.
void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_);
void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_);
// Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits.
// Mutator lock is required for GetContinuousSpaces.
void ClearMarkedObjects()
REQUIRES(Locks::heap_bitmap_lock_)
REQUIRES_SHARED(Locks::mutator_lock_);
// Initiates an explicit garbage collection.
void CollectGarbage(bool clear_soft_references, GcCause cause = kGcCauseExplicit)
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
// Does a concurrent GC, should only be called by the GC daemon thread
// through runtime.
void ConcurrentGC(Thread* self, GcCause cause, bool force_full)
REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_,
!*pending_task_lock_, !process_state_update_lock_);
// Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
// The boolean decides whether to use IsAssignableFrom or == when comparing classes.
void CountInstances(const std::vector<Handle<mirror::Class>>& classes,
bool use_is_assignable_from,
uint64_t* counts)
REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
REQUIRES_SHARED(Locks::mutator_lock_);
// Implements VMDebug.getInstancesOfClasses and JDWP RT_Instances.
void GetInstances(VariableSizedHandleScope& scope,
Handle<mirror::Class> c,
bool use_is_assignable_from,
int32_t max_count,
std::vector<Handle<mirror::Object>>& instances)
REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
REQUIRES_SHARED(Locks::mutator_lock_);
// Implements JDWP OR_ReferringObjects.
void GetReferringObjects(VariableSizedHandleScope& scope,
Handle<mirror::Object> o,
int32_t max_count,
std::vector<Handle<mirror::Object>>& referring_objects)
REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
REQUIRES_SHARED(Locks::mutator_lock_);
// Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
// implement dalvik.system.VMRuntime.clearGrowthLimit.
void ClearGrowthLimit();
// Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces
// which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit.
void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_);
// Target ideal heap utilization ratio, implements
// dalvik.system.VMRuntime.getTargetHeapUtilization.
double GetTargetHeapUtilization() const {
return target_utilization_;
}
// Data structure memory usage tracking.
void RegisterGCAllocation(size_t bytes);
void RegisterGCDeAllocation(size_t bytes);
// Set the heap's private space pointers to be the same as the space based on it's type. Public
// due to usage by tests.
void SetSpaceAsDefault(space::ContinuousSpace* continuous_space)
REQUIRES(!Locks::heap_bitmap_lock_);
void AddSpace(space::Space* space)
REQUIRES(!Locks::heap_bitmap_lock_)
REQUIRES(Locks::mutator_lock_);
void RemoveSpace(space::Space* space)
REQUIRES(!Locks::heap_bitmap_lock_)
REQUIRES(Locks::mutator_lock_);
double GetPreGcWeightedAllocatedBytes() const {
return pre_gc_weighted_allocated_bytes_;
}
double GetPostGcWeightedAllocatedBytes() const {
return post_gc_weighted_allocated_bytes_;
}
void CalculatePreGcWeightedAllocatedBytes();
void CalculatePostGcWeightedAllocatedBytes();
uint64_t GetTotalGcCpuTime();
uint64_t GetProcessCpuStartTime() const {
return process_cpu_start_time_ns_;
}
uint64_t GetPostGCLastProcessCpuTime() const {
return post_gc_last_process_cpu_time_ns_;
}
// Set target ideal heap utilization ratio, implements
// dalvik.system.VMRuntime.setTargetHeapUtilization.
void SetTargetHeapUtilization(float target);
// For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
// from the system. Doesn't allow the space to exceed its growth limit.
void SetIdealFootprint(size_t max_allowed_footprint);
// Blocks the caller until the garbage collector becomes idle and returns the type of GC we
// waited for.
collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) REQUIRES(!*gc_complete_lock_);
// Update the heap's process state to a new value, may cause compaction to occur.
void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state)
REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_);
bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS {
// No lock since vector empty is thread safe.
return !continuous_spaces_.empty();
}
const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const
REQUIRES_SHARED(Locks::mutator_lock_) {
return continuous_spaces_;
}
const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
return discontinuous_spaces_;
}
const collector::Iteration* GetCurrentGcIteration() const {
return ¤t_gc_iteration_;
}
collector::Iteration* GetCurrentGcIteration() {
return ¤t_gc_iteration_;
}
// Enable verification of object references when the runtime is sufficiently initialized.
void EnableObjectValidation() {
verify_object_mode_ = kVerifyObjectSupport;
if (verify_object_mode_ > kVerifyObjectModeDisabled) {
VerifyHeap();
}
}
// Disable object reference verification for image writing.
void DisableObjectValidation() {
verify_object_mode_ = kVerifyObjectModeDisabled;
}
// Other checks may be performed if we know the heap should be in a sane state.
bool IsObjectValidationEnabled() const {
return verify_object_mode_ > kVerifyObjectModeDisabled;
}
// Returns true if low memory mode is enabled.
bool IsLowMemoryMode() const {
return low_memory_mode_;
}
// Returns the heap growth multiplier, this affects how much we grow the heap after a GC.
// Scales heap growth, min free, and max free.
double HeapGrowthMultiplier() const;
// Freed bytes can be negative in cases where we copy objects from a compacted space to a
// free-list backed space.
void RecordFree(uint64_t freed_objects, int64_t freed_bytes);
// Record the bytes freed by thread-local buffer revoke.
void RecordFreeRevoke();
accounting::CardTable* GetCardTable() const {
return card_table_.get();
}
accounting::ReadBarrierTable* GetReadBarrierTable() const {
return rb_table_.get();
}
void AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object);
// Returns the number of bytes currently allocated.
// The result should be treated as an approximation, if it is being concurrently updated.
size_t GetBytesAllocated() const {
return num_bytes_allocated_.load(std::memory_order_relaxed);
}
bool GetUseGenerationalCC() const {
return use_generational_cc_;
}
// Returns the number of objects currently allocated.
size_t GetObjectsAllocated() const
REQUIRES(!Locks::heap_bitmap_lock_);
// Returns the total number of objects allocated since the heap was created.
uint64_t GetObjectsAllocatedEver() const;
// Returns the total number of bytes allocated since the heap was created.
uint64_t GetBytesAllocatedEver() const;
// Returns the total number of objects freed since the heap was created.
// With default memory order, this should be viewed only as a hint.
uint64_t GetObjectsFreedEver(std::memory_order mo = std::memory_order_relaxed) const {
return total_objects_freed_ever_.load(mo);
}
// Returns the total number of bytes freed since the heap was created.
// With default memory order, this should be viewed only as a hint.
uint64_t GetBytesFreedEver(std::memory_order mo = std::memory_order_relaxed) const {
return total_bytes_freed_ever_.load(mo);
}
space::RegionSpace* GetRegionSpace() const {
return region_space_;
}
// Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
// consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
// were specified. Android apps start with a growth limit (small heap size) which is
// cleared/extended for large apps.
size_t GetMaxMemory() const {
// There are some race conditions in the allocation code that can cause bytes allocated to
// become larger than growth_limit_ in rare cases.
return std::max(GetBytesAllocated(), growth_limit_);
}
// Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently
// consumed by an application.
size_t GetTotalMemory() const;
// Returns approximately how much free memory we have until the next GC happens.
size_t GetFreeMemoryUntilGC() const {
return UnsignedDifference(target_footprint_.load(std::memory_order_relaxed),
GetBytesAllocated());
}
// Returns approximately how much free memory we have until the next OOME happens.
size_t GetFreeMemoryUntilOOME() const {
return UnsignedDifference(growth_limit_, GetBytesAllocated());
}
// Returns how much free memory we have until we need to grow the heap to perform an allocation.
// Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory.
size_t GetFreeMemory() const {
return UnsignedDifference(GetTotalMemory(),
num_bytes_allocated_.load(std::memory_order_relaxed));
}
// Get the space that corresponds to an object's address. Current implementation searches all
// spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
// TODO: consider using faster data structure like binary tree.
space::ContinuousSpace* FindContinuousSpaceFromObject(ObjPtr<mirror::Object>, bool fail_ok) const
REQUIRES_SHARED(Locks::mutator_lock_);
space::ContinuousSpace* FindContinuousSpaceFromAddress(const mirror::Object* addr) const
REQUIRES_SHARED(Locks::mutator_lock_);
space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object>,
bool fail_ok) const
REQUIRES_SHARED(Locks::mutator_lock_);
space::Space* FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const
REQUIRES_SHARED(Locks::mutator_lock_);
space::Space* FindSpaceFromAddress(const void* ptr) const
REQUIRES_SHARED(Locks::mutator_lock_);
std::string DumpSpaceNameFromAddress(const void* addr) const
REQUIRES_SHARED(Locks::mutator_lock_);
void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_);
// Do a pending collector transition.
void DoPendingCollectorTransition()
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
// Deflate monitors, ... and trim the spaces.
void Trim(Thread* self) REQUIRES(!*gc_complete_lock_);
void RevokeThreadLocalBuffers(Thread* thread);
void RevokeRosAllocThreadLocalBuffers(Thread* thread);
void RevokeAllThreadLocalBuffers();
void AssertThreadLocalBuffersAreRevoked(Thread* thread);
void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
void RosAllocVerification(TimingLogger* timings, const char* name)
REQUIRES(Locks::mutator_lock_);
accounting::HeapBitmap* GetLiveBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
return live_bitmap_.get();
}
accounting::HeapBitmap* GetMarkBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
return mark_bitmap_.get();
}
accounting::ObjectStack* GetLiveStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
return live_stack_.get();
}
void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;
// Mark and empty stack.
void FlushAllocStack()
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(Locks::heap_bitmap_lock_);
// Revoke all the thread-local allocation stacks.
void RevokeAllThreadLocalAllocationStacks(Thread* self)
REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_);
// Mark all the objects in the allocation stack in the specified bitmap.
// TODO: Refactor?
void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1,
accounting::SpaceBitmap<kObjectAlignment>* bitmap2,
accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects,
accounting::ObjectStack* stack)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(Locks::heap_bitmap_lock_);
// Mark the specified allocation stack as live.
void MarkAllocStackAsLive(accounting::ObjectStack* stack)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(Locks::heap_bitmap_lock_);
// Unbind any bound bitmaps.
void UnBindBitmaps()
REQUIRES(Locks::heap_bitmap_lock_)
REQUIRES_SHARED(Locks::mutator_lock_);
// Returns the boot image spaces. There may be multiple boot image spaces.
const std::vector<space::ImageSpace*>& GetBootImageSpaces() const {
return boot_image_spaces_;
}
bool ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const
REQUIRES_SHARED(Locks::mutator_lock_);
bool IsInBootImageOatFile(const void* p) const
REQUIRES_SHARED(Locks::mutator_lock_);
// Get the start address of the boot images if any; otherwise returns 0.
uint32_t GetBootImagesStartAddress() const {
return boot_images_start_address_;
}
// Get the size of all boot images, including the heap and oat areas.
uint32_t GetBootImagesSize() const {
return boot_images_size_;
}
// Check if a pointer points to a boot image.
bool IsBootImageAddress(const void* p) const {
return reinterpret_cast<uintptr_t>(p) - boot_images_start_address_ < boot_images_size_;
}
space::DlMallocSpace* GetDlMallocSpace() const {
return dlmalloc_space_;
}
space::RosAllocSpace* GetRosAllocSpace() const {
return rosalloc_space_;
}
// Return the corresponding rosalloc space.
space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const
REQUIRES_SHARED(Locks::mutator_lock_);
space::MallocSpace* GetNonMovingSpace() const {
return non_moving_space_;
}
space::LargeObjectSpace* GetLargeObjectsSpace() const {
return large_object_space_;
}
// Returns the free list space that may contain movable objects (the
// one that's not the non-moving space), either rosalloc_space_ or
// dlmalloc_space_.
space::MallocSpace* GetPrimaryFreeListSpace() {
if (kUseRosAlloc) {
DCHECK(rosalloc_space_ != nullptr);
// reinterpret_cast is necessary as the space class hierarchy
// isn't known (#included) yet here.
return reinterpret_cast<space::MallocSpace*>(rosalloc_space_);
} else {
DCHECK(dlmalloc_space_ != nullptr);
return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_);
}
}
void DumpSpaces(std::ostream& stream) const REQUIRES_SHARED(Locks::mutator_lock_);
std::string DumpSpaces() const REQUIRES_SHARED(Locks::mutator_lock_);
// GC performance measuring
void DumpGcPerformanceInfo(std::ostream& os)
REQUIRES(!*gc_complete_lock_);
void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_);
// Thread pool.
void CreateThreadPool();
void DeleteThreadPool();
ThreadPool* GetThreadPool() {
return thread_pool_.get();
}
size_t GetParallelGCThreadCount() const {
return parallel_gc_threads_;
}
size_t GetConcGCThreadCount() const {
return conc_gc_threads_;
}
accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
void AddModUnionTable(accounting::ModUnionTable* mod_union_table);
accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space);
void AddRememberedSet(accounting::RememberedSet* remembered_set);
// Also deletes the remebered set.
void RemoveRememberedSet(space::Space* space);
bool IsCompilingBoot() const;
bool HasBootImageSpace() const {
return !boot_image_spaces_.empty();
}
ReferenceProcessor* GetReferenceProcessor() {
return reference_processor_.get();
}
TaskProcessor* GetTaskProcessor() {
return task_processor_.get();
}
bool HasZygoteSpace() const {
return zygote_space_ != nullptr;
}
// Returns the active concurrent copying collector.
collector::ConcurrentCopying* ConcurrentCopyingCollector() {
if (use_generational_cc_) {
DCHECK((active_concurrent_copying_collector_ == concurrent_copying_collector_) ||
(active_concurrent_copying_collector_ == young_concurrent_copying_collector_));
} else {
DCHECK_EQ(active_concurrent_copying_collector_, concurrent_copying_collector_);
}
return active_concurrent_copying_collector_;
}
CollectorType CurrentCollectorType() {
return collector_type_;
}
bool IsGcConcurrentAndMoving() const {
if (IsGcConcurrent() && IsMovingGc(collector_type_)) {
// Assume no transition when a concurrent moving collector is used.
DCHECK_EQ(collector_type_, foreground_collector_type_);
return true;
}
return false;
}
bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) {
MutexLock mu(self, *gc_complete_lock_);
return disable_moving_gc_count_ > 0;
}
// Request an asynchronous trim.
void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_);
// Request asynchronous GC.
void RequestConcurrentGC(Thread* self, GcCause cause, bool force_full)
REQUIRES(!*pending_task_lock_);
// Whether or not we may use a garbage collector, used so that we only create collectors we need.
bool MayUseCollector(CollectorType type) const;
// Used by tests to reduce timinig-dependent flakiness in OOME behavior.
void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) {
min_interval_homogeneous_space_compaction_by_oom_ = interval;
}
// Helpers for android.os.Debug.getRuntimeStat().
uint64_t GetGcCount() const;
uint64_t GetGcTime() const;
uint64_t GetBlockingGcCount() const;
uint64_t GetBlockingGcTime() const;
void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
// Allocation tracking support
// Callers to this function use double-checked locking to ensure safety on allocation_records_
bool IsAllocTrackingEnabled() const {
return alloc_tracking_enabled_.load(std::memory_order_relaxed);
}
void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) {
alloc_tracking_enabled_.store(enabled, std::memory_order_relaxed);
}
// Return the current stack depth of allocation records.
size_t GetAllocTrackerStackDepth() const {
return alloc_record_depth_;
}
// Return the current stack depth of allocation records.
void SetAllocTrackerStackDepth(size_t alloc_record_depth) {
alloc_record_depth_ = alloc_record_depth;
}
AllocRecordObjectMap* GetAllocationRecords() const REQUIRES(Locks::alloc_tracker_lock_) {
return allocation_records_.get();
}
void SetAllocationRecords(AllocRecordObjectMap* records)
REQUIRES(Locks::alloc_tracker_lock_);
void VisitAllocationRecords(RootVisitor* visitor) const
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!Locks::alloc_tracker_lock_);
void SweepAllocationRecords(IsMarkedVisitor* visitor) const
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!Locks::alloc_tracker_lock_);
void DisallowNewAllocationRecords() const
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!Locks::alloc_tracker_lock_);
void AllowNewAllocationRecords() const
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!Locks::alloc_tracker_lock_);
void BroadcastForNewAllocationRecords() const
REQUIRES(!Locks::alloc_tracker_lock_);
void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_);
// Create a new alloc space and compact default alloc space to it.
HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact()
REQUIRES(!*gc_complete_lock_, !process_state_update_lock_);
bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const;
// Install an allocation listener.
void SetAllocationListener(AllocationListener* l);
// Remove an allocation listener. Note: the listener must not be deleted, as for performance
// reasons, we assume it stays valid when we read it (so that we don't require a lock).
void RemoveAllocationListener();
// Install a gc pause listener.
void SetGcPauseListener(GcPauseListener* l);
// Get the currently installed gc pause listener, or null.
GcPauseListener* GetGcPauseListener() {
return gc_pause_listener_.load(std::memory_order_acquire);
}
// Remove a gc pause listener. Note: the listener must not be deleted, as for performance
// reasons, we assume it stays valid when we read it (so that we don't require a lock).
void RemoveGcPauseListener();
const Verification* GetVerification() const;
void PostForkChildAction(Thread* self);
void TraceHeapSize(size_t heap_size);
bool AddHeapTask(gc::HeapTask* task);
private:
class ConcurrentGCTask;
class CollectorTransitionTask;
class HeapTrimTask;
class TriggerPostForkCCGcTask;
// Compact source space to target space. Returns the collector used.
collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space,
space::ContinuousMemMapAllocSpace* source_space,
GcCause gc_cause)
REQUIRES(Locks::mutator_lock_);
void LogGC(GcCause gc_cause, collector::GarbageCollector* collector);
void StartGC(Thread* self, GcCause cause, CollectorType collector_type)
REQUIRES(!*gc_complete_lock_);
void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_);
double CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,
uint64_t current_process_cpu_time) const;
// Create a mem map with a preferred base address.
static MemMap MapAnonymousPreferredAddress(const char* name,
uint8_t* request_begin,
size_t capacity,
std::string* out_error_str);
bool SupportHSpaceCompaction() const {
// Returns true if we can do hspace compaction
return main_space_backup_ != nullptr;
}
// Size_t saturating arithmetic
static ALWAYS_INLINE size_t UnsignedDifference(size_t x, size_t y) {
return x > y ? x - y : 0;
}
static ALWAYS_INLINE size_t UnsignedSum(size_t x, size_t y) {
return x + y >= x ? x + y : std::numeric_limits<size_t>::max();
}
static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
return
allocator_type != kAllocatorTypeRegionTLAB &&
allocator_type != kAllocatorTypeBumpPointer &&
allocator_type != kAllocatorTypeTLAB &&
allocator_type != kAllocatorTypeRegion;
}
static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) {
if (kUseReadBarrier) {
// Read barrier may have the TLAB allocator but is always concurrent. TODO: clean this up.
return true;
}
return
allocator_type != kAllocatorTypeTLAB &&
allocator_type != kAllocatorTypeBumpPointer;
}
static bool IsMovingGc(CollectorType collector_type) {
return
collector_type == kCollectorTypeCC ||
collector_type == kCollectorTypeSS ||
collector_type == kCollectorTypeCCBackground ||
collector_type == kCollectorTypeHomogeneousSpaceCompact;
}
bool ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const
REQUIRES_SHARED(Locks::mutator_lock_);
// Checks whether we should garbage collect:
ALWAYS_INLINE bool ShouldConcurrentGCForJava(size_t new_num_bytes_allocated);
float NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent);
ALWAYS_INLINE void CheckConcurrentGCForJava(Thread* self,
size_t new_num_bytes_allocated,
ObjPtr<mirror::Object>* obj)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!*pending_task_lock_, !*gc_complete_lock_);
void CheckGCForNative(Thread* self)
REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_);
accounting::ObjectStack* GetMarkStack() {
return mark_stack_.get();
}
// We don't force this to be inlined since it is a slow path.
template <bool kInstrumented, typename PreFenceVisitor>
mirror::Object* AllocLargeObject(Thread* self,
ObjPtr<mirror::Class>* klass,
size_t byte_count,
const PreFenceVisitor& pre_fence_visitor)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_,
!*backtrace_lock_, !process_state_update_lock_);
// Handles Allocate()'s slow allocation path with GC involved after
// an initial allocation attempt failed.
mirror::Object* AllocateInternalWithGc(Thread* self,
AllocatorType allocator,
bool instrumented,
size_t num_bytes,
size_t* bytes_allocated,
size_t* usable_size,
size_t* bytes_tl_bulk_allocated,
ObjPtr<mirror::Class>* klass)
REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_)
REQUIRES(Roles::uninterruptible_)
REQUIRES_SHARED(Locks::mutator_lock_);
// Allocate into a specific space.
mirror::Object* AllocateInto(Thread* self,
space::AllocSpace* space,
ObjPtr<mirror::Class> c,
size_t bytes)
REQUIRES_SHARED(Locks::mutator_lock_);
// Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
// wrong space.
void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_);
// Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
// that the switch statement is constant optimized in the entrypoints.
template <const bool kInstrumented, const bool kGrow>
ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self,
AllocatorType allocator_type,
size_t alloc_size,
size_t* bytes_allocated,
size_t* usable_size,
size_t* bytes_tl_bulk_allocated)
REQUIRES_SHARED(Locks::mutator_lock_);
mirror::Object* AllocWithNewTLAB(Thread* self,
size_t alloc_size,
bool grow,
size_t* bytes_allocated,
size_t* usable_size,
size_t* bytes_tl_bulk_allocated)
REQUIRES_SHARED(Locks::mutator_lock_);
void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type)
REQUIRES_SHARED(Locks::mutator_lock_);
// Are we out of memory, and thus should force a GC or fail?
// For concurrent collectors, out of memory is defined by growth_limit_.
// For nonconcurrent collectors it is defined by target_footprint_ unless grow is
// set. If grow is set, the limit is growth_limit_ and we adjust target_footprint_
// to accomodate the allocation.
ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type,
size_t alloc_size,
bool grow);
// Run the finalizers. If timeout is non zero, then we use the VMRuntime version.
void RunFinalization(JNIEnv* env, uint64_t timeout);
// Blocks the caller until the garbage collector becomes idle and returns the type of GC we
// waited for.
collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self)
REQUIRES(gc_complete_lock_);
void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time)
REQUIRES(!*pending_task_lock_);
void RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, ObjPtr<mirror::Object>* obj)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!*pending_task_lock_);
bool IsGCRequestPending() const;
// Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
// which type of Gc was actually ran.
collector::GcType CollectGarbageInternal(collector::GcType gc_plan,
GcCause gc_cause,
bool clear_soft_references)
REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_,
!*pending_task_lock_, !process_state_update_lock_);
void PreGcVerification(collector::GarbageCollector* gc)
REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
void PreGcVerificationPaused(collector::GarbageCollector* gc)
REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
void PrePauseRosAllocVerification(collector::GarbageCollector* gc)
REQUIRES(Locks::mutator_lock_);
void PreSweepingGcVerification(collector::GarbageCollector* gc)
REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
void PostGcVerification(collector::GarbageCollector* gc)
REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
void PostGcVerificationPaused(collector::GarbageCollector* gc)
REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
// Find a collector based on GC type.
collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type);
// Create the main free list malloc space, either a RosAlloc space or DlMalloc space.
void CreateMainMallocSpace(MemMap&& mem_map,
size_t initial_size,
size_t growth_limit,
size_t capacity);
// Create a malloc space based on a mem map. Does not set the space as default.
space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap&& mem_map,
size_t initial_size,
size_t growth_limit,
size_t capacity,
const char* name,
bool can_move_objects);
// Given the current contents of the alloc space, increase the allowed heap footprint to match
// the target utilization ratio. This should only be called immediately after a full garbage
// collection. bytes_allocated_before_gc is used to measure bytes / second for the period which
// the GC was run.
void GrowForUtilization(collector::GarbageCollector* collector_ran,
size_t bytes_allocated_before_gc = 0)
REQUIRES(!process_state_update_lock_);
size_t GetPercentFree();
// Swap the allocation stack with the live stack.
void SwapStacks() REQUIRES_SHARED(Locks::mutator_lock_);
// Clear cards and update the mod union table. When process_alloc_space_cards is true,
// if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do
// not process the alloc space if process_alloc_space_cards is false.
void ProcessCards(TimingLogger* timings,
bool use_rem_sets,
bool process_alloc_space_cards,
bool clear_alloc_space_cards)
REQUIRES_SHARED(Locks::mutator_lock_);
// Push an object onto the allocation stack.
void PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
void PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, ObjPtr<mirror::Object>* obj)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
void ClearConcurrentGCRequest();
void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_);
void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_);
// What kind of concurrency behavior is the runtime after? Currently true for concurrent mark
// sweep GC, false for other GC types.
bool IsGcConcurrent() const ALWAYS_INLINE {
return collector_type_ == kCollectorTypeCC ||
collector_type_ == kCollectorTypeCMS ||
collector_type_ == kCollectorTypeCCBackground;
}
// Trim the managed and native spaces by releasing unused memory back to the OS.
void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_);
// Trim 0 pages at the end of reference tables.
void TrimIndirectReferenceTables(Thread* self);
template <typename Visitor>
ALWAYS_INLINE void VisitObjectsInternal(Visitor&& visitor)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
template <typename Visitor>
ALWAYS_INLINE void VisitObjectsInternalRegionSpace(Visitor&& visitor)
REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_);
// GC stress mode attempts to do one GC per unique backtrace.
void CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_,
!*backtrace_lock_, !process_state_update_lock_);
collector::GcType NonStickyGcType() const {
return HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
}
// Return the amount of space we allow for native memory when deciding whether to
// collect. We collect when a weighted sum of Java memory plus native memory exceeds
// the similarly weighted sum of the Java heap size target and this value.
ALWAYS_INLINE size_t NativeAllocationGcWatermark() const {
// We keep the traditional limit of max_free_ in place for small heaps,
// but allow it to be adjusted upward for large heaps to limit GC overhead.
return target_footprint_.load(std::memory_order_relaxed) / 8 + max_free_;
}
ALWAYS_INLINE void IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke);
// On switching app from background to foreground, grow the heap size
// to incorporate foreground heap growth multiplier.
void GrowHeapOnJankPerceptibleSwitch() REQUIRES(!process_state_update_lock_);
// Update *_freed_ever_ counters to reflect current GC values.
void IncrementFreedEver();
// Remove a vlog code from heap-inl.h which is transitively included in half the world.
static void VlogHeapGrowth(size_t max_allowed_footprint, size_t new_footprint, size_t alloc_size);
// Return our best approximation of the number of bytes of native memory that
// are currently in use, and could possibly be reclaimed as an indirect result
// of a garbage collection.
size_t GetNativeBytes();
// All-known continuous spaces, where objects lie within fixed bounds.
std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
// All-known discontinuous spaces, where objects may be placed throughout virtual memory.
std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
// All-known alloc spaces, where objects may be or have been allocated.
std::vector<space::AllocSpace*> alloc_spaces_;
// A space where non-movable objects are allocated, when compaction is enabled it contains
// Classes, ArtMethods, ArtFields, and non moving objects.
space::MallocSpace* non_moving_space_;
// Space which we use for the kAllocatorTypeROSAlloc.
space::RosAllocSpace* rosalloc_space_;
// Space which we use for the kAllocatorTypeDlMalloc.
space::DlMallocSpace* dlmalloc_space_;
// The main space is the space which the GC copies to and from on process state updates. This
// space is typically either the dlmalloc_space_ or the rosalloc_space_.
space::MallocSpace* main_space_;
// The large object space we are currently allocating into.
space::LargeObjectSpace* large_object_space_;
// The card table, dirtied by the write barrier.
std::unique_ptr<accounting::CardTable> card_table_;
std::unique_ptr<accounting::ReadBarrierTable> rb_table_;
// A mod-union table remembers all of the references from the it's space to other spaces.
AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap>
mod_union_tables_;
// A remembered set remembers all of the references from the it's space to the target space.
AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap>
remembered_sets_;
// The current collector type.
CollectorType collector_type_;
// Which collector we use when the app is in the foreground.
CollectorType foreground_collector_type_;
// Which collector we will use when the app is notified of a transition to background.
CollectorType background_collector_type_;
// Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_.
CollectorType desired_collector_type_;
// Lock which guards pending tasks.
Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
// How many GC threads we may use for paused parts of garbage collection.
const size_t parallel_gc_threads_;
// How many GC threads we may use for unpaused parts of garbage collection.
const size_t conc_gc_threads_;
// Boolean for if we are in low memory mode.
const bool low_memory_mode_;
// If we get a pause longer than long pause log threshold, then we print out the GC after it
// finishes.
const size_t long_pause_log_threshold_;
// If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
const size_t long_gc_log_threshold_;
// Starting time of the new process; meant to be used for measuring total process CPU time.
uint64_t process_cpu_start_time_ns_;
// Last time (before and after) GC started; meant to be used to measure the
// duration between two GCs.
uint64_t pre_gc_last_process_cpu_time_ns_;
uint64_t post_gc_last_process_cpu_time_ns_;
// allocated_bytes * (current_process_cpu_time - [pre|post]_gc_last_process_cpu_time)
double pre_gc_weighted_allocated_bytes_;
double post_gc_weighted_allocated_bytes_;
// If we ignore the target footprint it lets the heap grow until it hits the heap capacity, this
// is useful for benchmarking since it reduces time spent in GC to a low %.
const bool ignore_target_footprint_;
// Lock which guards zygote space creation.
Mutex zygote_creation_lock_;
// Non-null iff we have a zygote space. Doesn't contain the large objects allocated before
// zygote space creation.
space::ZygoteSpace* zygote_space_;
// Minimum allocation size of large object.
size_t large_object_threshold_;
// Guards access to the state of GC, associated conditional variable is used to signal when a GC
// completes.
Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
// Used to synchronize between JNI critical calls and the thread flip of the CC collector.
Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_);
// This counter keeps track of how many threads are currently in a JNI critical section. This is
// incremented once per thread even with nested enters.
size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_);
bool thread_flip_running_ GUARDED_BY(thread_flip_lock_);
// Reference processor;
std::unique_ptr<ReferenceProcessor> reference_processor_;
// Task processor, proxies heap trim requests to the daemon threads.
std::unique_ptr<TaskProcessor> task_processor_;
// Collector type of the running GC.
volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_);
// Cause of the last running GC.
volatile GcCause last_gc_cause_ GUARDED_BY(gc_complete_lock_);
// The thread currently running the GC.
volatile Thread* thread_running_gc_ GUARDED_BY(gc_complete_lock_);
// Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
collector::GcType next_gc_type_;
// Maximum size that the heap can reach.
size_t capacity_;
// The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
// programs it is "cleared" making it the same as capacity.
// Only weakly enforced for simultaneous allocations.
size_t growth_limit_;
// Target size (as in maximum allocatable bytes) for the heap. Weakly enforced as a limit for
// non-concurrent GC. Used as a guideline for computing concurrent_start_bytes_ in the
// concurrent GC case.
Atomic<size_t> target_footprint_;
// Computed with foreground-multiplier in GrowForUtilization() when run in
// jank non-perceptible state. On update to process state from background to
// foreground we set target_footprint_ to this value.
Mutex process_state_update_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
size_t min_foreground_target_footprint_ GUARDED_BY(process_state_update_lock_);
// When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
// it completes ahead of an allocation failing.
// A multiple of this is also used to determine when to trigger a GC in response to native
// allocation.
size_t concurrent_start_bytes_;
// Since the heap was created, how many bytes have been freed.
std::atomic<uint64_t> total_bytes_freed_ever_;
// Since the heap was created, how many objects have been freed.
std::atomic<uint64_t> total_objects_freed_ever_;
// Number of bytes currently allocated and not yet reclaimed. Includes active
// TLABS in their entirety, even if they have not yet been parceled out.
Atomic<size_t> num_bytes_allocated_;
// Number of registered native bytes allocated. Adjusted after each RegisterNativeAllocation and
// RegisterNativeFree. Used to help determine when to trigger GC for native allocations. Should
// not include bytes allocated through the system malloc, since those are implicitly included.
Atomic<size_t> native_bytes_registered_;
// Approximately the smallest value of GetNativeBytes() we've seen since the last GC.
Atomic<size_t> old_native_bytes_allocated_;
// Total number of native objects of which we were notified since the beginning of time, mod 2^32.
// Allows us to check for GC only roughly every kNotifyNativeInterval allocations.
Atomic<uint32_t> native_objects_notified_;
// Number of bytes freed by thread local buffer revokes. This will
// cancel out the ahead-of-time bulk counting of bytes allocated in
// rosalloc thread-local buffers. It is temporarily accumulated
// here to be subtracted from num_bytes_allocated_ later at the next
// GC.
Atomic<size_t> num_bytes_freed_revoke_;
// Info related to the current or previous GC iteration.
collector::Iteration current_gc_iteration_;
// Heap verification flags.
const bool verify_missing_card_marks_;
const bool verify_system_weaks_;
const bool verify_pre_gc_heap_;
const bool verify_pre_sweeping_heap_;
const bool verify_post_gc_heap_;
const bool verify_mod_union_table_;
bool verify_pre_gc_rosalloc_;
bool verify_pre_sweeping_rosalloc_;
bool verify_post_gc_rosalloc_;
const bool gc_stress_mode_;
// RAII that temporarily disables the rosalloc verification during
// the zygote fork.
class ScopedDisableRosAllocVerification {
private:
Heap* const heap_;
const bool orig_verify_pre_gc_;
const bool orig_verify_pre_sweeping_;
const bool orig_verify_post_gc_;
public:
explicit ScopedDisableRosAllocVerification(Heap* heap)
: heap_(heap),
orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_),
orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_),
orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) {
heap_->verify_pre_gc_rosalloc_ = false;
heap_->verify_pre_sweeping_rosalloc_ = false;
heap_->verify_post_gc_rosalloc_ = false;
}
~ScopedDisableRosAllocVerification() {
heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_;
heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_;
heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_;
}
};
// Parallel GC data structures.
std::unique_ptr<ThreadPool> thread_pool_;
// A bitmap that is set corresponding to the known live objects since the last GC cycle.
std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
// A bitmap that is set corresponding to the marked objects in the current GC cycle.
std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
// Mark stack that we reuse to avoid re-allocating the mark stack.
std::unique_ptr<accounting::ObjectStack> mark_stack_;
// Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
// to use the live bitmap as the old mark bitmap.
const size_t max_allocation_stack_size_;
std::unique_ptr<accounting::ObjectStack> allocation_stack_;
// Second allocation stack so that we can process allocation with the heap unlocked.
std::unique_ptr<accounting::ObjectStack> live_stack_;
// Allocator type.
AllocatorType current_allocator_;
const AllocatorType current_non_moving_allocator_;
// Which GCs we run in order when an allocation fails.
std::vector<collector::GcType> gc_plan_;
// Bump pointer spaces.
space::BumpPointerSpace* bump_pointer_space_;
// Temp space is the space which the semispace collector copies to.
space::BumpPointerSpace* temp_space_;
// Region space, used by the concurrent collector.
space::RegionSpace* region_space_;
// Minimum free guarantees that you always have at least min_free_ free bytes after growing for
// utilization, regardless of target utilization ratio.
const size_t min_free_;
// The ideal maximum free size, when we grow the heap for utilization.
const size_t max_free_;
// Target ideal heap utilization ratio.
double target_utilization_;
// How much more we grow the heap when we are a foreground app instead of background.
double foreground_heap_growth_multiplier_;
// The amount of native memory allocation since the last GC required to cause us to wait for a
// collection as a result of native allocation. Very large values can cause the device to run
// out of memory, due to lack of finalization to reclaim native memory. Making it too small can
// cause jank in apps like launcher that intentionally allocate large amounts of memory in rapid
// succession. (b/122099093) 1/4 to 1/3 of physical memory seems to be a good number.
const size_t stop_for_native_allocs_;
// Total time which mutators are paused or waiting for GC to complete.
uint64_t total_wait_time_;
// The current state of heap verification, may be enabled or disabled.
VerifyObjectMode verify_object_mode_;
// Compacting GC disable count, prevents compacting GC from running iff > 0.
size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_);
std::vector<collector::GarbageCollector*> garbage_collectors_;
collector::SemiSpace* semi_space_collector_;
collector::ConcurrentCopying* active_concurrent_copying_collector_;
collector::ConcurrentCopying* young_concurrent_copying_collector_;
collector::ConcurrentCopying* concurrent_copying_collector_;
const bool is_running_on_memory_tool_;
const bool use_tlab_;
// Pointer to the space which becomes the new main space when we do homogeneous space compaction.
// Use unique_ptr since the space is only added during the homogeneous compaction phase.
std::unique_ptr<space::MallocSpace> main_space_backup_;
// Minimal interval allowed between two homogeneous space compactions caused by OOM.
uint64_t min_interval_homogeneous_space_compaction_by_oom_;
// Times of the last homogeneous space compaction caused by OOM.
uint64_t last_time_homogeneous_space_compaction_by_oom_;
// Saved OOMs by homogeneous space compaction.
Atomic<size_t> count_delayed_oom_;
// Count for requested homogeneous space compaction.
Atomic<size_t> count_requested_homogeneous_space_compaction_;
// Count for ignored homogeneous space compaction.
Atomic<size_t> count_ignored_homogeneous_space_compaction_;
// Count for performed homogeneous space compaction.
Atomic<size_t> count_performed_homogeneous_space_compaction_;
// Whether or not a concurrent GC is pending.
Atomic<bool> concurrent_gc_pending_;
// Active tasks which we can modify (change target time, desired collector type, etc..).
CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_);
HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_);
// Whether or not we use homogeneous space compaction to avoid OOM errors.
bool use_homogeneous_space_compaction_for_oom_;
// If true, enable generational collection when using the Concurrent Copying
// (CC) collector, i.e. use sticky-bit CC for minor collections and (full) CC
// for major collections. Set in Heap constructor.
const bool use_generational_cc_;
// True if the currently running collection has made some thread wait.
bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_);
// The number of blocking GC runs.
uint64_t blocking_gc_count_;
// The total duration of blocking GC runs.
uint64_t blocking_gc_time_;
// The duration of the window for the GC count rate histograms.
static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000); // 10s.
// Maximum number of missed histogram windows for which statistics will be collected.
static constexpr uint64_t kGcCountRateHistogramMaxNumMissedWindows = 100;
// The last time when the GC count rate histograms were updated.
// This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s).
uint64_t last_update_time_gc_count_rate_histograms_;
// The running count of GC runs in the last window.
uint64_t gc_count_last_window_;
// The running count of blocking GC runs in the last window.
uint64_t blocking_gc_count_last_window_;
// The maximum number of buckets in the GC count rate histograms.
static constexpr size_t kGcCountRateMaxBucketCount = 200;
// The histogram of the number of GC invocations per window duration.
Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
// The histogram of the number of blocking GC invocations per window duration.
Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
// Allocation tracking support
Atomic<bool> alloc_tracking_enabled_;
std::unique_ptr<AllocRecordObjectMap> allocation_records_;
size_t alloc_record_depth_;
// GC stress related data structures.
Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
// Debugging variables, seen backtraces vs unique backtraces.
Atomic<uint64_t> seen_backtrace_count_;
Atomic<uint64_t> unique_backtrace_count_;
// Stack trace hashes that we already saw,
std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_);
// We disable GC when we are shutting down the runtime in case there are daemon threads still
// allocating.
bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_);
// Turned on by -XX:DumpRegionInfoBeforeGC and -XX:DumpRegionInfoAfterGC to
// emit region info before and after each GC cycle.
bool dump_region_info_before_gc_;
bool dump_region_info_after_gc_;
// Boot image spaces.
std::vector<space::ImageSpace*> boot_image_spaces_;
// Boot image address range. Includes images and oat files.
uint32_t boot_images_start_address_;
uint32_t boot_images_size_;
// An installed allocation listener.
Atomic<AllocationListener*> alloc_listener_;
// An installed GC Pause listener.
Atomic<GcPauseListener*> gc_pause_listener_;
std::unique_ptr<Verification> verification_;
friend class CollectorTransitionTask;
friend class collector::GarbageCollector;
friend class collector::ConcurrentCopying;
friend class collector::MarkSweep;
friend class collector::SemiSpace;
friend class GCCriticalSection;
friend class ReferenceQueue;
friend class ScopedGCCriticalSection;
friend class ScopedInterruptibleGCCriticalSection;
friend class VerifyReferenceCardVisitor;
friend class VerifyReferenceVisitor;
friend class VerifyObjectVisitor;
DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
};
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_HEAP_H_
|