1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
|
%def binop(preinstr="", result="r0", chkzero="0", instr=""):
/*
* Generic 32-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = r0 op r1".
* This could be an ARM instruction or a function call. (If the result
* comes back in a register other than r0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (r1). Useful for integer division and modulus. Note that we
* *don't* check for (INT_MIN / -1) here, because the ARM math lib
* handles it correctly.
*
* For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
* xor-int, shl-int, shr-int, ushr-int, add-float, sub-float,
* mul-float, div-float, rem-float
*/
/* binop vAA, vBB, vCC */
FETCH r0, 1 @ r0<- CCBB
mov r9, rINST, lsr #8 @ r9<- AA
mov r3, r0, lsr #8 @ r3<- CC
and r2, r0, #255 @ r2<- BB
GET_VREG r1, r3 @ r1<- vCC
GET_VREG r0, r2 @ r0<- vBB
.if $chkzero
cmp r1, #0 @ is second operand zero?
beq common_errDivideByZero
.endif
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
$preinstr @ optional op; may set condition codes
$instr @ $result<- op, r0-r3 changed
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG $result, r9 @ vAA<- $result
GOTO_OPCODE ip @ jump to next instruction
/* 11-14 instructions */
%def binop2addr(preinstr="", result="r0", chkzero="0", instr=""):
/*
* Generic 32-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = r0 op r1".
* This could be an ARM instruction or a function call. (If the result
* comes back in a register other than r0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (r1). Useful for integer division and modulus.
*
* For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
* rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
* shl-int/2addr, shr-int/2addr, ushr-int/2addr, add-float/2addr,
* sub-float/2addr, mul-float/2addr, div-float/2addr, rem-float/2addr
*/
/* binop/2addr vA, vB */
mov r3, rINST, lsr #12 @ r3<- B
ubfx r9, rINST, #8, #4 @ r9<- A
GET_VREG r1, r3 @ r1<- vB
GET_VREG r0, r9 @ r0<- vA
.if $chkzero
cmp r1, #0 @ is second operand zero?
beq common_errDivideByZero
.endif
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
$preinstr @ optional op; may set condition codes
$instr @ $result<- op, r0-r3 changed
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG $result, r9 @ vAA<- $result
GOTO_OPCODE ip @ jump to next instruction
/* 10-13 instructions */
%def binopLit16(result="r0", chkzero="0", instr=""):
/*
* Generic 32-bit "lit16" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = r0 op r1".
* This could be an ARM instruction or a function call. (If the result
* comes back in a register other than r0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (r1). Useful for integer division and modulus.
*
* For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16,
* rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16
*/
/* binop/lit16 vA, vB, #+CCCC */
FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended)
mov r2, rINST, lsr #12 @ r2<- B
ubfx r9, rINST, #8, #4 @ r9<- A
GET_VREG r0, r2 @ r0<- vB
.if $chkzero
cmp r1, #0 @ is second operand zero?
beq common_errDivideByZero
.endif
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
$instr @ $result<- op, r0-r3 changed
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG $result, r9 @ vAA<- $result
GOTO_OPCODE ip @ jump to next instruction
/* 10-13 instructions */
%def binopLit8(extract="asr r1, r3, #8", result="r0", chkzero="0", instr=""):
/*
* Generic 32-bit "lit8" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = r0 op r1".
* This could be an ARM instruction or a function call. (If the result
* comes back in a register other than r0, you can override "result".)
*
* You can override "extract" if the extraction of the literal value
* from r3 to r1 is not the default "asr r1, r3, #8". The extraction
* can be omitted completely if the shift is embedded in "instr".
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (r1). Useful for integer division and modulus.
*
* For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
* rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
* shl-int/lit8, shr-int/lit8, ushr-int/lit8
*/
/* binop/lit8 vAA, vBB, #+CC */
FETCH_S r3, 1 @ r3<- ssssCCBB (sign-extended for CC)
mov r9, rINST, lsr #8 @ r9<- AA
and r2, r3, #255 @ r2<- BB
GET_VREG r0, r2 @ r0<- vBB
$extract @ optional; typically r1<- ssssssCC (sign extended)
.if $chkzero
@cmp r1, #0 @ is second operand zero?
beq common_errDivideByZero
.endif
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
$instr @ $result<- op, r0-r3 changed
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG $result, r9 @ vAA<- $result
GOTO_OPCODE ip @ jump to next instruction
/* 10-12 instructions */
%def binopWide(preinstr="", result0="r0", result1="r1", chkzero="0", instr=""):
/*
* Generic 64-bit binary operation. Provide an "instr" line that
* specifies an instruction that performs "result = r0-r1 op r2-r3".
* This could be an ARM instruction or a function call. (If the result
* comes back in a register other than r0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (r1). Useful for integer division and modulus.
*
* for: add-long, sub-long, div-long, rem-long, and-long, or-long,
* xor-long, add-double, sub-double, mul-double, div-double,
* rem-double
*
* IMPORTANT: you may specify "chkzero" or "preinstr" but not both.
*/
/* binop vAA, vBB, vCC */
FETCH r0, 1 @ r0<- CCBB
mov rINST, rINST, lsr #8 @ rINST<- AA
and r2, r0, #255 @ r2<- BB
mov r3, r0, lsr #8 @ r3<- CC
VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[AA]
VREG_INDEX_TO_ADDR r2, r2 @ r2<- &fp[BB]
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[CC]
GET_VREG_WIDE_BY_ADDR r0, r1, r2 @ r0/r1<- vBB/vBB+1
GET_VREG_WIDE_BY_ADDR r2, r3, r3 @ r2/r3<- vCC/vCC+1
.if $chkzero
orrs ip, r2, r3 @ second arg (r2-r3) is zero?
beq common_errDivideByZero
.endif
CLEAR_SHADOW_PAIR rINST, lr, ip @ Zero out the shadow regs
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
$preinstr @ optional op; may set condition codes
$instr @ result<- op, r0-r3 changed
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG_WIDE_BY_ADDR $result0,$result1,r9 @ vAA/vAA+1<, $result0/$result1
GOTO_OPCODE ip @ jump to next instruction
/* 14-17 instructions */
%def binopWide2addr(preinstr="", result0="r0", result1="r1", chkzero="0", instr=""):
/*
* Generic 64-bit "/2addr" binary operation. Provide an "instr" line
* that specifies an instruction that performs "result = r0-r1 op r2-r3".
* This could be an ARM instruction or a function call. (If the result
* comes back in a register other than r0, you can override "result".)
*
* If "chkzero" is set to 1, we perform a divide-by-zero check on
* vCC (r1). Useful for integer division and modulus.
*
* For: add-long/2addr, sub-long/2addr, div-long/2addr, rem-long/2addr,
* and-long/2addr, or-long/2addr, xor-long/2addr, add-double/2addr,
* sub-double/2addr, mul-double/2addr, div-double/2addr,
* rem-double/2addr
*/
/* binop/2addr vA, vB */
mov r1, rINST, lsr #12 @ r1<- B
ubfx rINST, rINST, #8, #4 @ rINST<- A
VREG_INDEX_TO_ADDR r1, r1 @ r1<- &fp[B]
VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
GET_VREG_WIDE_BY_ADDR r2, r3, r1 @ r2/r3<- vBB/vBB+1
GET_VREG_WIDE_BY_ADDR r0, r1, r9 @ r0/r1<- vAA/vAA+1
.if $chkzero
orrs ip, r2, r3 @ second arg (r2-r3) is zero?
beq common_errDivideByZero
.endif
CLEAR_SHADOW_PAIR rINST, ip, lr @ Zero shadow regs
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
$preinstr @ optional op; may set condition codes
$instr @ result<- op, r0-r3 changed
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG_WIDE_BY_ADDR $result0,$result1,r9 @ vAA/vAA+1<- $result0/$result1
GOTO_OPCODE ip @ jump to next instruction
/* 12-15 instructions */
%def unop(preinstr="", instr=""):
/*
* Generic 32-bit unary operation. Provide an "instr" line that
* specifies an instruction that performs "result = op r0".
* This could be an ARM instruction or a function call.
*
* for: neg-int, not-int, neg-float, int-to-float, float-to-int,
* int-to-byte, int-to-char, int-to-short
*/
/* unop vA, vB */
mov r3, rINST, lsr #12 @ r3<- B
ubfx r9, rINST, #8, #4 @ r9<- A
GET_VREG r0, r3 @ r0<- vB
$preinstr @ optional op; may set condition codes
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
$instr @ r0<- op, r0-r3 changed
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG r0, r9 @ vAA<- r0
GOTO_OPCODE ip @ jump to next instruction
/* 8-9 instructions */
%def unopNarrower(preinstr="", instr=""):
/*
* Generic 64bit-to-32bit unary operation. Provide an "instr" line
* that specifies an instruction that performs "result = op r0/r1", where
* "result" is a 32-bit quantity in r0.
*
* For: long-to-float
*
* (This would work for long-to-int, but that instruction is actually
* an exact match for op_move.)
*/
/* unop vA, vB */
mov r3, rINST, lsr #12 @ r3<- B
ubfx r9, rINST, #8, #4 @ r9<- A
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[B]
GET_VREG_WIDE_BY_ADDR r0, r1, r3 @ r0/r1<- vB/vB+1
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
$preinstr @ optional op; may set condition codes
$instr @ r0<- op, r0-r3 changed
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG r0, r9 @ vA<- r0
GOTO_OPCODE ip @ jump to next instruction
/* 9-10 instructions */
%def unopWide(preinstr="", instr=""):
/*
* Generic 64-bit unary operation. Provide an "instr" line that
* specifies an instruction that performs "result = op r0/r1".
* This could be an ARM instruction or a function call.
*
* For: neg-long, not-long, neg-double, long-to-double, double-to-long
*/
/* unop vA, vB */
mov r3, rINST, lsr #12 @ r3<- B
ubfx rINST, rINST, #8, #4 @ rINST<- A
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[B]
VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
GET_VREG_WIDE_BY_ADDR r0, r1, r3 @ r0/r1<- vAA
CLEAR_SHADOW_PAIR rINST, ip, lr @ Zero shadow regs
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
$preinstr @ optional op; may set condition codes
$instr @ r0/r1<- op, r2-r3 changed
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA<- r0/r1
GOTO_OPCODE ip @ jump to next instruction
/* 10-11 instructions */
%def unopWider(preinstr="", instr=""):
/*
* Generic 32bit-to-64bit unary operation. Provide an "instr" line
* that specifies an instruction that performs "result = op r0", where
* "result" is a 64-bit quantity in r0/r1.
*
* For: int-to-long, int-to-double, float-to-long, float-to-double
*/
/* unop vA, vB */
mov r3, rINST, lsr #12 @ r3<- B
ubfx rINST, rINST, #8, #4 @ rINST<- A
GET_VREG r0, r3 @ r0<- vB
VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
$preinstr @ optional op; may set condition codes
CLEAR_SHADOW_PAIR rINST, ip, lr @ Zero shadow regs
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
$instr @ r0<- op, r0-r3 changed
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vA/vA+1<- r0/r1
GOTO_OPCODE ip @ jump to next instruction
/* 9-10 instructions */
%def op_add_int():
% binop(instr="add r0, r0, r1")
%def op_add_int_2addr():
% binop2addr(instr="add r0, r0, r1")
%def op_add_int_lit16():
% binopLit16(instr="add r0, r0, r1")
%def op_add_int_lit8():
% binopLit8(extract="", instr="add r0, r0, r3, asr #8")
%def op_add_long():
% binopWide(preinstr="adds r0, r0, r2", instr="adc r1, r1, r3")
%def op_add_long_2addr():
% binopWide2addr(preinstr="adds r0, r0, r2", instr="adc r1, r1, r3")
%def op_and_int():
% binop(instr="and r0, r0, r1")
%def op_and_int_2addr():
% binop2addr(instr="and r0, r0, r1")
%def op_and_int_lit16():
% binopLit16(instr="and r0, r0, r1")
%def op_and_int_lit8():
% binopLit8(extract="", instr="and r0, r0, r3, asr #8")
%def op_and_long():
% binopWide(preinstr="and r0, r0, r2", instr="and r1, r1, r3")
%def op_and_long_2addr():
% binopWide2addr(preinstr="and r0, r0, r2", instr="and r1, r1, r3")
%def op_cmp_long():
/*
* Compare two 64-bit values. Puts 0, 1, or -1 into the destination
* register based on the results of the comparison.
*/
/* cmp-long vAA, vBB, vCC */
FETCH r0, 1 @ r0<- CCBB
mov r9, rINST, lsr #8 @ r9<- AA
and r2, r0, #255 @ r2<- BB
mov r3, r0, lsr #8 @ r3<- CC
VREG_INDEX_TO_ADDR r2, r2 @ r2<- &fp[BB]
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[CC]
GET_VREG_WIDE_BY_ADDR r0, r1, r2 @ r0/r1<- vBB/vBB+1
GET_VREG_WIDE_BY_ADDR r2, r3, r3 @ r2/r3<- vCC/vCC+1
cmp r0, r2
sbcs ip, r1, r3 @ Sets correct CCs for checking LT (but not EQ/NE)
mov ip, #0
mvnlt ip, #0 @ -1
cmpeq r0, r2 @ For correct EQ/NE, we may need to repeat the first CMP
orrne ip, #1
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
SET_VREG ip, r9 @ vAA<- ip
GET_INST_OPCODE ip @ extract opcode from rINST
GOTO_OPCODE ip @ jump to next instruction
%def op_div_int():
/*
* Specialized 32-bit binary operation
*
* Performs "r0 = r0 div r1". The selection between sdiv or the gcc helper
* depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for
* ARMv7 CPUs that have hardware division support).
*
* div-int
*
*/
FETCH r0, 1 @ r0<- CCBB
mov r9, rINST, lsr #8 @ r9<- AA
mov r3, r0, lsr #8 @ r3<- CC
and r2, r0, #255 @ r2<- BB
GET_VREG r1, r3 @ r1<- vCC
GET_VREG r0, r2 @ r0<- vBB
cmp r1, #0 @ is second operand zero?
beq common_errDivideByZero
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
#ifdef __ARM_ARCH_EXT_IDIV__
sdiv r0, r0, r1 @ r0<- op
#else
bl __aeabi_idiv @ r0<- op, r0-r3 changed
#endif
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG r0, r9 @ vAA<- r0
GOTO_OPCODE ip @ jump to next instruction
/* 11-14 instructions */
%def op_div_int_2addr():
/*
* Specialized 32-bit binary operation
*
* Performs "r0 = r0 div r1". The selection between sdiv or the gcc helper
* depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for
* ARMv7 CPUs that have hardware division support).
*
* div-int/2addr
*
*/
mov r3, rINST, lsr #12 @ r3<- B
ubfx r9, rINST, #8, #4 @ r9<- A
GET_VREG r1, r3 @ r1<- vB
GET_VREG r0, r9 @ r0<- vA
cmp r1, #0 @ is second operand zero?
beq common_errDivideByZero
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
#ifdef __ARM_ARCH_EXT_IDIV__
sdiv r0, r0, r1 @ r0<- op
#else
bl __aeabi_idiv @ r0<- op, r0-r3 changed
#endif
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG r0, r9 @ vAA<- r0
GOTO_OPCODE ip @ jump to next instruction
/* 10-13 instructions */
%def op_div_int_lit16():
/*
* Specialized 32-bit binary operation
*
* Performs "r0 = r0 div r1". The selection between sdiv or the gcc helper
* depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for
* ARMv7 CPUs that have hardware division support).
*
* div-int/lit16
*
*/
FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended)
mov r2, rINST, lsr #12 @ r2<- B
ubfx r9, rINST, #8, #4 @ r9<- A
GET_VREG r0, r2 @ r0<- vB
cmp r1, #0 @ is second operand zero?
beq common_errDivideByZero
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
#ifdef __ARM_ARCH_EXT_IDIV__
sdiv r0, r0, r1 @ r0<- op
#else
bl __aeabi_idiv @ r0<- op, r0-r3 changed
#endif
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG r0, r9 @ vAA<- r0
GOTO_OPCODE ip @ jump to next instruction
/* 10-13 instructions */
%def op_div_int_lit8():
/*
* Specialized 32-bit binary operation
*
* Performs "r0 = r0 div r1". The selection between sdiv or the gcc helper
* depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for
* ARMv7 CPUs that have hardware division support).
*
* div-int/lit8
*
*/
FETCH_S r3, 1 @ r3<- ssssCCBB (sign-extended for CC
mov r9, rINST, lsr #8 @ r9<- AA
and r2, r3, #255 @ r2<- BB
GET_VREG r0, r2 @ r0<- vBB
movs r1, r3, asr #8 @ r1<- ssssssCC (sign extended)
@cmp r1, #0 @ is second operand zero?
beq common_errDivideByZero
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
#ifdef __ARM_ARCH_EXT_IDIV__
sdiv r0, r0, r1 @ r0<- op
#else
bl __aeabi_idiv @ r0<- op, r0-r3 changed
#endif
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG r0, r9 @ vAA<- r0
GOTO_OPCODE ip @ jump to next instruction
/* 10-12 instructions */
%def op_div_long():
% binopWide(instr="bl __aeabi_ldivmod", chkzero="1")
%def op_div_long_2addr():
% binopWide2addr(instr="bl __aeabi_ldivmod", chkzero="1")
%def op_int_to_byte():
% unop(instr="sxtb r0, r0")
%def op_int_to_char():
% unop(instr="uxth r0, r0")
%def op_int_to_long():
% unopWider(instr="mov r1, r0, asr #31")
%def op_int_to_short():
% unop(instr="sxth r0, r0")
%def op_long_to_int():
/* we ignore the high word, making this equivalent to a 32-bit reg move */
% op_move()
%def op_mul_int():
/* must be "mul r0, r1, r0" -- "r0, r0, r1" is illegal */
% binop(instr="mul r0, r1, r0")
%def op_mul_int_2addr():
/* must be "mul r0, r1, r0" -- "r0, r0, r1" is illegal */
% binop2addr(instr="mul r0, r1, r0")
%def op_mul_int_lit16():
/* must be "mul r0, r1, r0" -- "r0, r0, r1" is illegal */
% binopLit16(instr="mul r0, r1, r0")
%def op_mul_int_lit8():
/* must be "mul r0, r1, r0" -- "r0, r0, r1" is illegal */
% binopLit8(instr="mul r0, r1, r0")
%def op_mul_long():
/*
* Signed 64-bit integer multiply.
*
* Consider WXxYZ (r1r0 x r3r2) with a long multiply:
* WX
* x YZ
* --------
* ZW ZX
* YW YX
*
* The low word of the result holds ZX, the high word holds
* (ZW+YX) + (the high overflow from ZX). YW doesn't matter because
* it doesn't fit in the low 64 bits.
*
* Unlike most ARM math operations, multiply instructions have
* restrictions on using the same register more than once (Rd and Rm
* cannot be the same).
*/
/* mul-long vAA, vBB, vCC */
FETCH r0, 1 @ r0<- CCBB
and r2, r0, #255 @ r2<- BB
mov r3, r0, lsr #8 @ r3<- CC
VREG_INDEX_TO_ADDR r2, r2 @ r2<- &fp[BB]
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[CC]
GET_VREG_WIDE_BY_ADDR r0, r1, r2 @ r0/r1<- vBB/vBB+1
GET_VREG_WIDE_BY_ADDR r2, r3, r3 @ r2/r3<- vCC/vCC+1
mul ip, r2, r1 @ ip<- ZxW
umull r1, lr, r2, r0 @ r1/lr <- ZxX
mla r2, r0, r3, ip @ r2<- YxX + (ZxW)
mov r0, rINST, lsr #8 @ r0<- AA
add r2, r2, lr @ r2<- lr + low(ZxW + (YxX))
CLEAR_SHADOW_PAIR r0, lr, ip @ Zero out the shadow regs
VREG_INDEX_TO_ADDR r0, r0 @ r0<- &fp[AA]
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG_WIDE_BY_ADDR r1, r2 , r0 @ vAA/vAA+1<- r1/r2
GOTO_OPCODE ip @ jump to next instruction
%def op_mul_long_2addr():
/*
* Signed 64-bit integer multiply, "/2addr" version.
*
* See op_mul_long for an explanation.
*
* We get a little tight on registers, so to avoid looking up &fp[A]
* again we stuff it into rINST.
*/
/* mul-long/2addr vA, vB */
mov r1, rINST, lsr #12 @ r1<- B
ubfx r9, rINST, #8, #4 @ r9<- A
VREG_INDEX_TO_ADDR r1, r1 @ r1<- &fp[B]
VREG_INDEX_TO_ADDR rINST, r9 @ rINST<- &fp[A]
GET_VREG_WIDE_BY_ADDR r2, r3, r1 @ r2/r3<- vBB/vBB+1
GET_VREG_WIDE_BY_ADDR r0, r1, rINST @ r0/r1<- vAA/vAA+1
mul ip, r2, r1 @ ip<- ZxW
umull r1, lr, r2, r0 @ r1/lr <- ZxX
mla r2, r0, r3, ip @ r2<- YxX + (ZxW)
mov r0, rINST @ r0<- &fp[A] (free up rINST)
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
add r2, r2, lr @ r2<- r2 + low(ZxW + (YxX))
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG_WIDE_BY_ADDR r1, r2, r0 @ vAA/vAA+1<- r1/r2
GOTO_OPCODE ip @ jump to next instruction
%def op_neg_int():
% unop(instr="rsb r0, r0, #0")
%def op_neg_long():
% unopWide(preinstr="rsbs r0, r0, #0", instr="rsc r1, r1, #0")
%def op_not_int():
% unop(instr="mvn r0, r0")
%def op_not_long():
% unopWide(preinstr="mvn r0, r0", instr="mvn r1, r1")
%def op_or_int():
% binop(instr="orr r0, r0, r1")
%def op_or_int_2addr():
% binop2addr(instr="orr r0, r0, r1")
%def op_or_int_lit16():
% binopLit16(instr="orr r0, r0, r1")
%def op_or_int_lit8():
% binopLit8(extract="", instr="orr r0, r0, r3, asr #8")
%def op_or_long():
% binopWide(preinstr="orr r0, r0, r2", instr="orr r1, r1, r3")
%def op_or_long_2addr():
% binopWide2addr(preinstr="orr r0, r0, r2", instr="orr r1, r1, r3")
%def op_rem_int():
/*
* Specialized 32-bit binary operation
*
* Performs "r1 = r0 rem r1". The selection between sdiv block or the gcc helper
* depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for
* ARMv7 CPUs that have hardware division support).
*
* NOTE: idivmod returns quotient in r0 and remainder in r1
*
* rem-int
*
*/
FETCH r0, 1 @ r0<- CCBB
mov r9, rINST, lsr #8 @ r9<- AA
mov r3, r0, lsr #8 @ r3<- CC
and r2, r0, #255 @ r2<- BB
GET_VREG r1, r3 @ r1<- vCC
GET_VREG r0, r2 @ r0<- vBB
cmp r1, #0 @ is second operand zero?
beq common_errDivideByZero
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
#ifdef __ARM_ARCH_EXT_IDIV__
sdiv r2, r0, r1
mls r1, r1, r2, r0 @ r1<- op, r0-r2 changed
#else
bl __aeabi_idivmod @ r1<- op, r0-r3 changed
#endif
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG r1, r9 @ vAA<- r1
GOTO_OPCODE ip @ jump to next instruction
/* 11-14 instructions */
%def op_rem_int_2addr():
/*
* Specialized 32-bit binary operation
*
* Performs "r1 = r0 rem r1". The selection between sdiv block or the gcc helper
* depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for
* ARMv7 CPUs that have hardware division support).
*
* NOTE: idivmod returns quotient in r0 and remainder in r1
*
* rem-int/2addr
*
*/
mov r3, rINST, lsr #12 @ r3<- B
ubfx r9, rINST, #8, #4 @ r9<- A
GET_VREG r1, r3 @ r1<- vB
GET_VREG r0, r9 @ r0<- vA
cmp r1, #0 @ is second operand zero?
beq common_errDivideByZero
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
#ifdef __ARM_ARCH_EXT_IDIV__
sdiv r2, r0, r1
mls r1, r1, r2, r0 @ r1<- op
#else
bl __aeabi_idivmod @ r1<- op, r0-r3 changed
#endif
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG r1, r9 @ vAA<- r1
GOTO_OPCODE ip @ jump to next instruction
/* 10-13 instructions */
%def op_rem_int_lit16():
/*
* Specialized 32-bit binary operation
*
* Performs "r1 = r0 rem r1". The selection between sdiv block or the gcc helper
* depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for
* ARMv7 CPUs that have hardware division support).
*
* NOTE: idivmod returns quotient in r0 and remainder in r1
*
* rem-int/lit16
*
*/
FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended)
mov r2, rINST, lsr #12 @ r2<- B
ubfx r9, rINST, #8, #4 @ r9<- A
GET_VREG r0, r2 @ r0<- vB
cmp r1, #0 @ is second operand zero?
beq common_errDivideByZero
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
#ifdef __ARM_ARCH_EXT_IDIV__
sdiv r2, r0, r1
mls r1, r1, r2, r0 @ r1<- op
#else
bl __aeabi_idivmod @ r1<- op, r0-r3 changed
#endif
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG r1, r9 @ vAA<- r1
GOTO_OPCODE ip @ jump to next instruction
/* 10-13 instructions */
%def op_rem_int_lit8():
/*
* Specialized 32-bit binary operation
*
* Performs "r1 = r0 rem r1". The selection between sdiv block or the gcc helper
* depends on the compile time value of __ARM_ARCH_EXT_IDIV__ (defined for
* ARMv7 CPUs that have hardware division support).
*
* NOTE: idivmod returns quotient in r0 and remainder in r1
*
* rem-int/lit8
*
*/
FETCH_S r3, 1 @ r3<- ssssCCBB (sign-extended for CC)
mov r9, rINST, lsr #8 @ r9<- AA
and r2, r3, #255 @ r2<- BB
GET_VREG r0, r2 @ r0<- vBB
movs r1, r3, asr #8 @ r1<- ssssssCC (sign extended)
@cmp r1, #0 @ is second operand zero?
beq common_errDivideByZero
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
#ifdef __ARM_ARCH_EXT_IDIV__
sdiv r2, r0, r1
mls r1, r1, r2, r0 @ r1<- op
#else
bl __aeabi_idivmod @ r1<- op, r0-r3 changed
#endif
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG r1, r9 @ vAA<- r1
GOTO_OPCODE ip @ jump to next instruction
/* 10-12 instructions */
%def op_rem_long():
/* ldivmod returns quotient in r0/r1 and remainder in r2/r3 */
% binopWide(instr="bl __aeabi_ldivmod", result0="r2", result1="r3", chkzero="1")
%def op_rem_long_2addr():
/* ldivmod returns quotient in r0/r1 and remainder in r2/r3 */
% binopWide2addr(instr="bl __aeabi_ldivmod", result0="r2", result1="r3", chkzero="1")
%def op_rsub_int():
/* this op is "rsub-int", but can be thought of as "rsub-int/lit16" */
% binopLit16(instr="rsb r0, r0, r1")
%def op_rsub_int_lit8():
% binopLit8(extract="", instr="rsb r0, r0, r3, asr #8")
%def op_shl_int():
% binop(preinstr="and r1, r1, #31", instr="mov r0, r0, asl r1")
%def op_shl_int_2addr():
% binop2addr(preinstr="and r1, r1, #31", instr="mov r0, r0, asl r1")
%def op_shl_int_lit8():
% binopLit8(extract="ubfx r1, r3, #8, #5", instr="mov r0, r0, asl r1")
%def op_shl_long():
/*
* Long integer shift. This is different from the generic 32/64-bit
* binary operations because vAA/vBB are 64-bit but vCC (the shift
* distance) is 32-bit. Also, Dalvik requires us to mask off the low
* 6 bits of the shift distance.
*/
/* shl-long vAA, vBB, vCC */
FETCH r0, 1 @ r0<- CCBB
mov r9, rINST, lsr #8 @ r9<- AA
and r3, r0, #255 @ r3<- BB
mov r0, r0, lsr #8 @ r0<- CC
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[BB]
GET_VREG r2, r0 @ r2<- vCC
GET_VREG_WIDE_BY_ADDR r0, r1, r3 @ r0/r1<- vBB/vBB+1
CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs
and r2, r2, #63 @ r2<- r2 & 0x3f
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[AA]
mov r1, r1, asl r2 @ r1<- r1 << r2
rsb r3, r2, #32 @ r3<- 32 - r2
orr r1, r1, r0, lsr r3 @ r1<- r1 | (r0 << (32-r2))
subs ip, r2, #32 @ ip<- r2 - 32
movpl r1, r0, asl ip @ if r2 >= 32, r1<- r0 << (r2-32)
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
mov r0, r0, asl r2 @ r0<- r0 << r2
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA/vAA+1<- r0/r1
GOTO_OPCODE ip @ jump to next instruction
%def op_shl_long_2addr():
/*
* Long integer shift, 2addr version. vA is 64-bit value/result, vB is
* 32-bit shift distance.
*/
/* shl-long/2addr vA, vB */
mov r3, rINST, lsr #12 @ r3<- B
ubfx r9, rINST, #8, #4 @ r9<- A
GET_VREG r2, r3 @ r2<- vB
CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[A]
and r2, r2, #63 @ r2<- r2 & 0x3f
GET_VREG_WIDE_BY_ADDR r0, r1, r9 @ r0/r1<- vAA/vAA+1
mov r1, r1, asl r2 @ r1<- r1 << r2
rsb r3, r2, #32 @ r3<- 32 - r2
orr r1, r1, r0, lsr r3 @ r1<- r1 | (r0 << (32-r2))
subs ip, r2, #32 @ ip<- r2 - 32
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
movpl r1, r0, asl ip @ if r2 >= 32, r1<- r0 << (r2-32)
mov r0, r0, asl r2 @ r0<- r0 << r2
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA/vAA+1<- r0/r1
GOTO_OPCODE ip @ jump to next instruction
%def op_shr_int():
% binop(preinstr="and r1, r1, #31", instr="mov r0, r0, asr r1")
%def op_shr_int_2addr():
% binop2addr(preinstr="and r1, r1, #31", instr="mov r0, r0, asr r1")
%def op_shr_int_lit8():
% binopLit8(extract="ubfx r1, r3, #8, #5", instr="mov r0, r0, asr r1")
%def op_shr_long():
/*
* Long integer shift. This is different from the generic 32/64-bit
* binary operations because vAA/vBB are 64-bit but vCC (the shift
* distance) is 32-bit. Also, Dalvik requires us to mask off the low
* 6 bits of the shift distance.
*/
/* shr-long vAA, vBB, vCC */
FETCH r0, 1 @ r0<- CCBB
mov r9, rINST, lsr #8 @ r9<- AA
and r3, r0, #255 @ r3<- BB
mov r0, r0, lsr #8 @ r0<- CC
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[BB]
GET_VREG r2, r0 @ r2<- vCC
GET_VREG_WIDE_BY_ADDR r0, r1, r3 @ r0/r1<- vBB/vBB+1
CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs
and r2, r2, #63 @ r0<- r0 & 0x3f
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[AA]
mov r0, r0, lsr r2 @ r0<- r2 >> r2
rsb r3, r2, #32 @ r3<- 32 - r2
orr r0, r0, r1, asl r3 @ r0<- r0 | (r1 << (32-r2))
subs ip, r2, #32 @ ip<- r2 - 32
movpl r0, r1, asr ip @ if r2 >= 32, r0<-r1 >> (r2-32)
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
mov r1, r1, asr r2 @ r1<- r1 >> r2
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA/vAA+1<- r0/r1
GOTO_OPCODE ip @ jump to next instruction
%def op_shr_long_2addr():
/*
* Long integer shift, 2addr version. vA is 64-bit value/result, vB is
* 32-bit shift distance.
*/
/* shr-long/2addr vA, vB */
mov r3, rINST, lsr #12 @ r3<- B
ubfx r9, rINST, #8, #4 @ r9<- A
GET_VREG r2, r3 @ r2<- vB
CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[A]
and r2, r2, #63 @ r2<- r2 & 0x3f
GET_VREG_WIDE_BY_ADDR r0, r1, r9 @ r0/r1<- vAA/vAA+1
mov r0, r0, lsr r2 @ r0<- r2 >> r2
rsb r3, r2, #32 @ r3<- 32 - r2
orr r0, r0, r1, asl r3 @ r0<- r0 | (r1 << (32-r2))
subs ip, r2, #32 @ ip<- r2 - 32
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
movpl r0, r1, asr ip @ if r2 >= 32, r0<-r1 >> (r2-32)
mov r1, r1, asr r2 @ r1<- r1 >> r2
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA/vAA+1<- r0/r1
GOTO_OPCODE ip @ jump to next instruction
%def op_sub_int():
% binop(instr="sub r0, r0, r1")
%def op_sub_int_2addr():
% binop2addr(instr="sub r0, r0, r1")
%def op_sub_long():
% binopWide(preinstr="subs r0, r0, r2", instr="sbc r1, r1, r3")
%def op_sub_long_2addr():
% binopWide2addr(preinstr="subs r0, r0, r2", instr="sbc r1, r1, r3")
%def op_ushr_int():
% binop(preinstr="and r1, r1, #31", instr="mov r0, r0, lsr r1")
%def op_ushr_int_2addr():
% binop2addr(preinstr="and r1, r1, #31", instr="mov r0, r0, lsr r1")
%def op_ushr_int_lit8():
% binopLit8(extract="ubfx r1, r3, #8, #5", instr="mov r0, r0, lsr r1")
%def op_ushr_long():
/*
* Long integer shift. This is different from the generic 32/64-bit
* binary operations because vAA/vBB are 64-bit but vCC (the shift
* distance) is 32-bit. Also, Dalvik requires us to mask off the low
* 6 bits of the shift distance.
*/
/* ushr-long vAA, vBB, vCC */
FETCH r0, 1 @ r0<- CCBB
mov r9, rINST, lsr #8 @ r9<- AA
and r3, r0, #255 @ r3<- BB
mov r0, r0, lsr #8 @ r0<- CC
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[BB]
GET_VREG r2, r0 @ r2<- vCC
GET_VREG_WIDE_BY_ADDR r0, r1, r3 @ r0/r1<- vBB/vBB+1
CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs
and r2, r2, #63 @ r0<- r0 & 0x3f
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[AA]
mov r0, r0, lsr r2 @ r0<- r2 >> r2
rsb r3, r2, #32 @ r3<- 32 - r2
orr r0, r0, r1, asl r3 @ r0<- r0 | (r1 << (32-r2))
subs ip, r2, #32 @ ip<- r2 - 32
movpl r0, r1, lsr ip @ if r2 >= 32, r0<-r1 >>> (r2-32)
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
mov r1, r1, lsr r2 @ r1<- r1 >>> r2
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA/vAA+1<- r0/r1
GOTO_OPCODE ip @ jump to next instruction
%def op_ushr_long_2addr():
/*
* Long integer shift, 2addr version. vA is 64-bit value/result, vB is
* 32-bit shift distance.
*/
/* ushr-long/2addr vA, vB */
mov r3, rINST, lsr #12 @ r3<- B
ubfx r9, rINST, #8, #4 @ r9<- A
GET_VREG r2, r3 @ r2<- vB
CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[A]
and r2, r2, #63 @ r2<- r2 & 0x3f
GET_VREG_WIDE_BY_ADDR r0, r1, r9 @ r0/r1<- vAA/vAA+1
mov r0, r0, lsr r2 @ r0<- r2 >> r2
rsb r3, r2, #32 @ r3<- 32 - r2
orr r0, r0, r1, asl r3 @ r0<- r0 | (r1 << (32-r2))
subs ip, r2, #32 @ ip<- r2 - 32
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
movpl r0, r1, lsr ip @ if r2 >= 32, r0<-r1 >>> (r2-32)
mov r1, r1, lsr r2 @ r1<- r1 >>> r2
GET_INST_OPCODE ip @ extract opcode from rINST
SET_VREG_WIDE_BY_ADDR r0, r1, r9 @ vAA/vAA+1<- r0/r1
GOTO_OPCODE ip @ jump to next instruction
%def op_xor_int():
% binop(instr="eor r0, r0, r1")
%def op_xor_int_2addr():
% binop2addr(instr="eor r0, r0, r1")
%def op_xor_int_lit16():
% binopLit16(instr="eor r0, r0, r1")
%def op_xor_int_lit8():
% binopLit8(extract="", instr="eor r0, r0, r3, asr #8")
%def op_xor_long():
% binopWide(preinstr="eor r0, r0, r2", instr="eor r1, r1, r3")
%def op_xor_long_2addr():
% binopWide2addr(preinstr="eor r0, r0, r2", instr="eor r1, r1, r3")
|