File: arithmetic.S

package info (click to toggle)
android-platform-art 11.0.0%2Br48-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 78,932 kB
  • sloc: cpp: 459,858; java: 163,268; asm: 22,644; python: 9,815; sh: 6,330; ansic: 4,117; xml: 2,855; perl: 77; makefile: 73
file content (507 lines) | stat: -rw-r--r-- 18,830 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
%def binop(preinstr="", result="w0", chkzero="0", instr=""):
    /*
     * Generic 32-bit binary operation.  Provide an "instr" line that
     * specifies an instruction that performs "result = w0 op w1".
     * This could be an ARM instruction or a function call.  (If the result
     * comes back in a register other than w0, you can override "result".)
     *
     * If "chkzero" is set to 1, we perform a divide-by-zero check on
     * vCC (w1).  Useful for integer division and modulus.  Note that we
     * *don't* check for (INT_MIN / -1) here, because the ARM math lib
     * handles it correctly.
     *
     * For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int,
     *      xor-int, shl-int, shr-int, ushr-int, add-float, sub-float,
     *      mul-float, div-float, rem-float
     */
    /* binop vAA, vBB, vCC */
    FETCH w0, 1                         // w0<- CCBB
    lsr     w9, wINST, #8               // w9<- AA
    lsr     w3, w0, #8                  // w3<- CC
    and     w2, w0, #255                // w2<- BB
    GET_VREG w1, w3                     // w1<- vCC
    GET_VREG w0, w2                     // w0<- vBB
    .if $chkzero
    cbz     w1, common_errDivideByZero  // is second operand zero?
    .endif
    FETCH_ADVANCE_INST 2                // advance rPC, load rINST
    $preinstr                           // optional op; may set condition codes
    $instr                              // $result<- op, w0-w3 changed
    GET_INST_OPCODE ip                  // extract opcode from rINST
    SET_VREG $result, w9                // vAA<- $result
    GOTO_OPCODE ip                      // jump to next instruction
    /* 11-14 instructions */

%def binop2addr(preinstr="", result="w0", chkzero="0", instr=""):
    /*
     * Generic 32-bit "/2addr" binary operation.  Provide an "instr" line
     * that specifies an instruction that performs "result = w0 op w1".
     * This could be an ARM instruction or a function call.  (If the result
     * comes back in a register other than w0, you can override "result".)
     *
     * If "chkzero" is set to 1, we perform a divide-by-zero check on
     * vCC (w1).  Useful for integer division and modulus.
     *
     * For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
     *      rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
     *      shl-int/2addr, shr-int/2addr, ushr-int/2addr, add-float/2addr,
     *      sub-float/2addr, mul-float/2addr, div-float/2addr, rem-float/2addr
     */
    /* binop/2addr vA, vB */
    lsr     w3, wINST, #12              // w3<- B
    ubfx    w9, wINST, #8, #4           // w9<- A
    GET_VREG w1, w3                     // w1<- vB
    GET_VREG w0, w9                     // w0<- vA
    .if $chkzero
    cbz     w1, common_errDivideByZero
    .endif
    FETCH_ADVANCE_INST 1                // advance rPC, load rINST
    $preinstr                           // optional op; may set condition codes
    $instr                              // $result<- op, w0-w3 changed
    GET_INST_OPCODE ip                  // extract opcode from rINST
    SET_VREG $result, w9                // vAA<- $result
    GOTO_OPCODE ip                      // jump to next instruction
    /* 10-13 instructions */

%def binopLit16(preinstr="", result="w0", chkzero="0", instr=""):
    /*
     * Generic 32-bit "lit16" binary operation.  Provide an "instr" line
     * that specifies an instruction that performs "result = w0 op w1".
     * This could be an ARM instruction or a function call.  (If the result
     * comes back in a register other than w0, you can override "result".)
     *
     * If "chkzero" is set to 1, we perform a divide-by-zero check on
     * vCC (w1).  Useful for integer division and modulus.
     *
     * For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16,
     *      rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16
     */
    /* binop/lit16 vA, vB, #+CCCC */
    FETCH_S w1, 1                       // w1<- ssssCCCC (sign-extended)
    lsr     w2, wINST, #12              // w2<- B
    ubfx    w9, wINST, #8, #4           // w9<- A
    GET_VREG w0, w2                     // w0<- vB
    .if $chkzero
    cbz     w1, common_errDivideByZero
    .endif
    FETCH_ADVANCE_INST 2                // advance rPC, load rINST
    $preinstr
    $instr                              // $result<- op, w0-w3 changed
    GET_INST_OPCODE ip                  // extract opcode from rINST
    SET_VREG $result, w9                // vAA<- $result
    GOTO_OPCODE ip                      // jump to next instruction
    /* 10-13 instructions */

%def binopLit8(extract="asr     w1, w3, #8", preinstr="", result="w0", chkzero="0", instr=""):
    /*
     * Generic 32-bit "lit8" binary operation.  Provide an "instr" line
     * that specifies an instruction that performs "result = w0 op w1".
     * This could be an ARM instruction or a function call.  (If the result
     * comes back in a register other than w0, you can override "result".)
     *
     * You can override "extract" if the extraction of the literal value
     * from w3 to w1 is not the default "asr w1, w3, #8". The extraction
     * can be omitted completely if the shift is embedded in "instr".
     *
     * If "chkzero" is set to 1, we perform a divide-by-zero check on
     * vCC (w1).  Useful for integer division and modulus.
     *
     * For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8,
     *      rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8,
     *      shl-int/lit8, shr-int/lit8, ushr-int/lit8
     */
    /* binop/lit8 vAA, vBB, #+CC */
    FETCH_S w3, 1                       // w3<- ssssCCBB (sign-extended for CC)
    lsr     w9, wINST, #8               // w9<- AA
    and     w2, w3, #255                // w2<- BB
    GET_VREG w0, w2                     // w0<- vBB
    $extract                            // optional; typically w1<- ssssssCC (sign extended)
    .if $chkzero
    cbz     w1, common_errDivideByZero
    .endif
    FETCH_ADVANCE_INST 2                // advance rPC, load rINST
    $preinstr                           // optional op; may set condition codes
    $instr                              // $result<- op, w0-w3 changed
    GET_INST_OPCODE ip                  // extract opcode from rINST
    SET_VREG $result, w9                // vAA<- $result
    GOTO_OPCODE ip                      // jump to next instruction
    /* 10-12 instructions */

%def binopWide(preinstr="", instr="add x0, x1, x2", result="x0", r1="x1", r2="x2", chkzero="0"):
    /*
     * Generic 64-bit binary operation.  Provide an "instr" line that
     * specifies an instruction that performs "result = x1 op x2".
     * This could be an ARM instruction or a function call.  (If the result
     * comes back in a register other than x0, you can override "result".)
     *
     * If "chkzero" is set to 1, we perform a divide-by-zero check on
     * vCC (w1).  Useful for integer division and modulus.
     *
     * For: add-long, sub-long, mul-long, div-long, rem-long, and-long, or-long,
     *      xor-long, add-double, sub-double, mul-double, div-double, rem-double
     */
    /* binop vAA, vBB, vCC */
    FETCH w0, 1                         // w0<- CCBB
    lsr     w4, wINST, #8               // w4<- AA
    lsr     w2, w0, #8                  // w2<- CC
    and     w1, w0, #255                // w1<- BB
    GET_VREG_WIDE $r2, w2               // w2<- vCC
    GET_VREG_WIDE $r1, w1               // w1<- vBB
    .if $chkzero
    cbz     $r2, common_errDivideByZero  // is second operand zero?
    .endif
    FETCH_ADVANCE_INST 2                // advance rPC, load rINST
    $preinstr
    $instr                              // $result<- op, w0-w4 changed
    GET_INST_OPCODE ip                  // extract opcode from rINST
    SET_VREG_WIDE $result, w4           // vAA<- $result
    GOTO_OPCODE ip                      // jump to next instruction
    /* 11-14 instructions */

%def binopWide2addr(preinstr="", instr="add x0, x0, x1", r0="x0", r1="x1", chkzero="0"):
    /*
     * Generic 64-bit "/2addr" binary operation.  Provide an "instr" line
     * that specifies an instruction that performs "x0 = x0 op x1".
     * This must not be a function call, as we keep w2 live across it.
     *
     * If "chkzero" is set to 1, we perform a divide-by-zero check on
     * vCC (w1).  Useful for integer division and modulus.
     *
     * For: add-long/2addr, sub-long/2addr, mul-long/2addr, div-long/2addr,
     *      and-long/2addr, or-long/2addr, xor-long/2addr,
     *      shl-long/2addr, shr-long/2addr, ushr-long/2addr, add-double/2addr,
     *      sub-double/2addr, mul-double/2addr, div-double/2addr, rem-double/2addr
     */
    /* binop/2addr vA, vB */
    lsr     w1, wINST, #12              // w1<- B
    ubfx    w2, wINST, #8, #4           // w2<- A
    GET_VREG_WIDE $r1, w1               // x1<- vB
    GET_VREG_WIDE $r0, w2               // x0<- vA
    .if $chkzero
    cbz     $r1, common_errDivideByZero
    .endif
    FETCH_ADVANCE_INST 1                // advance rPC, load rINST
    $preinstr
    $instr                              // result<- op
    GET_INST_OPCODE ip                  // extract opcode from rINST
    SET_VREG_WIDE $r0, w2               // vAA<- result
    GOTO_OPCODE ip                      // jump to next instruction
    /* 10-13 instructions */

%def shiftWide(opcode="shl"):
    /*
     * 64-bit shift operation.
     *
     * For: shl-long, shr-long, ushr-long
     */
    /* binop vAA, vBB, vCC */
    FETCH w0, 1                         // w0<- CCBB
    lsr      w3, wINST, #8               // w3<- AA
    lsr      w2, w0, #8                  // w2<- CC
    GET_VREG w2, w2                     // w2<- vCC (shift count)
    and      w1, w0, #255                // w1<- BB
    GET_VREG_WIDE x1, w1                // x1<- vBB
    FETCH_ADVANCE_INST 2                // advance rPC, load rINST
    $opcode  x0, x1, x2                 // Do the shift. Only low 6 bits of x2 are used.
    GET_INST_OPCODE ip                  // extract opcode from rINST
    SET_VREG_WIDE x0, w3                // vAA<- x0
    GOTO_OPCODE ip                      // jump to next instruction
    /* 11-14 instructions */

%def shiftWide2addr(opcode="lsl"):
    /*
     * Generic 64-bit shift operation.
     */
    /* binop/2addr vA, vB */
    lsr     w1, wINST, #12              // w1<- B
    ubfx    w2, wINST, #8, #4           // w2<- A
    GET_VREG w1, w1                     // x1<- vB
    GET_VREG_WIDE x0, w2                // x0<- vA
    FETCH_ADVANCE_INST 1                // advance rPC, load rINST
    $opcode x0, x0, x1                  // Do the shift. Only low 6 bits of x1 are used.
    GET_INST_OPCODE ip                  // extract opcode from rINST
    SET_VREG_WIDE x0, w2               // vAA<- result
    GOTO_OPCODE ip                      // jump to next instruction
    /* 10-13 instructions */

%def unop(instr=""):
    /*
     * Generic 32-bit unary operation.  Provide an "instr" line that
     * specifies an instruction that performs "result = op w0".
     * This could be an ARM instruction or a function call.
     *
     * for: neg-int, not-int, neg-float, int-to-float, float-to-int,
     *      int-to-byte, int-to-char, int-to-short
     */
    /* unop vA, vB */
    lsr     w3, wINST, #12              // w3<- B
    GET_VREG w0, w3                     // w0<- vB
    ubfx    w9, wINST, #8, #4           // w9<- A
    FETCH_ADVANCE_INST 1                // advance rPC, load rINST
    $instr                              // w0<- op, w0-w3 changed
    GET_INST_OPCODE ip                  // extract opcode from rINST
    SET_VREG w0, w9                     // vAA<- w0
    GOTO_OPCODE ip                      // jump to next instruction
    /* 8-9 instructions */

%def unopWide(instr="sub x0, xzr, x0"):
    /*
     * Generic 64-bit unary operation.  Provide an "instr" line that
     * specifies an instruction that performs "result = op x0".
     *
     * For: neg-long, not-long
     */
    /* unop vA, vB */
    lsr     w3, wINST, #12              // w3<- B
    ubfx    w4, wINST, #8, #4           // w4<- A
    GET_VREG_WIDE x0, w3
    FETCH_ADVANCE_INST 1                // advance rPC, load wINST
    $instr
    GET_INST_OPCODE ip                  // extract opcode from wINST
    SET_VREG_WIDE x0, w4
    GOTO_OPCODE ip                      // jump to next instruction
    /* 10-11 instructions */

%def op_add_int():
%  binop(instr="add     w0, w0, w1")

%def op_add_int_2addr():
%  binop2addr(instr="add     w0, w0, w1")

%def op_add_int_lit16():
%  binopLit16(instr="add     w0, w0, w1")

%def op_add_int_lit8():
%  binopLit8(extract="", instr="add     w0, w0, w3, asr #8")

%def op_add_long():
%  binopWide(instr="add x0, x1, x2")

%def op_add_long_2addr():
%  binopWide2addr(instr="add     x0, x0, x1")

%def op_and_int():
%  binop(instr="and     w0, w0, w1")

%def op_and_int_2addr():
%  binop2addr(instr="and     w0, w0, w1")

%def op_and_int_lit16():
%  binopLit16(instr="and     w0, w0, w1")

%def op_and_int_lit8():
%  binopLit8(extract="", instr="and     w0, w0, w3, asr #8")

%def op_and_long():
%  binopWide(instr="and x0, x1, x2")

%def op_and_long_2addr():
%  binopWide2addr(instr="and     x0, x0, x1")

%def op_cmp_long():
    FETCH w0, 1                         // w0<- CCBB
    lsr     w4, wINST, #8               // w4<- AA
    and     w2, w0, #255                // w2<- BB
    lsr     w3, w0, #8                  // w3<- CC
    GET_VREG_WIDE x1, w2
    GET_VREG_WIDE x2, w3
    cmp     x1, x2
    cset    w0, ne
    cneg    w0, w0, lt
    FETCH_ADVANCE_INST 2                // advance rPC, load wINST
    SET_VREG w0, w4
    GET_INST_OPCODE ip                  // extract opcode from wINST
    GOTO_OPCODE ip                      // jump to next instruction

%def op_div_int():
%  binop(instr="sdiv     w0, w0, w1", chkzero="1")

%def op_div_int_2addr():
%  binop2addr(instr="sdiv     w0, w0, w1", chkzero="1")

%def op_div_int_lit16():
%  binopLit16(instr="sdiv w0, w0, w1", chkzero="1")

%def op_div_int_lit8():
%  binopLit8(instr="sdiv     w0, w0, w1", chkzero="1")

%def op_div_long():
%  binopWide(instr="sdiv x0, x1, x2", chkzero="1")

%def op_div_long_2addr():
%  binopWide2addr(instr="sdiv     x0, x0, x1", chkzero="1")

%def op_int_to_byte():
%  unop(instr="sxtb    w0, w0")

%def op_int_to_char():
%  unop(instr="uxth    w0, w0")

%def op_int_to_long():
    /* int-to-long vA, vB */
    lsr     w3, wINST, #12              // w3<- B
    ubfx    w4, wINST, #8, #4           // w4<- A
    GET_VREG_S x0, w3                   // x0<- sign_extend(fp[B])
    FETCH_ADVANCE_INST 1                // advance rPC, load wINST
    GET_INST_OPCODE ip                  // extract opcode from wINST
    SET_VREG_WIDE x0, w4                // fp[A]<- x0
    GOTO_OPCODE ip                      // jump to next instruction

%def op_int_to_short():
%  unop(instr="sxth    w0, w0")

%def op_long_to_int():
/* we ignore the high word, making this equivalent to a 32-bit reg move */
%  op_move()

%def op_mul_int():
/* must be "mul w0, w1, w0" -- "w0, w0, w1" is illegal */
%  binop(instr="mul     w0, w1, w0")

%def op_mul_int_2addr():
/* must be "mul w0, w1, w0" -- "w0, w0, w1" is illegal */
%  binop2addr(instr="mul     w0, w1, w0")

%def op_mul_int_lit16():
/* must be "mul w0, w1, w0" -- "w0, w0, w1" is illegal */
%  binopLit16(instr="mul     w0, w1, w0")

%def op_mul_int_lit8():
/* must be "mul w0, w1, w0" -- "w0, w0, w1" is illegal */
%  binopLit8(instr="mul     w0, w1, w0")

%def op_mul_long():
%  binopWide(instr="mul x0, x1, x2")

%def op_mul_long_2addr():
%  binopWide2addr(instr="mul     x0, x0, x1")

%def op_neg_int():
%  unop(instr="sub     w0, wzr, w0")

%def op_neg_long():
%  unopWide(instr="sub x0, xzr, x0")

%def op_not_int():
%  unop(instr="mvn     w0, w0")

%def op_not_long():
%  unopWide(instr="mvn     x0, x0")

%def op_or_int():
%  binop(instr="orr     w0, w0, w1")

%def op_or_int_2addr():
%  binop2addr(instr="orr     w0, w0, w1")

%def op_or_int_lit16():
%  binopLit16(instr="orr     w0, w0, w1")

%def op_or_int_lit8():
%  binopLit8(extract="", instr="orr     w0, w0, w3, asr #8")

%def op_or_long():
%  binopWide(instr="orr x0, x1, x2")

%def op_or_long_2addr():
%  binopWide2addr(instr="orr     x0, x0, x1")

%def op_rem_int():
%  binop(preinstr="sdiv     w2, w0, w1", instr="msub w0, w2, w1, w0", chkzero="1")

%def op_rem_int_2addr():
%  binop2addr(preinstr="sdiv     w2, w0, w1", instr="msub w0, w2, w1, w0", chkzero="1")

%def op_rem_int_lit16():
%  binopLit16(preinstr="sdiv w3, w0, w1", instr="msub w0, w3, w1, w0", chkzero="1")

%def op_rem_int_lit8():
%  binopLit8(preinstr="sdiv w3, w0, w1", instr="msub w0, w3, w1, w0", chkzero="1")

%def op_rem_long():
%  binopWide(preinstr="sdiv x3, x1, x2", instr="msub x0, x3, x2, x1", chkzero="1")

%def op_rem_long_2addr():
%  binopWide2addr(preinstr="sdiv x3, x0, x1", instr="msub x0, x3, x1, x0", chkzero="1")

%def op_rsub_int():
/* this op is "rsub-int", but can be thought of as "rsub-int/lit16" */
%  binopLit16(instr="sub     w0, w1, w0")

%def op_rsub_int_lit8():
%  binopLit8(instr="sub     w0, w1, w0")

%def op_shl_int():
%  binop(instr="lsl     w0, w0, w1")

%def op_shl_int_2addr():
%  binop2addr(instr="lsl     w0, w0, w1")

%def op_shl_int_lit8():
%  binopLit8(extract="ubfx    w1, w3, #8, #5", instr="lsl     w0, w0, w1")

%def op_shl_long():
%  shiftWide(opcode="lsl")

%def op_shl_long_2addr():
%  shiftWide2addr(opcode="lsl")

%def op_shr_int():
%  binop(instr="asr     w0, w0, w1")

%def op_shr_int_2addr():
%  binop2addr(instr="asr     w0, w0, w1")

%def op_shr_int_lit8():
%  binopLit8(extract="ubfx    w1, w3, #8, #5", instr="asr     w0, w0, w1")

%def op_shr_long():
%  shiftWide(opcode="asr")

%def op_shr_long_2addr():
%  shiftWide2addr(opcode="asr")

%def op_sub_int():
%  binop(instr="sub     w0, w0, w1")

%def op_sub_int_2addr():
%  binop2addr(instr="sub     w0, w0, w1")

%def op_sub_long():
%  binopWide(instr="sub x0, x1, x2")

%def op_sub_long_2addr():
%  binopWide2addr(instr="sub     x0, x0, x1")

%def op_ushr_int():
%  binop(instr="lsr     w0, w0, w1")

%def op_ushr_int_2addr():
%  binop2addr(instr="lsr     w0, w0, w1")

%def op_ushr_int_lit8():
%  binopLit8(extract="ubfx    w1, w3, #8, #5", instr="lsr     w0, w0, w1")

%def op_ushr_long():
%  shiftWide(opcode="lsr")

%def op_ushr_long_2addr():
%  shiftWide2addr(opcode="lsr")

%def op_xor_int():
%  binop(instr="eor     w0, w0, w1")

%def op_xor_int_2addr():
%  binop2addr(instr="eor     w0, w0, w1")

%def op_xor_int_lit16():
%  binopLit16(instr="eor     w0, w0, w1")

%def op_xor_int_lit8():
%  binopLit8(extract="", instr="eor     w0, w0, w3, asr #8")

%def op_xor_long():
%  binopWide(instr="eor x0, x1, x2")

%def op_xor_long_2addr():
%  binopWide2addr(instr="eor     x0, x0, x1")