File: mterp.cc

package info (click to toggle)
android-platform-art 11.0.0%2Br48-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 78,932 kB
  • sloc: cpp: 459,858; java: 163,268; asm: 22,644; python: 9,815; sh: 6,330; ansic: 4,117; xml: 2,855; perl: 77; makefile: 73
file content (963 lines) | stat: -rw-r--r-- 42,106 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * Mterp entry point and support functions.
 */
#include "mterp.h"

#include "base/quasi_atomic.h"
#include "debugger.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "interpreter/interpreter_common.h"
#include "interpreter/interpreter_intrinsics.h"
#include "interpreter/shadow_frame-inl.h"
#include "mirror/string-alloc-inl.h"

namespace art {
namespace interpreter {
/*
 * Verify some constants used by the mterp interpreter.
 */
void CheckMterpAsmConstants() {
  /*
   * If we're using computed goto instruction transitions, make sure
   * none of the handlers overflows the byte limit.  This won't tell
   * which one did, but if any one is too big the total size will
   * overflow.
   */
  const int width = kMterpHandlerSize;
  int interp_size = (uintptr_t) artMterpAsmInstructionEnd -
                    (uintptr_t) artMterpAsmInstructionStart;
  if ((interp_size == 0) || (interp_size != (art::kNumPackedOpcodes * width))) {
      LOG(FATAL) << "ERROR: unexpected asm interp size " << interp_size
                 << "(did an instruction handler exceed " << width << " bytes?)";
  }
}

void InitMterpTls(Thread* self) {
  self->SetMterpCurrentIBase(artMterpAsmInstructionStart);
}

/*
 * Find the matching case.  Returns the offset to the handler instructions.
 *
 * Returns 3 if we don't find a match (it's the size of the sparse-switch
 * instruction).
 */
extern "C" ssize_t MterpDoSparseSwitch(const uint16_t* switchData, int32_t testVal) {
  const int kInstrLen = 3;
  uint16_t size;
  const int32_t* keys;
  const int32_t* entries;

  /*
   * Sparse switch data format:
   *  ushort ident = 0x0200   magic value
   *  ushort size             number of entries in the table; > 0
   *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
   *  int targets[size]       branch targets, relative to switch opcode
   *
   * Total size is (2+size*4) 16-bit code units.
   */

  uint16_t signature = *switchData++;
  DCHECK_EQ(signature, static_cast<uint16_t>(art::Instruction::kSparseSwitchSignature));

  size = *switchData++;

  /* The keys are guaranteed to be aligned on a 32-bit boundary;
   * we can treat them as a native int array.
   */
  keys = reinterpret_cast<const int32_t*>(switchData);

  /* The entries are guaranteed to be aligned on a 32-bit boundary;
   * we can treat them as a native int array.
   */
  entries = keys + size;

  /*
   * Binary-search through the array of keys, which are guaranteed to
   * be sorted low-to-high.
   */
  int lo = 0;
  int hi = size - 1;
  while (lo <= hi) {
    int mid = (lo + hi) >> 1;

    int32_t foundVal = keys[mid];
    if (testVal < foundVal) {
      hi = mid - 1;
    } else if (testVal > foundVal) {
      lo = mid + 1;
    } else {
      return entries[mid];
    }
  }
  return kInstrLen;
}

extern "C" ssize_t MterpDoPackedSwitch(const uint16_t* switchData, int32_t testVal) {
  const int kInstrLen = 3;

  /*
   * Packed switch data format:
   *  ushort ident = 0x0100   magic value
   *  ushort size             number of entries in the table
   *  int first_key           first (and lowest) switch case value
   *  int targets[size]       branch targets, relative to switch opcode
   *
   * Total size is (4+size*2) 16-bit code units.
   */
  uint16_t signature = *switchData++;
  DCHECK_EQ(signature, static_cast<uint16_t>(art::Instruction::kPackedSwitchSignature));

  uint16_t size = *switchData++;

  int32_t firstKey = *switchData++;
  firstKey |= (*switchData++) << 16;

  int index = testVal - firstKey;
  if (index < 0 || index >= size) {
    return kInstrLen;
  }

  /*
   * The entries are guaranteed to be aligned on a 32-bit boundary;
   * we can treat them as a native int array.
   */
  const int32_t* entries = reinterpret_cast<const int32_t*>(switchData);
  return entries[index];
}

bool CanUseMterp()
    REQUIRES_SHARED(Locks::mutator_lock_) {
  const Runtime* const runtime = Runtime::Current();
  return
      runtime->IsStarted() &&
      !runtime->IsAotCompiler() &&
      !runtime->GetInstrumentation()->IsActive() &&
      // mterp only knows how to deal with the normal exits. It cannot handle any of the
      // non-standard force-returns.
      !runtime->AreNonStandardExitsEnabled() &&
      // An async exception has been thrown. We need to go to the switch interpreter. MTerp doesn't
      // know how to deal with these so we could end up never dealing with it if we are in an
      // infinite loop.
      !runtime->AreAsyncExceptionsThrown() &&
      (runtime->GetJit() == nullptr || !runtime->GetJit()->JitAtFirstUse());
}


extern "C" size_t MterpInvokeVirtual(Thread* self,
                                     ShadowFrame* shadow_frame,
                                     uint16_t* dex_pc_ptr,
                                     uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvoke<kVirtual, /*is_range=*/ false, /*do_access_check=*/ false, /*is_mterp=*/ true>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokeSuper(Thread* self,
                                   ShadowFrame* shadow_frame,
                                   uint16_t* dex_pc_ptr,
                                   uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvoke<kSuper, /*is_range=*/ false, /*do_access_check=*/ false, /*is_mterp=*/ true>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokeInterface(Thread* self,
                                       ShadowFrame* shadow_frame,
                                       uint16_t* dex_pc_ptr,
                                       uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvoke<kInterface, /*is_range=*/ false, /*do_access_check=*/ false, /*is_mterp=*/ true>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokeDirect(Thread* self,
                                    ShadowFrame* shadow_frame,
                                    uint16_t* dex_pc_ptr,
                                    uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvoke<kDirect, /*is_range=*/ false, /*do_access_check=*/ false, /*is_mterp=*/ true>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokeStatic(Thread* self,
                                    ShadowFrame* shadow_frame,
                                    uint16_t* dex_pc_ptr,
                                    uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvoke<kStatic, /*is_range=*/ false, /*do_access_check=*/ false, /*is_mterp=*/ true>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokeCustom(Thread* self,
                                    ShadowFrame* shadow_frame,
                                    uint16_t* dex_pc_ptr,
                                    uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvokeCustom</* is_range= */ false>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokePolymorphic(Thread* self,
                                         ShadowFrame* shadow_frame,
                                         uint16_t* dex_pc_ptr,
                                         uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvokePolymorphic</* is_range= */ false>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokeVirtualRange(Thread* self,
                                          ShadowFrame* shadow_frame,
                                          uint16_t* dex_pc_ptr,
                                          uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvoke<kVirtual, /*is_range=*/ true, /*do_access_check=*/ false, /*is_mterp=*/ true>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokeSuperRange(Thread* self,
                                        ShadowFrame* shadow_frame,
                                        uint16_t* dex_pc_ptr,
                                        uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvoke<kSuper, /*is_range=*/ true, /*do_access_check=*/ false, /*is_mterp=*/ true>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokeInterfaceRange(Thread* self,
                                            ShadowFrame* shadow_frame,
                                            uint16_t* dex_pc_ptr,
                                            uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvoke<kInterface, /*is_range=*/ true, /*do_access_check=*/ false, /*is_mterp=*/ true>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokeDirectRange(Thread* self,
                                         ShadowFrame* shadow_frame,
                                         uint16_t* dex_pc_ptr,
                                         uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvoke<kDirect, /*is_range=*/ true, /*do_access_check=*/ false, /*is_mterp=*/ true>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokeStaticRange(Thread* self,
                                         ShadowFrame* shadow_frame,
                                         uint16_t* dex_pc_ptr,
                                         uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvoke<kStatic, /*is_range=*/ true, /*do_access_check=*/ false, /*is_mterp=*/ true>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokeCustomRange(Thread* self,
                                         ShadowFrame* shadow_frame,
                                         uint16_t* dex_pc_ptr,
                                         uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvokeCustom</*is_range=*/ true>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokePolymorphicRange(Thread* self,
                                              ShadowFrame* shadow_frame,
                                              uint16_t* dex_pc_ptr,
                                              uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvokePolymorphic</* is_range= */ true>(
      self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokeVirtualQuick(Thread* self,
                                          ShadowFrame* shadow_frame,
                                          uint16_t* dex_pc_ptr,
                                          uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvoke<kVirtual, /*is_range=*/ false, /*do_access_check=*/ false, /*is_mterp=*/ true,
      /*is_quick=*/ true>(self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" size_t MterpInvokeVirtualQuickRange(Thread* self,
                                               ShadowFrame* shadow_frame,
                                               uint16_t* dex_pc_ptr,
                                               uint16_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue* result_register = shadow_frame->GetResultRegister();
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoInvoke<kVirtual, /*is_range=*/ true, /*do_access_check=*/ false, /*is_mterp=*/ true,
      /*is_quick=*/ true>(self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u;
}

extern "C" void MterpThreadFenceForConstructor() {
  QuasiAtomic::ThreadFenceForConstructor();
}

extern "C" size_t MterpConstString(uint32_t index,
                                   uint32_t tgt_vreg,
                                   ShadowFrame* shadow_frame,
                                   Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ObjPtr<mirror::String> s = ResolveString(self, *shadow_frame, dex::StringIndex(index));
  if (UNLIKELY(s == nullptr)) {
    return 1u;
  }
  shadow_frame->SetVRegReference(tgt_vreg, s);
  return 0u;
}

extern "C" size_t MterpConstClass(uint32_t index,
                                  uint32_t tgt_vreg,
                                  ShadowFrame* shadow_frame,
                                  Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ObjPtr<mirror::Class> c = ResolveVerifyAndClinit(dex::TypeIndex(index),
                                                   shadow_frame->GetMethod(),
                                                   self,
                                                   /* can_run_clinit= */ false,
                                                   /* verify_access= */ false);
  if (UNLIKELY(c == nullptr)) {
    return 1u;
  }
  shadow_frame->SetVRegReference(tgt_vreg, c);
  return 0u;
}

extern "C" size_t MterpConstMethodHandle(uint32_t index,
                                         uint32_t tgt_vreg,
                                         ShadowFrame* shadow_frame,
                                         Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ObjPtr<mirror::MethodHandle> mh = ResolveMethodHandle(self, index, shadow_frame->GetMethod());
  if (UNLIKELY(mh == nullptr)) {
    return 1u;
  }
  shadow_frame->SetVRegReference(tgt_vreg, mh);
  return 0u;
}

extern "C" size_t MterpConstMethodType(uint32_t index,
                                       uint32_t tgt_vreg,
                                       ShadowFrame* shadow_frame,
                                       Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ObjPtr<mirror::MethodType> mt =
      ResolveMethodType(self, dex::ProtoIndex(index), shadow_frame->GetMethod());
  if (UNLIKELY(mt == nullptr)) {
    return 1u;
  }
  shadow_frame->SetVRegReference(tgt_vreg, mt);
  return 0u;
}

extern "C" size_t MterpCheckCast(uint32_t index,
                                 StackReference<mirror::Object>* vreg_addr,
                                 art::ArtMethod* method,
                                 Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ObjPtr<mirror::Class> c = ResolveVerifyAndClinit(dex::TypeIndex(index),
                                                   method,
                                                   self,
                                                   false,
                                                   false);
  if (UNLIKELY(c == nullptr)) {
    return 1u;
  }
  // Must load obj from vreg following ResolveVerifyAndClinit due to moving gc.
  ObjPtr<mirror::Object> obj = vreg_addr->AsMirrorPtr();
  if (UNLIKELY(obj != nullptr && !obj->InstanceOf(c))) {
    ThrowClassCastException(c, obj->GetClass());
    return 1u;
  }
  return 0u;
}

extern "C" size_t MterpInstanceOf(uint32_t index,
                                  StackReference<mirror::Object>* vreg_addr,
                                  art::ArtMethod* method,
                                  Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ObjPtr<mirror::Class> c = ResolveVerifyAndClinit(dex::TypeIndex(index),
                                                   method,
                                                   self,
                                                   false,
                                                   false);
  if (UNLIKELY(c == nullptr)) {
    return 0u;  // Caller will check for pending exception.  Return value unimportant.
  }
  // Must load obj from vreg following ResolveVerifyAndClinit due to moving gc.
  ObjPtr<mirror::Object> obj = vreg_addr->AsMirrorPtr();
  return (obj != nullptr) && obj->InstanceOf(c) ? 1u : 0u;
}

extern "C" size_t MterpFillArrayData(mirror::Object* obj,
                                     const Instruction::ArrayDataPayload* payload)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  return FillArrayData(obj, payload) ? 1u : 0u;
}

extern "C" size_t MterpNewInstance(ShadowFrame* shadow_frame, Thread* self, uint32_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
  ObjPtr<mirror::Object> obj = nullptr;
  ObjPtr<mirror::Class> c = ResolveVerifyAndClinit(dex::TypeIndex(inst->VRegB_21c()),
                                                   shadow_frame->GetMethod(),
                                                   self,
                                                   /* can_run_clinit= */ false,
                                                   /* verify_access= */ false);
  if (LIKELY(c != nullptr)) {
    if (UNLIKELY(c->IsStringClass())) {
      gc::AllocatorType allocator_type = Runtime::Current()->GetHeap()->GetCurrentAllocator();
      obj = mirror::String::AllocEmptyString(self, allocator_type);
    } else {
      obj = AllocObjectFromCode(c, self, Runtime::Current()->GetHeap()->GetCurrentAllocator());
    }
  }
  if (UNLIKELY(obj == nullptr)) {
    return 0u;
  }
  obj->GetClass()->AssertInitializedOrInitializingInThread(self);
  shadow_frame->SetVRegReference(inst->VRegA_21c(inst_data), obj);
  return 1u;
}

extern "C" size_t MterpIputObjectQuick(ShadowFrame* shadow_frame,
                                       uint16_t* dex_pc_ptr,
                                       uint32_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoIPutQuick<Primitive::kPrimNot, false>(*shadow_frame, inst, inst_data) ? 1u : 0u;
}

extern "C" size_t MterpAputObject(ShadowFrame* shadow_frame,
                                  uint16_t* dex_pc_ptr,
                                  uint32_t inst_data)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  ObjPtr<mirror::Object> a = shadow_frame->GetVRegReference(inst->VRegB_23x());
  if (UNLIKELY(a == nullptr)) {
    return 0u;
  }
  int32_t index = shadow_frame->GetVReg(inst->VRegC_23x());
  ObjPtr<mirror::Object> val = shadow_frame->GetVRegReference(inst->VRegA_23x(inst_data));
  ObjPtr<mirror::ObjectArray<mirror::Object>> array = a->AsObjectArray<mirror::Object>();
  if (array->CheckIsValidIndex(index) && array->CheckAssignable(val)) {
    array->SetWithoutChecks<false>(index, val);
    return 1u;
  }
  return 0u;
}

extern "C" size_t MterpFilledNewArray(ShadowFrame* shadow_frame,
                                      uint16_t* dex_pc_ptr,
                                      Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoFilledNewArray<false, false, false>(inst, *shadow_frame, self,
                                               shadow_frame->GetResultRegister()) ? 1u : 0u;
}

extern "C" size_t MterpFilledNewArrayRange(ShadowFrame* shadow_frame,
                                           uint16_t* dex_pc_ptr,
                                           Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  return DoFilledNewArray<true, false, false>(inst, *shadow_frame, self,
                                              shadow_frame->GetResultRegister()) ? 1u : 0u;
}

extern "C" size_t MterpNewArray(ShadowFrame* shadow_frame,
                                uint16_t* dex_pc_ptr,
                                uint32_t inst_data, Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  int32_t length = shadow_frame->GetVReg(inst->VRegB_22c(inst_data));
  ObjPtr<mirror::Object> obj = AllocArrayFromCode</*kAccessCheck=*/ false>(
      dex::TypeIndex(inst->VRegC_22c()), length, shadow_frame->GetMethod(), self,
      Runtime::Current()->GetHeap()->GetCurrentAllocator());
  if (UNLIKELY(obj == nullptr)) {
      return 0u;
  }
  shadow_frame->SetVRegReference(inst->VRegA_22c(inst_data), obj);
  return 1u;
}

extern "C" size_t MterpHandleException(Thread* self, ShadowFrame* shadow_frame)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  DCHECK(self->IsExceptionPending());
  const instrumentation::Instrumentation* const instrumentation =
      Runtime::Current()->GetInstrumentation();
  return MoveToExceptionHandler(self, *shadow_frame, instrumentation) ? 1u : 0u;
}

struct MterpCheckHelper {
  DECLARE_RUNTIME_DEBUG_FLAG(kSlowMode);
};
DEFINE_RUNTIME_DEBUG_FLAG(MterpCheckHelper, kSlowMode);

extern "C" void MterpCheckBefore(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  // Check that we are using the right interpreter.
  if (kIsDebugBuild && self->UseMterp() != CanUseMterp()) {
    // The flag might be currently being updated on all threads. Retry with lock.
    MutexLock tll_mu(self, *Locks::thread_list_lock_);
    DCHECK_EQ(self->UseMterp(), CanUseMterp());
  }
  DCHECK(!Runtime::Current()->IsActiveTransaction());
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  uint16_t inst_data = inst->Fetch16(0);
  if (inst->Opcode(inst_data) == Instruction::MOVE_EXCEPTION) {
    self->AssertPendingException();
  } else {
    self->AssertNoPendingException();
  }
  if (kTraceExecutionEnabled) {
    uint32_t dex_pc = dex_pc_ptr - shadow_frame->GetDexInstructions();
    TraceExecution(*shadow_frame, inst, dex_pc);
  }
  if (kTestExportPC) {
    // Save invalid dex pc to force segfault if improperly used.
    shadow_frame->SetDexPCPtr(reinterpret_cast<uint16_t*>(kExportPCPoison));
  }
  if (MterpCheckHelper::kSlowMode) {
    shadow_frame->CheckConsistentVRegs();
  }
}

extern "C" void MterpLogDivideByZeroException(Thread* self, ShadowFrame* shadow_frame)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UNUSED(self);
  const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
  uint16_t inst_data = inst->Fetch16(0);
  LOG(INFO) << "DivideByZero: " << inst->Opcode(inst_data);
}

extern "C" void MterpLogArrayIndexException(Thread* self, ShadowFrame* shadow_frame)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UNUSED(self);
  const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
  uint16_t inst_data = inst->Fetch16(0);
  LOG(INFO) << "ArrayIndex: " << inst->Opcode(inst_data);
}

extern "C" void MterpLogNegativeArraySizeException(Thread* self, ShadowFrame* shadow_frame)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UNUSED(self);
  const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
  uint16_t inst_data = inst->Fetch16(0);
  LOG(INFO) << "NegativeArraySize: " << inst->Opcode(inst_data);
}

extern "C" void MterpLogNoSuchMethodException(Thread* self, ShadowFrame* shadow_frame)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UNUSED(self);
  const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
  uint16_t inst_data = inst->Fetch16(0);
  LOG(INFO) << "NoSuchMethod: " << inst->Opcode(inst_data);
}

extern "C" void MterpLogExceptionThrownException(Thread* self, ShadowFrame* shadow_frame)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UNUSED(self);
  const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
  uint16_t inst_data = inst->Fetch16(0);
  LOG(INFO) << "ExceptionThrown: " << inst->Opcode(inst_data);
}

extern "C" void MterpLogNullObjectException(Thread* self, ShadowFrame* shadow_frame)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UNUSED(self);
  const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
  uint16_t inst_data = inst->Fetch16(0);
  LOG(INFO) << "NullObject: " << inst->Opcode(inst_data);
}

extern "C" void MterpLogFallback(Thread* self, ShadowFrame* shadow_frame)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UNUSED(self);
  const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
  uint16_t inst_data = inst->Fetch16(0);
  LOG(INFO) << "Fallback: " << inst->Opcode(inst_data) << ", Suspend Pending?: "
            << self->IsExceptionPending();
}

extern "C" void MterpLogOSR(Thread* self, ShadowFrame* shadow_frame, int32_t offset)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UNUSED(self);
  const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
  uint16_t inst_data = inst->Fetch16(0);
  LOG(INFO) << "OSR: " << inst->Opcode(inst_data) << ", offset = " << offset;
}

extern "C" void MterpLogSuspendFallback(Thread* self, ShadowFrame* shadow_frame, uint32_t flags)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UNUSED(self);
  const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr());
  uint16_t inst_data = inst->Fetch16(0);
  if (flags & kCheckpointRequest) {
    LOG(INFO) << "Checkpoint fallback: " << inst->Opcode(inst_data);
  } else if (flags & kSuspendRequest) {
    LOG(INFO) << "Suspend fallback: " << inst->Opcode(inst_data);
  } else if (flags & kEmptyCheckpointRequest) {
    LOG(INFO) << "Empty checkpoint fallback: " << inst->Opcode(inst_data);
  }
}

extern "C" size_t MterpSuspendCheck(Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  self->AllowThreadSuspension();
  return !self->UseMterp();
}

// Execute single field access instruction (get/put, static/instance).
// The template arguments reduce this to fairly small amount of code.
// It requires the target object and field to be already resolved.
template<typename PrimType, FindFieldType kAccessType>
ALWAYS_INLINE void MterpFieldAccess(Instruction* inst,
                                    uint16_t inst_data,
                                    ShadowFrame* shadow_frame,
                                    ObjPtr<mirror::Object> obj,
                                    MemberOffset offset,
                                    bool is_volatile)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  static_assert(std::is_integral<PrimType>::value, "Unexpected primitive type");
  constexpr bool kIsStatic = (kAccessType & FindFieldFlags::StaticBit) != 0;
  constexpr bool kIsPrimitive = (kAccessType & FindFieldFlags::PrimitiveBit) != 0;
  constexpr bool kIsRead = (kAccessType & FindFieldFlags::ReadBit) != 0;

  uint16_t vRegA = kIsStatic ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data);
  if (kIsPrimitive) {
    if (kIsRead) {
      PrimType value = UNLIKELY(is_volatile)
          ? obj->GetFieldPrimitive<PrimType, /*kIsVolatile=*/ true>(offset)
          : obj->GetFieldPrimitive<PrimType, /*kIsVolatile=*/ false>(offset);
      if (sizeof(PrimType) == sizeof(uint64_t)) {
        shadow_frame->SetVRegLong(vRegA, value);  // Set two consecutive registers.
      } else {
        shadow_frame->SetVReg(vRegA, static_cast<int32_t>(value));  // Sign/zero extend.
      }
    } else {  // Write.
      uint64_t value = (sizeof(PrimType) == sizeof(uint64_t))
          ? shadow_frame->GetVRegLong(vRegA)
          : shadow_frame->GetVReg(vRegA);
      if (UNLIKELY(is_volatile)) {
        obj->SetFieldPrimitive<PrimType, /*kIsVolatile=*/ true>(offset, value);
      } else {
        obj->SetFieldPrimitive<PrimType, /*kIsVolatile=*/ false>(offset, value);
      }
    }
  } else {  // Object.
    if (kIsRead) {
      ObjPtr<mirror::Object> value = UNLIKELY(is_volatile)
          ? obj->GetFieldObjectVolatile<mirror::Object>(offset)
          : obj->GetFieldObject<mirror::Object>(offset);
      shadow_frame->SetVRegReference(vRegA, value);
    } else {  // Write.
      ObjPtr<mirror::Object> value = shadow_frame->GetVRegReference(vRegA);
      if (UNLIKELY(is_volatile)) {
        obj->SetFieldObjectVolatile</*kTransactionActive=*/ false>(offset, value);
      } else {
        obj->SetFieldObject</*kTransactionActive=*/ false>(offset, value);
      }
    }
  }
}

template<typename PrimType, FindFieldType kAccessType>
NO_INLINE bool MterpFieldAccessSlow(Instruction* inst,
                                    uint16_t inst_data,
                                    ShadowFrame* shadow_frame,
                                    Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  constexpr bool kIsStatic = (kAccessType & FindFieldFlags::StaticBit) != 0;
  constexpr bool kIsRead = (kAccessType & FindFieldFlags::ReadBit) != 0;

  // Update the dex pc in shadow frame, just in case anything throws.
  shadow_frame->SetDexPCPtr(reinterpret_cast<uint16_t*>(inst));
  ArtMethod* referrer = shadow_frame->GetMethod();
  uint32_t field_idx = kIsStatic ? inst->VRegB_21c() : inst->VRegC_22c();
  ArtField* field = FindFieldFromCode<kAccessType, /* access_checks= */ false>(
      field_idx, referrer, self, sizeof(PrimType));
  if (UNLIKELY(field == nullptr)) {
    DCHECK(self->IsExceptionPending());
    return false;
  }
  ObjPtr<mirror::Object> obj = kIsStatic
      ? field->GetDeclaringClass().Ptr()
      : shadow_frame->GetVRegReference(inst->VRegB_22c(inst_data));
  if (UNLIKELY(obj == nullptr)) {
    ThrowNullPointerExceptionForFieldAccess(field, kIsRead);
    return false;
  }
  MterpFieldAccess<PrimType, kAccessType>(
      inst, inst_data, shadow_frame, obj, field->GetOffset(), field->IsVolatile());
  return true;
}

// This methods is called from assembly to handle field access instructions.
//
// This method is fairly hot.  It is long, but it has been carefully optimized.
// It contains only fully inlined methods -> no spills -> no prologue/epilogue.
template<typename PrimType, FindFieldType kAccessType>
ALWAYS_INLINE bool MterpFieldAccessFast(Instruction* inst,
                                        uint16_t inst_data,
                                        ShadowFrame* shadow_frame,
                                        Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  constexpr bool kIsStatic = (kAccessType & FindFieldFlags::StaticBit) != 0;

  // Try to find the field in small thread-local cache first.
  InterpreterCache* tls_cache = self->GetInterpreterCache();
  size_t tls_value;
  if (LIKELY(tls_cache->Get(inst, &tls_value))) {
    // The meaning of the cache value is opcode-specific.
    // It is ArtFiled* for static fields and the raw offset for instance fields.
    size_t offset = kIsStatic
        ? reinterpret_cast<ArtField*>(tls_value)->GetOffset().SizeValue()
        : tls_value;
    if (kIsDebugBuild) {
      uint32_t field_idx = kIsStatic ? inst->VRegB_21c() : inst->VRegC_22c();
      ArtField* field = FindFieldFromCode<kAccessType, /* access_checks= */ false>(
          field_idx, shadow_frame->GetMethod(), self, sizeof(PrimType));
      DCHECK_EQ(offset, field->GetOffset().SizeValue());
    }
    ObjPtr<mirror::Object> obj = kIsStatic
        ? reinterpret_cast<ArtField*>(tls_value)->GetDeclaringClass()
        : ObjPtr<mirror::Object>(shadow_frame->GetVRegReference(inst->VRegB_22c(inst_data)));
    if (LIKELY(obj != nullptr)) {
      MterpFieldAccess<PrimType, kAccessType>(
          inst, inst_data, shadow_frame, obj, MemberOffset(offset), /* is_volatile= */ false);
      return true;
    }
  }

  // This effectively inlines the fast path from ArtMethod::GetDexCache.
  ArtMethod* referrer = shadow_frame->GetMethod();
  if (LIKELY(!referrer->IsObsolete())) {
    // Avoid read barriers, since we need only the pointer to the native (non-movable)
    // DexCache field array which we can get even through from-space objects.
    ObjPtr<mirror::Class> klass = referrer->GetDeclaringClass<kWithoutReadBarrier>();
    ObjPtr<mirror::DexCache> dex_cache =
        klass->GetDexCache<kDefaultVerifyFlags, kWithoutReadBarrier>();

    // Try to find the desired field in DexCache.
    uint32_t field_idx = kIsStatic ? inst->VRegB_21c() : inst->VRegC_22c();
    ArtField* field = dex_cache->GetResolvedField(field_idx, kRuntimePointerSize);
    if (LIKELY(field != nullptr)) {
      bool visibly_initialized = !kIsStatic || field->GetDeclaringClass()->IsVisiblyInitialized();
      if (LIKELY(visibly_initialized)) {
        DCHECK_EQ(field, (FindFieldFromCode<kAccessType, /* access_checks= */ false>(
            field_idx, referrer, self, sizeof(PrimType))));
        ObjPtr<mirror::Object> obj = kIsStatic
            ? field->GetDeclaringClass().Ptr()
            : shadow_frame->GetVRegReference(inst->VRegB_22c(inst_data));
        if (LIKELY(kIsStatic || obj != nullptr)) {
          // Only non-volatile fields are allowed in the thread-local cache.
          if (LIKELY(!field->IsVolatile())) {
            if (kIsStatic) {
              tls_cache->Set(inst, reinterpret_cast<uintptr_t>(field));
            } else {
              tls_cache->Set(inst, field->GetOffset().SizeValue());
            }
          }
          MterpFieldAccess<PrimType, kAccessType>(
              inst, inst_data, shadow_frame, obj, field->GetOffset(), field->IsVolatile());
          return true;
        }
      }
    }
  }

  // Slow path. Last and with identical arguments so that it becomes single instruction tail call.
  return MterpFieldAccessSlow<PrimType, kAccessType>(inst, inst_data, shadow_frame, self);
}

#define MTERP_FIELD_ACCESSOR(Name, PrimType, AccessType)                                          \
extern "C" bool Name(Instruction* inst, uint16_t inst_data, ShadowFrame* sf, Thread* self)        \
    REQUIRES_SHARED(Locks::mutator_lock_) {                                                       \
  return MterpFieldAccessFast<PrimType, AccessType>(inst, inst_data, sf, self);                   \
}

#define MTERP_FIELD_ACCESSORS_FOR_TYPE(Sufix, PrimType, Kind)                                     \
  MTERP_FIELD_ACCESSOR(MterpIGet##Sufix, PrimType, Instance##Kind##Read)                          \
  MTERP_FIELD_ACCESSOR(MterpIPut##Sufix, PrimType, Instance##Kind##Write)                         \
  MTERP_FIELD_ACCESSOR(MterpSGet##Sufix, PrimType, Static##Kind##Read)                            \
  MTERP_FIELD_ACCESSOR(MterpSPut##Sufix, PrimType, Static##Kind##Write)

MTERP_FIELD_ACCESSORS_FOR_TYPE(I8, int8_t, Primitive)
MTERP_FIELD_ACCESSORS_FOR_TYPE(U8, uint8_t, Primitive)
MTERP_FIELD_ACCESSORS_FOR_TYPE(I16, int16_t, Primitive)
MTERP_FIELD_ACCESSORS_FOR_TYPE(U16, uint16_t, Primitive)
MTERP_FIELD_ACCESSORS_FOR_TYPE(U32, uint32_t, Primitive)
MTERP_FIELD_ACCESSORS_FOR_TYPE(U64, uint64_t, Primitive)
MTERP_FIELD_ACCESSORS_FOR_TYPE(Obj, uint32_t, Object)

// Check that the primitive type for Obj variant above is correct.
// It really must be primitive type for the templates to compile.
// In the case of objects, it is only used to get the field size.
static_assert(kHeapReferenceSize == sizeof(uint32_t), "Unexpected kHeapReferenceSize");

#undef MTERP_FIELD_ACCESSORS_FOR_TYPE
#undef MTERP_FIELD_ACCESSOR

extern "C" mirror::Object* artAGetObjectFromMterp(mirror::Object* arr,
                                                  int32_t index)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  if (UNLIKELY(arr == nullptr)) {
    ThrowNullPointerExceptionFromInterpreter();
    return nullptr;
  }
  ObjPtr<mirror::ObjectArray<mirror::Object>> array = arr->AsObjectArray<mirror::Object>();
  if (LIKELY(array->CheckIsValidIndex(index))) {
    return array->GetWithoutChecks(index).Ptr();
  } else {
    return nullptr;
  }
}

extern "C" mirror::Object* artIGetObjectFromMterp(mirror::Object* obj,
                                                  uint32_t field_offset)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  if (UNLIKELY(obj == nullptr)) {
    ThrowNullPointerExceptionFromInterpreter();
    return nullptr;
  }
  return obj->GetFieldObject<mirror::Object>(MemberOffset(field_offset));
}

/*
 * Create a hotness_countdown based on the current method hotness_count and profiling
 * mode.  In short, determine how many hotness events we hit before reporting back
 * to the full instrumentation via MterpAddHotnessBatch.  Called once on entry to the method,
 * and regenerated following batch updates.
 */
extern "C" ssize_t MterpSetUpHotnessCountdown(ArtMethod* method,
                                              ShadowFrame* shadow_frame,
                                              Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  uint16_t hotness_count = method->GetCounter();
  int32_t countdown_value = jit::kJitHotnessDisabled;
  jit::Jit* jit = Runtime::Current()->GetJit();
  if (jit != nullptr) {
    int32_t warm_threshold = jit->WarmMethodThreshold();
    int32_t hot_threshold = jit->HotMethodThreshold();
    int32_t osr_threshold = jit->OSRMethodThreshold();
    if (hotness_count < warm_threshold) {
      countdown_value = warm_threshold - hotness_count;
    } else if (hotness_count < hot_threshold) {
      countdown_value = hot_threshold - hotness_count;
    } else if (hotness_count < osr_threshold) {
      countdown_value = osr_threshold - hotness_count;
    } else {
      countdown_value = jit::kJitCheckForOSR;
    }
    if (jit::Jit::ShouldUsePriorityThreadWeight(self)) {
      int32_t priority_thread_weight = jit->PriorityThreadWeight();
      countdown_value = std::min(countdown_value, countdown_value / priority_thread_weight);
    }
  }
  /*
   * The actual hotness threshold may exceed the range of our int16_t countdown value.  This is
   * not a problem, though.  We can just break it down into smaller chunks.
   */
  countdown_value = std::min(countdown_value,
                             static_cast<int32_t>(std::numeric_limits<int16_t>::max()));
  shadow_frame->SetCachedHotnessCountdown(countdown_value);
  shadow_frame->SetHotnessCountdown(countdown_value);
  return countdown_value;
}

/*
 * Report a batch of hotness events to the instrumentation and then return the new
 * countdown value to the next time we should report.
 */
extern "C" ssize_t MterpAddHotnessBatch(ArtMethod* method,
                                        ShadowFrame* shadow_frame,
                                        Thread* self)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  jit::Jit* jit = Runtime::Current()->GetJit();
  if (jit != nullptr) {
    int16_t count = shadow_frame->GetCachedHotnessCountdown() - shadow_frame->GetHotnessCountdown();
    jit->AddSamples(self, method, count, /*with_backedges=*/ true);
  }
  return MterpSetUpHotnessCountdown(method, shadow_frame, self);
}

extern "C" size_t MterpMaybeDoOnStackReplacement(Thread* self,
                                                 ShadowFrame* shadow_frame,
                                                 int32_t offset)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  int16_t osr_countdown = shadow_frame->GetCachedHotnessCountdown() - 1;
  bool did_osr = false;
  /*
   * To reduce the cost of polling the compiler to determine whether the requested OSR
   * compilation has completed, only check every Nth time.  NOTE: the "osr_countdown <= 0"
   * condition is satisfied either by the decrement below or the initial setting of
   * the cached countdown field to kJitCheckForOSR, which elsewhere is asserted to be -1.
   */
  if (osr_countdown <= 0) {
    ArtMethod* method = shadow_frame->GetMethod();
    JValue* result = shadow_frame->GetResultRegister();
    uint32_t dex_pc = shadow_frame->GetDexPC();
    jit::Jit* jit = Runtime::Current()->GetJit();
    osr_countdown = jit::Jit::kJitRecheckOSRThreshold;
    if (offset <= 0) {
      // Keep updating hotness in case a compilation request was dropped.  Eventually it will retry.
      jit->AddSamples(self, method, osr_countdown, /*with_backedges=*/ true);
    }
    did_osr = jit::Jit::MaybeDoOnStackReplacement(self, method, dex_pc, offset, result);
  }
  shadow_frame->SetCachedHotnessCountdown(osr_countdown);
  return did_osr ? 1u : 0u;
}

}  // namespace interpreter
}  // namespace art