File: arithmetic.S

package info (click to toggle)
android-platform-art 11.0.0%2Br48-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 78,932 kB
  • sloc: cpp: 459,858; java: 163,268; asm: 22,644; python: 9,815; sh: 6,330; ansic: 4,117; xml: 2,855; perl: 77; makefile: 73
file content (943 lines) | stat: -rw-r--r-- 32,721 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
%def bindiv(result="", special="", rem=""):
/*
 * 32-bit binary div/rem operation.  Handles special case of op0=minint and
 * op1=-1.
 */
    /* div/rem vAA, vBB, vCC */
    movzbl  2(rPC), %eax                    # eax <- BB
    movzbl  3(rPC), %ecx                    # ecx <- CC
    GET_VREG %eax, %eax                     # eax <- vBB
    GET_VREG %ecx, %ecx                     # ecx <- vCC
    mov     rIBASE, LOCAL0(%esp)
    testl   %ecx, %ecx
    je      common_errDivideByZero
    movl    %eax, %edx
    orl     %ecx, %edx
    testl   $$0xFFFFFF00, %edx              # If both arguments are less
                                            #   than 8-bit and +ve
    jz      .L${opcode}_8                   # Do 8-bit divide
    testl   $$0xFFFF0000, %edx              # If both arguments are less
                                            #   than 16-bit and +ve
    jz      .L${opcode}_16                  # Do 16-bit divide
    cmpl    $$-1, %ecx
    jne     .L${opcode}_32
    cmpl    $$0x80000000, %eax
    jne     .L${opcode}_32
    movl    $special, $result
    jmp     .L${opcode}_finish
%  add_helper(lambda: bindiv_helper(result, rem))

%def bindiv_helper(result, rem):
.L${opcode}_32:
    cltd
    idivl   %ecx
    jmp     .L${opcode}_finish
.L${opcode}_8:
    div     %cl                             # 8-bit divide otherwise.
                                            # Remainder in %ah, quotient in %al
    .if $rem
    movl    %eax, %edx
    shr     $$8, %edx
    .else
    andl    $$0x000000FF, %eax
    .endif
    jmp     .L${opcode}_finish
.L${opcode}_16:
    xorl    %edx, %edx                      # Clear %edx before divide
    div     %cx
.L${opcode}_finish:
    SET_VREG $result, rINST
    mov     LOCAL0(%esp), rIBASE
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def bindiv2addr(result="", special=""):
/*
 * 32-bit binary div/rem operation.  Handles special case of op0=minint and
 * op1=-1.
 */
    /* div/rem/2addr vA, vB */
    movzx   rINSTbl, %ecx                   # eax <- BA
    mov     rIBASE, LOCAL0(%esp)
    sarl    $$4, %ecx                       # ecx <- B
    GET_VREG %ecx, %ecx                     # eax <- vBB
    andb    $$0xf, rINSTbl                  # rINST <- A
    GET_VREG %eax, rINST                    # eax <- vBB
    testl   %ecx, %ecx
    je      common_errDivideByZero
    cmpl    $$-1, %ecx
    jne     .L${opcode}_continue_div2addr
    cmpl    $$0x80000000, %eax
    jne     .L${opcode}_continue_div2addr
    movl    $special, $result
    SET_VREG $result, rINST
    mov     LOCAL0(%esp), rIBASE
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1
%  add_helper(lambda: bindiv2addr_helper(result))

%def bindiv2addr_helper(result):
.L${opcode}_continue_div2addr:
    cltd
    idivl   %ecx
    SET_VREG $result, rINST
    mov     LOCAL0(%esp), rIBASE
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1

%def bindivLit16(result="", special=""):
/*
 * 32-bit binary div/rem operation.  Handles special case of op0=minint and
 * op1=-1.
 */
    /* div/rem/lit16 vA, vB, #+CCCC */
    /* Need A in rINST, ssssCCCC in ecx, vB in eax */
    movzbl  rINSTbl, %eax                   # eax <- 000000BA
    sarl    $$4, %eax                       # eax <- B
    GET_VREG %eax, %eax                     # eax <- vB
    movswl  2(rPC), %ecx                    # ecx <- ssssCCCC
    andb    $$0xf, rINSTbl                  # rINST <- A
    testl   %ecx, %ecx
    je      common_errDivideByZero
    cmpl    $$-1, %ecx
    jne     .L${opcode}_continue_div
    cmpl    $$0x80000000, %eax
    jne     .L${opcode}_continue_div
    movl    $special, %eax
    SET_VREG %eax, rINST
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

.L${opcode}_continue_div:
    mov     rIBASE, LOCAL0(%esp)
    cltd
    idivl   %ecx
    SET_VREG $result, rINST
    mov     LOCAL0(%esp), rIBASE
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def bindivLit8(result="", special=""):
/*
 * 32-bit div/rem "lit8" binary operation.  Handles special case of
 * op0=minint & op1=-1
 */
    /* div/rem/lit8 vAA, vBB, #+CC */
    movzbl  2(rPC), %eax                    # eax <- BB
    movsbl  3(rPC), %ecx                    # ecx <- ssssssCC
    GET_VREG  %eax, %eax                    # eax <- rBB
    testl   %ecx, %ecx
    je      common_errDivideByZero
    cmpl    $$0x80000000, %eax
    jne     .L${opcode}_continue_div
    cmpl    $$-1, %ecx
    jne     .L${opcode}_continue_div
    movl    $special, %eax
    SET_VREG %eax, rINST
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

.L${opcode}_continue_div:
    mov     rIBASE, LOCAL0(%esp)
    cltd
    idivl   %ecx
    SET_VREG $result, rINST
    mov     LOCAL0(%esp), rIBASE
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def binop(result="%eax", instr=""):
/*
 * Generic 32-bit binary operation.  Provide an "instr" line that
 * specifies an instruction that performs "result = eax op VREG_ADDRESS(%ecx)".
 * This could be an x86 instruction or a function call.  (If the result
 * comes back in a register other than eax, you can override "result".)
 *
 * For: add-int, sub-int, and-int, or-int,
 *      xor-int, shl-int, shr-int, ushr-int
 */
    /* binop vAA, vBB, vCC */
    movzbl  2(rPC), %eax                    # eax <- BB
    movzbl  3(rPC), %ecx                    # ecx <- CC
    GET_VREG %eax, %eax                     # eax <- vBB
    $instr VREG_ADDRESS(%ecx), %eax
    SET_VREG $result, rINST
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def binop1(result="%eax", tmp="%ecx", instr=""):
/*
 * Generic 32-bit binary operation in which both operands loaded to
 * registers (op0 in eax, op1 in ecx).
 */
    /* binop vAA, vBB, vCC */
    movzbl  2(rPC),%eax                     # eax <- BB
    movzbl  3(rPC),%ecx                     # ecx <- CC
    GET_VREG %eax, %eax                     # eax <- vBB
    GET_VREG %ecx, %ecx                     # eax <- vBB
    $instr                                  # ex: addl    %ecx,%eax
    SET_VREG $result, rINST
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def binop2addr(result="%eax", instr=""):
/*
 * Generic 32-bit "/2addr" binary operation.  Provide an "instr" line
 * that specifies an instruction that performs "result = r0 op r1".
 * This could be an instruction or a function call.
 *
 * For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr,
 *      rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr,
 *      shl-int/2addr, shr-int/2addr, ushr-int/2addr, add-float/2addr,
 *      sub-float/2addr, mul-float/2addr, div-float/2addr, rem-float/2addr
 */
    /* binop/2addr vA, vB */
    movzx   rINSTbl, %ecx                   # ecx <- A+
    sarl    $$4, rINST                      # rINST <- B
    GET_VREG %eax, rINST                    # eax <- vB
    andb    $$0xf, %cl                      # ecx <- A
    $instr %eax, VREG_ADDRESS(%ecx)
    CLEAR_REF %ecx
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1

%def binopLit16(result="%eax", instr=""):
/*
 * Generic 32-bit "lit16" binary operation.  Provide an "instr" line
 * that specifies an instruction that performs "result = eax op ecx".
 * This could be an x86 instruction or a function call.  (If the result
 * comes back in a register other than eax, you can override "result".)
 *
 * For: add-int/lit16, rsub-int,
 *      and-int/lit16, or-int/lit16, xor-int/lit16
 */
    /* binop/lit16 vA, vB, #+CCCC */
    movzbl  rINSTbl, %eax                   # eax <- 000000BA
    sarl    $$4, %eax                       # eax <- B
    GET_VREG %eax, %eax                     # eax <- vB
    movswl  2(rPC), %ecx                    # ecx <- ssssCCCC
    andb    $$0xf, rINSTbl                  # rINST <- A
    $instr                                  # for example: addl %ecx, %eax
    SET_VREG $result, rINST
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def binopLit8(result="%eax", instr=""):
/*
 * Generic 32-bit "lit8" binary operation.  Provide an "instr" line
 * that specifies an instruction that performs "result = eax op ecx".
 * This could be an x86 instruction or a function call.  (If the result
 * comes back in a register other than r0, you can override "result".)
 *
 * For: add-int/lit8, rsub-int/lit8
 *      and-int/lit8, or-int/lit8, xor-int/lit8,
 *      shl-int/lit8, shr-int/lit8, ushr-int/lit8
 */
    /* binop/lit8 vAA, vBB, #+CC */
    movzbl  2(rPC), %eax                    # eax <- BB
    movsbl  3(rPC), %ecx                    # ecx <- ssssssCC
    GET_VREG %eax, %eax                     # eax <- rBB
    $instr                                  # ex: addl %ecx,%eax
    SET_VREG $result, rINST
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def binopWide(instr1="", instr2=""):
/*
 * Generic 64-bit binary operation.
 */
    /* binop vAA, vBB, vCC */
    movzbl  2(rPC), %eax                    # eax <- BB
    movzbl  3(rPC), %ecx                    # ecx <- CC
    movl    rIBASE, LOCAL0(%esp)            # save rIBASE
    GET_VREG rIBASE, %eax                   # rIBASE <- v[BB+0]
    GET_VREG_HIGH %eax, %eax                # eax <- v[BB+1]
    $instr1 VREG_ADDRESS(%ecx), rIBASE
    $instr2 VREG_HIGH_ADDRESS(%ecx), %eax
    SET_VREG rIBASE, rINST                  # v[AA+0] <- rIBASE
    movl    LOCAL0(%esp), rIBASE            # restore rIBASE
    SET_VREG_HIGH %eax, rINST               # v[AA+1] <- eax
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def binopWide2addr(instr1="", instr2=""):
/*
 * Generic 64-bit binary operation.
 */
    /* binop/2addr vA, vB */
    movzbl  rINSTbl, %ecx                   # ecx<- BA
    sarl    $$4, %ecx                       # ecx<- B
    GET_VREG %eax, %ecx                     # eax<- v[B+0]
    GET_VREG_HIGH %ecx, %ecx                # eax<- v[B+1]
    andb    $$0xF, rINSTbl                  # rINST<- A
    $instr1 %eax, VREG_ADDRESS(rINST)
    $instr2 %ecx, VREG_HIGH_ADDRESS(rINST)
    CLEAR_WIDE_REF rINST
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1

%def cvtfp_int(srcdouble="1", tgtlong="1"):
/* On fp to int conversions, Java requires that
 * if the result > maxint, it should be clamped to maxint.  If it is less
 * than minint, it should be clamped to minint.  If it is a nan, the result
 * should be zero.  Further, the rounding mode is to truncate.  This model
 * differs from what is delivered normally via the x86 fpu, so we have
 * to play some games.
 */
    /* float/double to int/long vA, vB */
    movzbl  rINSTbl, %ecx                   # ecx <- A+
    sarl    $$4, rINST                      # rINST <- B
    .if $srcdouble
    fldl    VREG_ADDRESS(rINST)             # %st0 <- vB
    .else
    flds    VREG_ADDRESS(rINST)             # %st0 <- vB
    .endif
    ftst
    fnstcw  LOCAL0(%esp)                    # remember original rounding mode
    movzwl  LOCAL0(%esp), %eax
    movb    $$0xc, %ah
    movw    %ax, LOCAL0+2(%esp)
    fldcw   LOCAL0+2(%esp)                  # set "to zero" rounding mode
    andb    $$0xf, %cl                      # ecx <- A
    .if $tgtlong
    fistpll VREG_ADDRESS(%ecx)              # convert and store
    .else
    fistpl  VREG_ADDRESS(%ecx)              # convert and store
    .endif
    fldcw   LOCAL0(%esp)                    # restore previous rounding mode
    .if $tgtlong
    movl    $$0x80000000, %eax
    xorl    VREG_HIGH_ADDRESS(%ecx), %eax
    orl     VREG_ADDRESS(%ecx), %eax
    .else
    cmpl    $$0x80000000, VREG_ADDRESS(%ecx)
    .endif
    je      .L${opcode}_special_case # fix up result

.L${opcode}_finish:
    xor     %eax, %eax
    mov     %eax, VREG_REF_ADDRESS(%ecx)
    .if $tgtlong
    mov     %eax, VREG_REF_HIGH_ADDRESS(%ecx)
    .endif
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1
%  add_helper(lambda: cvtfp_int_helper(tgtlong))

%def cvtfp_int_helper(tgtlong):
.L${opcode}_special_case:
    fnstsw  %ax
    sahf
    jp      .L${opcode}_isNaN
    adcl    $$-1, VREG_ADDRESS(%ecx)
    .if $tgtlong
    adcl    $$-1, VREG_HIGH_ADDRESS(%ecx)
    .endif
   jmp      .L${opcode}_finish
.L${opcode}_isNaN:
    movl    $$0, VREG_ADDRESS(%ecx)
    .if $tgtlong
    movl    $$0, VREG_HIGH_ADDRESS(%ecx)
    .endif
    jmp     .L${opcode}_finish

%def shop2addr(result="%eax", instr=""):
/*
 * Generic 32-bit "shift/2addr" operation.
 */
    /* shift/2addr vA, vB */
    movzx   rINSTbl, %ecx                   # eax <- BA
    sarl    $$4, %ecx                       # ecx <- B
    GET_VREG %ecx, %ecx                     # eax <- vBB
    andb    $$0xf, rINSTbl                  # rINST <- A
    GET_VREG %eax, rINST                    # eax <- vAA
    $instr                                  # ex: sarl %cl, %eax
    SET_VREG $result, rINST
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1

%def unop(instr=""):
/*
 * Generic 32-bit unary operation.  Provide an "instr" line that
 * specifies an instruction that performs "result = op eax".
 */
    /* unop vA, vB */
    movzbl  rINSTbl,%ecx                    # ecx <- A+
    sarl    $$4,rINST                       # rINST <- B
    GET_VREG %eax, rINST                    # eax <- vB
    andb    $$0xf,%cl                       # ecx <- A
    $instr
    SET_VREG %eax, %ecx
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1

%def op_add_int():
%  binop(instr="addl")

%def op_add_int_2addr():
%  binop2addr(instr="addl")

%def op_add_int_lit16():
%  binopLit16(instr="addl    %ecx, %eax")

%def op_add_int_lit8():
%  binopLit8(instr="addl    %ecx, %eax")

%def op_add_long():
%  binopWide(instr1="addl", instr2="adcl")

%def op_add_long_2addr():
%  binopWide2addr(instr1="addl", instr2="adcl")

%def op_and_int():
%  binop(instr="andl")

%def op_and_int_2addr():
%  binop2addr(instr="andl")

%def op_and_int_lit16():
%  binopLit16(instr="andl    %ecx, %eax")

%def op_and_int_lit8():
%  binopLit8(instr="andl    %ecx, %eax")

%def op_and_long():
%  binopWide(instr1="andl", instr2="andl")

%def op_and_long_2addr():
%  binopWide2addr(instr1="andl", instr2="andl")

%def op_cmp_long():
/*
 * Compare two 64-bit values.  Puts 0, 1, or -1 into the destination
 * register based on the results of the comparison.
 */
    /* cmp-long vAA, vBB, vCC */
    movzbl  2(rPC), %eax                    # eax <- BB
    movzbl  3(rPC), %ecx                    # ecx <- CC
    GET_VREG_HIGH %eax, %eax                # eax <- v[BB+1], BB is clobbered
    cmpl    VREG_HIGH_ADDRESS(%ecx), %eax
    jl      .L${opcode}_smaller
    jg      .L${opcode}_bigger
    movzbl  2(rPC), %eax                    # eax <- BB, restore BB
    GET_VREG %eax, %eax                     # eax <- v[BB]
    sub     VREG_ADDRESS(%ecx), %eax
    ja      .L${opcode}_bigger
    jb      .L${opcode}_smaller
.L${opcode}_finish:
    SET_VREG %eax, rINST
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

.L${opcode}_bigger:
    movl    $$1, %eax
    jmp     .L${opcode}_finish

.L${opcode}_smaller:
    movl    $$-1, %eax
    jmp     .L${opcode}_finish

%def op_div_int():
%  bindiv(result="%eax", special="$0x80000000", rem="0")

%def op_div_int_2addr():
%  bindiv2addr(result="%eax", special="$0x80000000")

%def op_div_int_lit16():
%  bindivLit16(result="%eax", special="$0x80000000")

%def op_div_int_lit8():
%  bindivLit8(result="%eax", special="$0x80000000")

%def op_div_long(routine="art_quick_ldiv"):
/* art_quick_* methods has quick abi,
 *   so use eax, ecx, edx, ebx for args
 */
    /* div vAA, vBB, vCC */
    .extern $routine
    mov     rIBASE, LOCAL0(%esp)            # save rIBASE/%edx
    mov     rINST, LOCAL1(%esp)             # save rINST/%ebx
    movzbl  3(rPC), %eax                    # eax <- CC
    GET_VREG %ecx, %eax
    GET_VREG_HIGH %ebx, %eax
    movl    %ecx, %edx
    orl     %ebx, %ecx
    jz      common_errDivideByZero
    movzbl  2(rPC), %eax                    # eax <- BB
    GET_VREG_HIGH %ecx, %eax
    GET_VREG %eax, %eax
    call    SYMBOL($routine)
    mov     LOCAL1(%esp), rINST             # restore rINST/%ebx
    SET_VREG_HIGH rIBASE, rINST
    SET_VREG %eax, rINST
    mov     LOCAL0(%esp), rIBASE            # restore rIBASE/%edx
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def op_div_long_2addr(routine="art_quick_ldiv"):
/* art_quick_* methods has quick abi,
 *   so use eax, ecx, edx, ebx for args
 */
    /* div/2addr vA, vB */
    .extern   $routine
    mov     rIBASE, LOCAL0(%esp)            # save rIBASE/%edx
    movzbl  rINSTbl, %eax
    shrl    $$4, %eax                       # eax <- B
    andb    $$0xf, rINSTbl                  # rINST <- A
    mov     rINST, LOCAL1(%esp)             # save rINST/%ebx
    movl    %ebx, %ecx
    GET_VREG %edx, %eax
    GET_VREG_HIGH %ebx, %eax
    movl    %edx, %eax
    orl     %ebx, %eax
    jz      common_errDivideByZero
    GET_VREG %eax, %ecx
    GET_VREG_HIGH %ecx, %ecx
    call    SYMBOL($routine)
    mov     LOCAL1(%esp), rINST             # restore rINST/%ebx
    SET_VREG_HIGH rIBASE, rINST
    SET_VREG %eax, rINST
    mov     LOCAL0(%esp), rIBASE            # restore rIBASE/%edx
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1

%def op_int_to_byte():
%  unop(instr="movsbl  %al, %eax")

%def op_int_to_char():
%  unop(instr="movzwl  %ax,%eax")

%def op_int_to_long():
    /* int to long vA, vB */
    movzbl  rINSTbl, %eax                   # eax <- +A
    sarl    $$4, %eax                       # eax <- B
    GET_VREG %eax, %eax                     # eax <- vB
    andb    $$0xf, rINSTbl                  # rINST <- A
    movl    rIBASE, %ecx                    # cltd trashes rIBASE/edx
    cltd                                    # rINST:eax<- sssssssBBBBBBBB
    SET_VREG_HIGH rIBASE, rINST             # v[A+1] <- rIBASE
    SET_VREG %eax, rINST                    # v[A+0] <- %eax
    movl    %ecx, rIBASE
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1


%def op_int_to_short():
%  unop(instr="movswl %ax, %eax")

%def op_long_to_int():
/* we ignore the high word, making this equivalent to a 32-bit reg move */
%  op_move()

%def op_mul_int():
    /*
     * 32-bit binary multiplication.
     */
    /* mul vAA, vBB, vCC */
    movzbl  2(rPC), %eax                    # eax <- BB
    movzbl  3(rPC), %ecx                    # ecx <- CC
    GET_VREG %eax, %eax                     # eax <- vBB
    mov     rIBASE, LOCAL0(%esp)
    imull   VREG_ADDRESS(%ecx), %eax        # trashes rIBASE/edx
    mov     LOCAL0(%esp), rIBASE
    SET_VREG %eax, rINST
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def op_mul_int_2addr():
    /* mul vA, vB */
    movzx   rINSTbl, %ecx                   # ecx <- A+
    sarl    $$4, rINST                      # rINST <- B
    GET_VREG %eax, rINST                    # eax <- vB
    andb    $$0xf, %cl                      # ecx <- A
    movl    rIBASE, rINST
    imull   VREG_ADDRESS(%ecx), %eax        # trashes rIBASE/edx
    movl    rINST, rIBASE
    SET_VREG %eax, %ecx
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1

%def op_mul_int_lit16():
    /* mul/lit16 vA, vB, #+CCCC */
    /* Need A in rINST, ssssCCCC in ecx, vB in eax */
    movzbl  rINSTbl, %eax                   # eax <- 000000BA
    sarl    $$4, %eax                       # eax <- B
    GET_VREG %eax, %eax                     # eax <- vB
    movl    rIBASE, %ecx
    movswl  2(rPC), rIBASE                  # rIBASE <- ssssCCCC
    andb    $$0xf, rINSTbl                  # rINST <- A
    imull   rIBASE, %eax                    # trashes rIBASE/edx
    movl    %ecx, rIBASE
    SET_VREG %eax, rINST
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def op_mul_int_lit8():
    /* mul/lit8 vAA, vBB, #+CC */
    movzbl  2(rPC), %eax                    # eax <- BB
    movl    rIBASE, %ecx
    GET_VREG  %eax, %eax                    # eax <- rBB
    movsbl  3(rPC), rIBASE                  # rIBASE <- ssssssCC
    imull   rIBASE, %eax                    # trashes rIBASE/edx
    movl    %ecx, rIBASE
    SET_VREG %eax, rINST
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def op_mul_long():
/*
 * Signed 64-bit integer multiply.
 *
 * We could definately use more free registers for
 * this code.   We spill rINSTw (ebx),
 * giving us eax, ebc, ecx and edx as computational
 * temps.  On top of that, we'll spill edi (rFP)
 * for use as the vB pointer and esi (rPC) for use
 * as the vC pointer.  Yuck.
 *
 */
    /* mul-long vAA, vBB, vCC */
    movzbl  2(rPC), %eax                    # eax <- B
    movzbl  3(rPC), %ecx                    # ecx <- C
    mov     rPC, LOCAL0(%esp)               # save Interpreter PC
    mov     rFP, LOCAL1(%esp)               # save FP
    mov     rIBASE, LOCAL2(%esp)            # save rIBASE
    leal    (rFP,%eax,4), %esi              # esi <- &v[B]
    leal    VREG_ADDRESS(%ecx), rFP         # rFP <- &v[C]
    movl    4(%esi), %ecx                   # ecx <- Bmsw
    imull   (rFP), %ecx                     # ecx <- (Bmsw*Clsw)
    movl    4(rFP), %eax                    # eax <- Cmsw
    imull   (%esi), %eax                    # eax <- (Cmsw*Blsw)
    addl    %eax, %ecx                      # ecx <- (Bmsw*Clsw)+(Cmsw*Blsw)
    movl    (rFP), %eax                     # eax <- Clsw
    mull    (%esi)                          # eax <- (Clsw*Alsw)
    mov     LOCAL0(%esp), rPC               # restore Interpreter PC
    mov     LOCAL1(%esp), rFP               # restore FP
    leal    (%ecx,rIBASE), rIBASE           # full result now in rIBASE:%eax
    SET_VREG_HIGH rIBASE, rINST             # v[B+1] <- rIBASE
    mov     LOCAL2(%esp), rIBASE            # restore IBASE
    SET_VREG %eax, rINST                    # v[B] <- eax
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def op_mul_long_2addr():
/*
 * Signed 64-bit integer multiply, 2-addr version
 *
 * We could definately use more free registers for
 * this code.  We must spill %edx (rIBASE) because it
 * is used by imul.  We'll also spill rINST (ebx),
 * giving us eax, ebc, ecx and rIBASE as computational
 * temps.  On top of that, we'll spill %esi (edi)
 * for use as the vA pointer and rFP (esi) for use
 * as the vB pointer.  Yuck.
 */
    /* mul-long/2addr vA, vB */
    movzbl  rINSTbl, %eax                   # eax <- BA
    andb    $$0xf, %al                      # eax <- A
    CLEAR_WIDE_REF %eax                     # clear refs in advance
    sarl    $$4, rINST                      # rINST <- B
    mov     rPC, LOCAL0(%esp)               # save Interpreter PC
    mov     rFP, LOCAL1(%esp)               # save FP
    mov     rIBASE, LOCAL2(%esp)            # save rIBASE
    leal    (rFP,%eax,4), %esi              # esi <- &v[A]
    leal    (rFP,rINST,4), rFP              # rFP <- &v[B]
    movl    4(%esi), %ecx                   # ecx <- Amsw
    imull   (rFP), %ecx                     # ecx <- (Amsw*Blsw)
    movl    4(rFP), %eax                    # eax <- Bmsw
    imull   (%esi), %eax                    # eax <- (Bmsw*Alsw)
    addl    %eax, %ecx                      # ecx <- (Amsw*Blsw)+(Bmsw*Alsw)
    movl    (rFP), %eax                     # eax <- Blsw
    mull    (%esi)                          # eax <- (Blsw*Alsw)
    leal    (%ecx,rIBASE), rIBASE           # full result now in %edx:%eax
    movl    rIBASE, 4(%esi)                 # v[A+1] <- rIBASE
    movl    %eax, (%esi)                    # v[A] <- %eax
    mov     LOCAL0(%esp), rPC               # restore Interpreter PC
    mov     LOCAL2(%esp), rIBASE            # restore IBASE
    mov     LOCAL1(%esp), rFP               # restore FP
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1

%def op_neg_int():
%  unop(instr="negl    %eax")

%def op_neg_long():
    /* unop vA, vB */
    movzbl  rINSTbl, %ecx                   # ecx <- BA
    sarl    $$4, %ecx                       # ecx <- B
    andb    $$0xf, rINSTbl                  # rINST <- A
    GET_VREG %eax, %ecx                     # eax <- v[B+0]
    GET_VREG_HIGH %ecx, %ecx                # ecx <- v[B+1]
    negl    %eax
    adcl    $$0, %ecx
    negl    %ecx
    SET_VREG %eax, rINST                    # v[A+0] <- eax
    SET_VREG_HIGH %ecx, rINST               # v[A+1] <- ecx
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1


%def op_not_int():
%  unop(instr="notl %eax")

%def op_not_long():
    /* unop vA, vB */
    movzbl  rINSTbl, %ecx                   # ecx <- BA
    sarl    $$4, %ecx                       # ecx <- B
    andb    $$0xf, rINSTbl                  # rINST <- A
    GET_VREG %eax, %ecx                     # eax <- v[B+0]
    GET_VREG_HIGH %ecx, %ecx                # ecx <- v[B+1]
    notl    %eax
    notl    %ecx
    SET_VREG %eax, rINST                    # v[A+0] <- eax
    SET_VREG_HIGH %ecx, rINST               # v[A+1] <- ecx
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1

%def op_or_int():
%  binop(instr="orl")

%def op_or_int_2addr():
%  binop2addr(instr="orl")

%def op_or_int_lit16():
%  binopLit16(instr="orl     %ecx, %eax")

%def op_or_int_lit8():
%  binopLit8(instr="orl     %ecx, %eax")

%def op_or_long():
%  binopWide(instr1="orl", instr2="orl")

%def op_or_long_2addr():
%  binopWide2addr(instr1="orl", instr2="orl")

%def op_rem_int():
%  bindiv(result="rIBASE", special="$0", rem="1")

%def op_rem_int_2addr():
%  bindiv2addr(result="rIBASE", special="$0")

%def op_rem_int_lit16():
%  bindivLit16(result="rIBASE", special="$0")

%def op_rem_int_lit8():
%  bindivLit8(result="rIBASE", special="$0")

%def op_rem_long():
%  op_div_long(routine="art_quick_lmod")

%def op_rem_long_2addr():
%  op_div_long_2addr(routine="art_quick_lmod")

%def op_rsub_int():
/* this op is "rsub-int", but can be thought of as "rsub-int/lit16" */
%  binopLit16(instr="subl    %eax, %ecx", result="%ecx")

%def op_rsub_int_lit8():
%  binopLit8(instr="subl    %eax, %ecx", result="%ecx")

%def op_shl_int():
%  binop1(instr="sall    %cl, %eax")

%def op_shl_int_2addr():
%  shop2addr(instr="sall    %cl, %eax")

%def op_shl_int_lit8():
%  binopLit8(instr="sall    %cl, %eax")

%def op_shl_long():
/*
 * Long integer shift.  This is different from the generic 32/64-bit
 * binary operations because vAA/vBB are 64-bit but vCC (the shift
 * distance) is 32-bit.  Also, Dalvik requires us to mask off the low
 * 6 bits of the shift distance.  x86 shifts automatically mask off
 * the low 5 bits of %cl, so have to handle the 64 > shiftcount > 31
 * case specially.
 */
    /* shl-long vAA, vBB, vCC */
    /* ecx gets shift count */
    /* Need to spill rINST */
    /* rINSTw gets AA */
    movzbl  2(rPC), %eax                    # eax <- BB
    movzbl  3(rPC), %ecx                    # ecx <- CC
    movl    rIBASE, LOCAL0(%esp)
    GET_VREG_HIGH rIBASE, %eax              # ecx <- v[BB+1]
    GET_VREG %ecx, %ecx                     # ecx <- vCC
    GET_VREG %eax, %eax                     # eax <- v[BB+0]
    shldl   %eax,rIBASE
    sall    %cl, %eax
    testb   $$32, %cl
    je      2f
    movl    %eax, rIBASE
    xorl    %eax, %eax
2:
    SET_VREG_HIGH rIBASE, rINST             # v[AA+1] <- rIBASE
    movl    LOCAL0(%esp), rIBASE
    SET_VREG %eax, rINST                    # v[AA+0] <- %eax
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def op_shl_long_2addr():
/*
 * Long integer shift, 2addr version.  vA is 64-bit value/result, vB is
 * 32-bit shift distance.
 */
    /* shl-long/2addr vA, vB */
    /* ecx gets shift count */
    /* Need to spill rIBASE */
    /* rINSTw gets AA */
    movzbl  rINSTbl, %ecx                   # ecx <- BA
    andb    $$0xf, rINSTbl                  # rINST <- A
    GET_VREG %eax, rINST                    # eax <- v[AA+0]
    sarl    $$4, %ecx                       # ecx <- B
    movl    rIBASE, LOCAL0(%esp)
    GET_VREG_HIGH rIBASE, rINST             # rIBASE <- v[AA+1]
    GET_VREG %ecx, %ecx                     # ecx <- vBB
    shldl   %eax, rIBASE
    sall    %cl, %eax
    testb   $$32, %cl
    je      2f
    movl    %eax, rIBASE
    xorl    %eax, %eax
2:
    SET_VREG_HIGH rIBASE, rINST             # v[AA+1] <- rIBASE
    movl    LOCAL0(%esp), rIBASE
    SET_VREG %eax, rINST                    # v[AA+0] <- eax
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1

%def op_shr_int():
%  binop1(instr="sarl    %cl, %eax")

%def op_shr_int_2addr():
%  shop2addr(instr="sarl    %cl, %eax")

%def op_shr_int_lit8():
%  binopLit8(instr="sarl    %cl, %eax")

%def op_shr_long():
/*
 * Long integer shift.  This is different from the generic 32/64-bit
 * binary operations because vAA/vBB are 64-bit but vCC (the shift
 * distance) is 32-bit.  Also, Dalvik requires us to mask off the low
 * 6 bits of the shift distance.  x86 shifts automatically mask off
 * the low 5 bits of %cl, so have to handle the 64 > shiftcount > 31
 * case specially.
 */
    /* shr-long vAA, vBB, vCC */
    /* ecx gets shift count */
    /* Need to spill rIBASE */
    /* rINSTw gets AA */
    movzbl  2(rPC), %eax                    # eax <- BB
    movzbl  3(rPC), %ecx                    # ecx <- CC
    movl    rIBASE, LOCAL0(%esp)
    GET_VREG_HIGH rIBASE, %eax              # rIBASE<- v[BB+1]
    GET_VREG %ecx, %ecx                     # ecx <- vCC
    GET_VREG %eax, %eax                     # eax <- v[BB+0]
    shrdl   rIBASE, %eax
    sarl    %cl, rIBASE
    testb   $$32, %cl
    je      2f
    movl    rIBASE, %eax
    sarl    $$31, rIBASE
2:
    SET_VREG_HIGH rIBASE, rINST             # v[AA+1] <- rIBASE
    movl    LOCAL0(%esp), rIBASE
    SET_VREG %eax, rINST                    # v[AA+0] <- eax
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def op_shr_long_2addr():
/*
 * Long integer shift, 2addr version.  vA is 64-bit value/result, vB is
 * 32-bit shift distance.
 */
    /* shl-long/2addr vA, vB */
    /* ecx gets shift count */
    /* Need to spill rIBASE */
    /* rINSTw gets AA */
    movzbl  rINSTbl, %ecx                   # ecx <- BA
    andb    $$0xf, rINSTbl                  # rINST <- A
    GET_VREG %eax, rINST                    # eax <- v[AA+0]
    sarl    $$4, %ecx                       # ecx <- B
    movl    rIBASE, LOCAL0(%esp)
    GET_VREG_HIGH rIBASE, rINST             # rIBASE <- v[AA+1]
    GET_VREG %ecx, %ecx                     # ecx <- vBB
    shrdl   rIBASE, %eax
    sarl    %cl, rIBASE
    testb   $$32, %cl
    je      2f
    movl    rIBASE, %eax
    sarl    $$31, rIBASE
2:
    SET_VREG_HIGH rIBASE, rINST             # v[AA+1] <- rIBASE
    movl    LOCAL0(%esp), rIBASE
    SET_VREG %eax, rINST                    # v[AA+0] <- eax
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1

%def op_sub_int():
%  binop(instr="subl")

%def op_sub_int_2addr():
%  binop2addr(instr="subl")

%def op_sub_long():
%  binopWide(instr1="subl", instr2="sbbl")

%def op_sub_long_2addr():
%  binopWide2addr(instr1="subl", instr2="sbbl")

%def op_ushr_int():
%  binop1(instr="shrl    %cl, %eax")

%def op_ushr_int_2addr():
%  shop2addr(instr="shrl    %cl, %eax")

%def op_ushr_int_lit8():
%  binopLit8(instr="shrl    %cl, %eax")

%def op_ushr_long():
/*
 * Long integer shift.  This is different from the generic 32/64-bit
 * binary operations because vAA/vBB are 64-bit but vCC (the shift
 * distance) is 32-bit.  Also, Dalvik requires us to mask off the low
 * 6 bits of the shift distance.  x86 shifts automatically mask off
 * the low 5 bits of %cl, so have to handle the 64 > shiftcount > 31
 * case specially.
 */
    /* shr-long vAA, vBB, vCC */
    /* ecx gets shift count */
    /* Need to spill rIBASE */
    /* rINSTw gets AA */
    movzbl  2(rPC), %eax                    # eax <- BB
    movzbl  3(rPC), %ecx                    # ecx <- CC
    movl    rIBASE, LOCAL0(%esp)
    GET_VREG_HIGH rIBASE, %eax              # rIBASE <- v[BB+1]
    GET_VREG %ecx, %ecx                     # ecx <- vCC
    GET_VREG %eax, %eax                     # eax <- v[BB+0]
    shrdl   rIBASE, %eax
    shrl    %cl, rIBASE
    testb   $$32, %cl
    je      2f
    movl    rIBASE, %eax
    xorl    rIBASE, rIBASE
2:
    SET_VREG_HIGH rIBASE, rINST             # v[AA+1] <- rIBASE
    movl    LOCAL0(%esp), rIBASE
    SET_VREG %eax, rINST                    # v[BB+0] <- eax
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 2

%def op_ushr_long_2addr():
/*
 * Long integer shift, 2addr version.  vA is 64-bit value/result, vB is
 * 32-bit shift distance.
 */
    /* shl-long/2addr vA, vB */
    /* ecx gets shift count */
    /* Need to spill rIBASE */
    /* rINSTw gets AA */
    movzbl  rINSTbl, %ecx                   # ecx <- BA
    andb    $$0xf, rINSTbl                  # rINST <- A
    GET_VREG %eax, rINST                    # eax <- v[AA+0]
    sarl    $$4, %ecx                       # ecx <- B
    movl    rIBASE, LOCAL0(%esp)
    GET_VREG_HIGH rIBASE, rINST             # rIBASE <- v[AA+1]
    GET_VREG %ecx, %ecx                     # ecx <- vBB
    shrdl   rIBASE, %eax
    shrl    %cl, rIBASE
    testb   $$32, %cl
    je      2f
    movl    rIBASE, %eax
    xorl    rIBASE, rIBASE
2:
    SET_VREG_HIGH rIBASE, rINST             # v[AA+1] <- rIBASE
    movl    LOCAL0(%esp), rIBASE
    SET_VREG %eax, rINST                    # v[AA+0] <- eax
    ADVANCE_PC_FETCH_AND_GOTO_NEXT 1

%def op_xor_int():
%  binop(instr="xorl")

%def op_xor_int_2addr():
%  binop2addr(instr="xorl")

%def op_xor_int_lit16():
%  binopLit16(instr="xorl    %ecx, %eax")

%def op_xor_int_lit8():
%  binopLit8(instr="xorl    %ecx, %eax")

%def op_xor_long():
%  binopWide(instr1="xorl", instr2="xorl")

%def op_xor_long_2addr():
%  binopWide2addr(instr1="xorl", instr2="xorl")