File: array-alloc-inl.h

package info (click to toggle)
android-platform-art 11.0.0%2Br48-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 78,932 kB
  • sloc: cpp: 459,858; java: 163,268; asm: 22,644; python: 9,815; sh: 6,330; ansic: 4,117; xml: 2,855; perl: 77; makefile: 73
file content (185 lines) | stat: -rw-r--r-- 6,965 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_MIRROR_ARRAY_ALLOC_INL_H_
#define ART_RUNTIME_MIRROR_ARRAY_ALLOC_INL_H_

#include "array-inl.h"

#include <android-base/logging.h>
#include <android-base/stringprintf.h>

#include "base/bit_utils.h"
#include "base/casts.h"
#include "class.h"
#include "gc/allocator_type.h"
#include "gc/heap-inl.h"
#include "obj_ptr-inl.h"
#include "runtime.h"

namespace art {
namespace mirror {

static inline size_t ComputeArraySize(int32_t component_count, size_t component_size_shift) {
  DCHECK_GE(component_count, 0);

  size_t component_size = 1U << component_size_shift;
  size_t header_size = Array::DataOffset(component_size).SizeValue();
  size_t data_size = static_cast<size_t>(component_count) << component_size_shift;
  size_t size = header_size + data_size;

  // Check for size_t overflow if this was an unreasonable request
  // but let the caller throw OutOfMemoryError.
#ifdef __LP64__
  // 64-bit. No overflow as component_count is 32-bit and the maximum
  // component size is 8.
  DCHECK_LE((1U << component_size_shift), 8U);
#else
  // 32-bit.
  DCHECK_NE(header_size, 0U);
  DCHECK_EQ(RoundUp(header_size, component_size), header_size);
  // The array length limit (exclusive).
  const size_t length_limit = (0U - header_size) >> component_size_shift;
  if (UNLIKELY(length_limit <= static_cast<size_t>(component_count))) {
    return 0;  // failure
  }
#endif
  return size;
}

// Used for setting the array length in the allocation code path to ensure it is guarded by a
// StoreStore fence.
class SetLengthVisitor {
 public:
  explicit SetLengthVisitor(int32_t length) : length_(length) {
  }

  void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const
      REQUIRES_SHARED(Locks::mutator_lock_) {
    // Avoid AsArray as object is not yet in live bitmap or allocation stack.
    ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
    // DCHECK(array->IsArrayInstance());
    array->SetLength(length_);
  }

 private:
  const int32_t length_;

  DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor);
};

// Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an
// array.
class SetLengthToUsableSizeVisitor {
 public:
  SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size,
                               size_t component_size_shift) :
      minimum_length_(min_length), header_size_(header_size),
      component_size_shift_(component_size_shift) {
  }

  void operator()(ObjPtr<Object> obj, size_t usable_size) const
      REQUIRES_SHARED(Locks::mutator_lock_) {
    // Avoid AsArray as object is not yet in live bitmap or allocation stack.
    ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
    // DCHECK(array->IsArrayInstance());
    int32_t length = (usable_size - header_size_) >> component_size_shift_;
    DCHECK_GE(length, minimum_length_);
    uint8_t* old_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
                                                                    minimum_length_));
    uint8_t* new_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
                                                                    length));
    // Ensure space beyond original allocation is zeroed.
    memset(old_end, 0, new_end - old_end);
    array->SetLength(length);
  }

 private:
  const int32_t minimum_length_;
  const size_t header_size_;
  const size_t component_size_shift_;

  DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor);
};

template <bool kIsInstrumented, bool kFillUsable>
inline ObjPtr<Array> Array::Alloc(Thread* self,
                                  ObjPtr<Class> array_class,
                                  int32_t component_count,
                                  size_t component_size_shift,
                                  gc::AllocatorType allocator_type) {
  DCHECK(allocator_type != gc::kAllocatorTypeLOS);
  DCHECK(array_class != nullptr);
  DCHECK(array_class->IsArrayClass());
  DCHECK_EQ(array_class->GetComponentSizeShift(), component_size_shift);
  DCHECK_EQ(array_class->GetComponentSize(), (1U << component_size_shift));
  size_t size = ComputeArraySize(component_count, component_size_shift);
#ifdef __LP64__
  // 64-bit. No size_t overflow.
  DCHECK_NE(size, 0U);
#else
  // 32-bit.
  if (UNLIKELY(size == 0)) {
    self->ThrowOutOfMemoryError(android::base::StringPrintf("%s of length %d would overflow",
                                                            array_class->PrettyDescriptor().c_str(),
                                                            component_count).c_str());
    return nullptr;
  }
#endif
  gc::Heap* heap = Runtime::Current()->GetHeap();
  ObjPtr<Array> result;
  if (!kFillUsable) {
    SetLengthVisitor visitor(component_count);
    result = ObjPtr<Array>::DownCast(
        heap->AllocObjectWithAllocator<kIsInstrumented>(
            self, array_class, size, allocator_type, visitor));
  } else {
    SetLengthToUsableSizeVisitor visitor(component_count,
                                         DataOffset(1U << component_size_shift).SizeValue(),
                                         component_size_shift);
    result = ObjPtr<Array>::DownCast(
        heap->AllocObjectWithAllocator<kIsInstrumented>(
            self, array_class, size, allocator_type, visitor));
  }
  if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) {
    array_class = result->GetClass();  // In case the array class moved.
    CHECK_EQ(array_class->GetComponentSize(), 1U << component_size_shift);
    if (!kFillUsable) {
      CHECK_EQ(result->SizeOf(), size);
    } else {
      CHECK_GE(result->SizeOf(), size);
    }
  }
  return result;
}

template<typename T>
inline ObjPtr<PrimitiveArray<T>> PrimitiveArray<T>::AllocateAndFill(Thread* self,
                                                                   const T* data,
                                                                   size_t length) {
  StackHandleScope<1> hs(self);
  Handle<PrimitiveArray<T>> arr(hs.NewHandle(PrimitiveArray<T>::Alloc(self, length)));
  if (!arr.IsNull()) {
    // Copy it in. Just skip if it's null
    memcpy(arr->GetData(), data, sizeof(T) * length);
  }
  return arr.Get();
}

}  // namespace mirror
}  // namespace art

#endif  // ART_RUNTIME_MIRROR_ARRAY_ALLOC_INL_H_