1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_
#define ART_RUNTIME_MIRROR_ARRAY_INL_H_
#include "array.h"
#include <android-base/logging.h>
#include "base/bit_utils.h"
#include "class.h"
#include "obj_ptr-inl.h"
#include "runtime.h"
#include "thread-current-inl.h"
namespace art {
namespace mirror {
inline uint32_t Array::ClassSize(PointerSize pointer_size) {
uint32_t vtable_entries = Object::kVTableLength;
return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
}
template<VerifyObjectFlags kVerifyFlags>
inline size_t Array::SizeOf() {
// No read barrier is needed for reading a constant primitive field through
// constant reference field chain. See ReadBarrierOption.
size_t component_size_shift =
GetClass<kVerifyFlags, kWithoutReadBarrier>()->GetComponentSizeShift();
// Don't need to check this since we already check this in GetClass.
int32_t component_count =
GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>();
// This is safe from overflow because the array was already allocated, so we know it's sane.
size_t header_size = DataOffset(1U << component_size_shift).SizeValue();
size_t data_size = component_count << component_size_shift;
return header_size + data_size;
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Array::CheckIsValidIndex(int32_t index) {
if (UNLIKELY(static_cast<uint32_t>(index) >=
static_cast<uint32_t>(GetLength<kVerifyFlags>()))) {
ThrowArrayIndexOutOfBoundsException(index);
return false;
}
return true;
}
template<typename T>
inline T PrimitiveArray<T>::Get(int32_t i) {
if (!CheckIsValidIndex(i)) {
DCHECK(Thread::Current()->IsExceptionPending());
return T(0);
}
return GetWithoutChecks(i);
}
template<typename T>
inline void PrimitiveArray<T>::Set(int32_t i, T value) {
if (Runtime::Current()->IsActiveTransaction()) {
Set<true>(i, value);
} else {
Set<false>(i, value);
}
}
template<typename T>
template<bool kTransactionActive, bool kCheckTransaction>
inline void PrimitiveArray<T>::Set(int32_t i, T value) {
if (CheckIsValidIndex(i)) {
SetWithoutChecks<kTransactionActive, kCheckTransaction>(i, value);
} else {
DCHECK(Thread::Current()->IsExceptionPending());
}
}
template<typename T>
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void PrimitiveArray<T>::SetWithoutChecks(int32_t i, T value) {
if (kCheckTransaction) {
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
}
if (kTransactionActive) {
Runtime::Current()->RecordWriteArray(this, i, GetWithoutChecks(i));
}
DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
GetData()[i] = value;
}
// Backward copy where elements are of aligned appropriately for T. Count is in T sized units.
// Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
template<typename T>
static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) {
d += count;
s += count;
for (int32_t i = 0; i < count; ++i) {
d--;
s--;
*d = *s;
}
}
// Forward copy where elements are of aligned appropriately for T. Count is in T sized units.
// Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
template<typename T>
static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) {
for (int32_t i = 0; i < count; ++i) {
*d = *s;
d++;
s++;
}
}
template<class T>
inline void PrimitiveArray<T>::Memmove(int32_t dst_pos,
ObjPtr<PrimitiveArray<T>> src,
int32_t src_pos,
int32_t count) {
if (UNLIKELY(count == 0)) {
return;
}
DCHECK_GE(dst_pos, 0);
DCHECK_GE(src_pos, 0);
DCHECK_GT(count, 0);
DCHECK(src != nullptr);
DCHECK_LT(dst_pos, GetLength());
DCHECK_LE(dst_pos, GetLength() - count);
DCHECK_LT(src_pos, src->GetLength());
DCHECK_LE(src_pos, src->GetLength() - count);
// Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
// in our implementation, because they may copy byte-by-byte.
if (LIKELY(src != this)) {
// Memcpy ok for guaranteed non-overlapping distinct arrays.
Memcpy(dst_pos, src, src_pos, count);
} else {
// Handle copies within the same array using the appropriate direction copy.
void* dst_raw = GetRawData(sizeof(T), dst_pos);
const void* src_raw = src->GetRawData(sizeof(T), src_pos);
if (sizeof(T) == sizeof(uint8_t)) {
uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw);
const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw);
memmove(d, s, count);
} else {
const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count);
if (sizeof(T) == sizeof(uint16_t)) {
uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
if (copy_forward) {
ArrayForwardCopy<uint16_t>(d, s, count);
} else {
ArrayBackwardCopy<uint16_t>(d, s, count);
}
} else if (sizeof(T) == sizeof(uint32_t)) {
uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
if (copy_forward) {
ArrayForwardCopy<uint32_t>(d, s, count);
} else {
ArrayBackwardCopy<uint32_t>(d, s, count);
}
} else {
DCHECK_EQ(sizeof(T), sizeof(uint64_t));
uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
if (copy_forward) {
ArrayForwardCopy<uint64_t>(d, s, count);
} else {
ArrayBackwardCopy<uint64_t>(d, s, count);
}
}
}
}
}
template<class T>
inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos,
ObjPtr<PrimitiveArray<T>> src,
int32_t src_pos,
int32_t count) {
if (UNLIKELY(count == 0)) {
return;
}
DCHECK_GE(dst_pos, 0);
DCHECK_GE(src_pos, 0);
DCHECK_GT(count, 0);
DCHECK(src != nullptr);
DCHECK_LT(dst_pos, GetLength());
DCHECK_LE(dst_pos, GetLength() - count);
DCHECK_LT(src_pos, src->GetLength());
DCHECK_LE(src_pos, src->GetLength() - count);
// Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
// in our implementation, because they may copy byte-by-byte.
void* dst_raw = GetRawData(sizeof(T), dst_pos);
const void* src_raw = src->GetRawData(sizeof(T), src_pos);
if (sizeof(T) == sizeof(uint8_t)) {
memcpy(dst_raw, src_raw, count);
} else if (sizeof(T) == sizeof(uint16_t)) {
uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
ArrayForwardCopy<uint16_t>(d, s, count);
} else if (sizeof(T) == sizeof(uint32_t)) {
uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
ArrayForwardCopy<uint32_t>(d, s, count);
} else {
DCHECK_EQ(sizeof(T), sizeof(uint64_t));
uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
ArrayForwardCopy<uint64_t>(d, s, count);
}
}
template<typename T, PointerSize kPointerSize, VerifyObjectFlags kVerifyFlags>
inline T PointerArray::GetElementPtrSize(uint32_t idx) {
if (kPointerSize == PointerSize::k64) {
DCHECK(IsLongArray<kVerifyFlags>());
} else {
DCHECK(IsIntArray<kVerifyFlags>());
}
return GetElementPtrSizeUnchecked<T, kPointerSize, kVerifyFlags>(idx);
}
template<typename T, PointerSize kPointerSize, VerifyObjectFlags kVerifyFlags>
inline T PointerArray::GetElementPtrSizeUnchecked(uint32_t idx) {
// C style casts here since we sometimes have T be a pointer, or sometimes an integer
// (for stack traces).
using ConversionType = typename std::conditional_t<std::is_pointer_v<T>, uintptr_t, T>;
if (kPointerSize == PointerSize::k64) {
uint64_t value =
static_cast<uint64_t>(AsLongArrayUnchecked<kVerifyFlags>()->GetWithoutChecks(idx));
return (T) dchecked_integral_cast<ConversionType>(value);
} else {
uint32_t value =
static_cast<uint32_t>(AsIntArrayUnchecked<kVerifyFlags>()->GetWithoutChecks(idx));
return (T) dchecked_integral_cast<ConversionType>(value);
}
}
template<typename T, VerifyObjectFlags kVerifyFlags>
inline T PointerArray::GetElementPtrSize(uint32_t idx, PointerSize ptr_size) {
if (ptr_size == PointerSize::k64) {
return GetElementPtrSize<T, PointerSize::k64, kVerifyFlags>(idx);
}
return GetElementPtrSize<T, PointerSize::k32, kVerifyFlags>(idx);
}
template<bool kTransactionActive, bool kUnchecked>
inline void PointerArray::SetElementPtrSize(uint32_t idx, uint64_t element, PointerSize ptr_size) {
if (ptr_size == PointerSize::k64) {
(kUnchecked ? ObjPtr<LongArray>::DownCast(ObjPtr<Object>(this)) : AsLongArray())->
SetWithoutChecks<kTransactionActive>(idx, element);
} else {
DCHECK_LE(element, static_cast<uint64_t>(0xFFFFFFFFu));
(kUnchecked ? ObjPtr<IntArray>::DownCast(ObjPtr<Object>(this)) : AsIntArray())
->SetWithoutChecks<kTransactionActive>(idx, static_cast<uint32_t>(element));
}
}
template<bool kTransactionActive, bool kUnchecked, typename T>
inline void PointerArray::SetElementPtrSize(uint32_t idx, T* element, PointerSize ptr_size) {
SetElementPtrSize<kTransactionActive, kUnchecked>(idx,
reinterpret_cast<uintptr_t>(element),
ptr_size);
}
template <VerifyObjectFlags kVerifyFlags, typename Visitor>
inline void PointerArray::Fixup(ObjPtr<mirror::PointerArray> dest,
PointerSize pointer_size,
const Visitor& visitor) {
for (size_t i = 0, count = GetLength(); i < count; ++i) {
void* ptr = GetElementPtrSize<void*, kVerifyFlags>(i, pointer_size);
void* new_ptr = visitor(ptr);
if (ptr != new_ptr) {
dest->SetElementPtrSize<false, true>(i, new_ptr, pointer_size);
}
}
}
template<bool kUnchecked>
void PointerArray::Memcpy(int32_t dst_pos,
ObjPtr<PointerArray> src,
int32_t src_pos,
int32_t count,
PointerSize ptr_size) {
DCHECK(!Runtime::Current()->IsActiveTransaction());
DCHECK(!src.IsNull());
if (ptr_size == PointerSize::k64) {
ObjPtr<LongArray> l_this = (kUnchecked ? ObjPtr<LongArray>::DownCast(ObjPtr<Object>(this))
: AsLongArray());
ObjPtr<LongArray> l_src = (kUnchecked ? ObjPtr<LongArray>::DownCast(ObjPtr<Object>(src))
: src->AsLongArray());
l_this->Memcpy(dst_pos, l_src, src_pos, count);
} else {
ObjPtr<IntArray> i_this = (kUnchecked ? ObjPtr<IntArray>::DownCast(ObjPtr<Object>(this))
: AsIntArray());
ObjPtr<IntArray> i_src = (kUnchecked ? ObjPtr<IntArray>::DownCast(ObjPtr<Object>(src.Ptr()))
: src->AsIntArray());
i_this->Memcpy(dst_pos, i_src, src_pos, count);
}
}
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_ARRAY_INL_H_
|