1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
|
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_SUBTYPE_CHECK_H_
#define ART_RUNTIME_SUBTYPE_CHECK_H_
#include "subtype_check_bits_and_status.h"
#include "subtype_check_info.h"
#include "base/locks.h"
#include "mirror/class.h"
#include "runtime.h"
// Build flag for the bitstring subtype check runtime hooks.
constexpr bool kBitstringSubtypeCheckEnabled = false;
/**
* Any node in a tree can have its path (from the root to the node) represented as a string by
* concatenating the path of the parent to that of the current node.
*
* We can annotate each node with a `sibling-label` which is some value unique amongst all of the
* node's siblings. As a special case, the root is empty.
*
* (none)
* / | \
* A B C
* / \
* A’ B’
* |
* A’’
* |
* A’’’
* |
* A’’’’
*
* Given these sibling-labels, we can now encode the path from any node to the root by starting at
* the node and going up to the root, marking each node with this `path-label`. The special
* character $ means "end of path".
*
* $
* / | \
* A$ B$ C$
* / \
* A’A$ B’A$
* |
* A’’B’A$
* |
* A’’’A’’B’A$
* |
* A’’’’A’’B’A$
*
* Given the above `path-label` we can express if any two nodes are an offspring of the other
* through a O(1) expression:
*
* x <: y :=
* suffix(x, y) == y
*
* In the above example suffix(x,y) means the suffix of x that is as long as y (right-padded with
* $s if x is shorter than y) :
*
* suffix(x,y) := x(x.length - y.length .. 0]
* + repeat($, max(y.length - x.length, 0))
*
* A few generalities here to elaborate:
*
* - There can be at most D levels in the tree.
* - Each level L has an alphabet A, and the maximum number of
* nodes is determined by |A|
* - The alphabet A can be a subset, superset, equal, or unique with respect to the other alphabets
* without loss of generality. (In practice it would almost always be a subset of the previous
* level’s alphabet as we assume most classes have less children the deeper they are.)
* - The `sibling-label` doesn’t need to be stored as an explicit value. It can a temporary when
* visiting every immediate child of a node. Only the `path-label` needs to be actually stored for
* every node.
*
* The path can also be reversed, and use a prefix instead of a suffix to define the subchild
* relation.
*
* $
* / | \ \
* A$ B$ C$ D$
* / \
* AA’$ AB’$
* |
* AB’A’’$
* |
* AB’A’’A’’’$
* |
* AB’A’’A’’’A’’’’$
*
* x <: y :=
* prefix(x, y) == y
*
* prefix(x,y) := x[0 .. y.length)
* + repeat($, max(y.length - x.length, 0))
*
* In a dynamic tree, new nodes can be inserted at any time. This means if a minimal alphabet is
* selected to contain the initial tree hierarchy, later node insertions will be illegal because
* there is no more room to encode the path.
*
* In this simple example with an alphabet A,B,C and max level 1:
*
* Level
* 0: $
* / | \ \
* 1: A$ B$ C$ D$ (illegal)
* |
* 2: AA$ (illegal)
*
* Attempting to insert the sibling “D” at Level 1 would be illegal because the Alphabet(1) is
* {A,B,C} and inserting an extra node would mean the `sibling-label` is no longer unique.
* Attempting to insert “AA$” is illegal because the level 2 is more than the max level 1.
*
* One solution to this would be to revisit the entire graph, select a larger alphabet to that
* every `sibling-label` is unique, pick a larger max level count, and then store the updated
* `path-label` accordingly.
*
* The more common approach would instead be to select a set of alphabets and max levels statically,
* with large enough sizes, for example:
*
* Alphabets = {{A,B,C,D}, {A,B,C}, {A,B}, {A}}
* Max Levels = |Alphabets|
*
* Which would allow up to 4 levels with each successive level having 1 less max siblings.
*
* Attempting to insert a new node into the graph which does not fit into that level’s alphabet
* would be represented by re-using the `path-label` of the parent. Such a `path_label` would be
* considered truncated (because it would only have a prefix of the full path from the root to the
* node).
*
* Level
* 0: $
* / | \ \
* 1: A$ B$ C$ $ (same as parent)
* |
* 2: A$ (same as parent)
*
* The updated relation for offspring is then:
*
* x <: y :=
* if !truncated_path(y):
* return prefix(x, y) == y // O(1)
* else:
* return slow_check_is_offspring(x, y) // worse than O(1)
*
* (Example definition of truncated_path -- any semantically equivalent way to check that the
* sibling's `sibling-label` is not unique will do)
*
* truncated_path(y) :=
* return y == parent(y)
*
* (Example definition. Any slower-than-O(1) definition will do here. This is the traversing
* superclass hierarchy solution)
*
* slow_check_is_offspring(x, y) :=
* if not x: return false
* else: return x == y || recursive_is_offspring(parent(x), y)
*
* In which case slow_check_is_offspring is some non-O(1) way to check if x and is an offspring of y.
*
* In addition, note that it doesn’t matter if the "x" from above is a unique sibling or not; the
* relation will still be correct.
*
* ------------------------------------------------------------------------------------------------
*
* Leveraging truncated paths to minimize path lengths.
*
* As observed above, for any x <: y, it is sufficient to have a full path only for y,
* and x can be truncated (to its nearest ancestor's full path).
*
* We call a node that stores a full path "Assigned", and a node that stores a truncated path
* either "Initialized" or "Overflowed."
*
* "Initialized" means it is still possible to assign a full path to the node, and "Overflowed"
* means there is insufficient characters in the alphabet left.
*
* In this example, assume that we attempt to "Assign" all non-leafs if possible. Leafs
* always get truncated (as either Initialized or Overflowed).
*
* Alphabets = {{A,B,C,D}, {A,B}}
* Max Levels = |Alphabets|
*
* Level
* 0: $
* / | \ \ \
* 1: A$ B$ C$ D$ $ (Overflowed: Too wide)
* | |
* 2: AA$ C$ (Initialized)
* |
* 3: AA$ (Overflowed: Too deep)
*
* (All un-annotated nodes are "Assigned").
* Above, the node at level 3 becomes overflowed because it exceeds the max levels. The
* right-most node at level 1 becomes overflowed because there's no characters in the alphabet
* left in that level.
*
* The "C$" node is Initialized at level 2, but it can still be promoted to "Assigned" later on
* if we wanted to.
*
* In particular, this is the strategy we use in our implementation
* (SubtypeCheck::EnsureInitialized, SubtypeCheck::EnsureAssigned).
*
* Since the # of characters in our alphabet (BitString) is very limited, we want to avoid
* allocating a character to a node until its absolutely necessary.
*
* All node targets (in `src <: target`) get Assigned, and any parent of an Initialized
* node also gets Assigned.
*/
namespace art {
struct MockSubtypeCheck; // Forward declaration for testing.
// This class is using a template parameter to enable testability without losing performance.
// ClassPtr is almost always `mirror::Class*` or `ObjPtr<mirror::Class>`.
template <typename ClassPtr /* Pointer-like type to Class */>
struct SubtypeCheck {
// Force this class's SubtypeCheckInfo state into at least Initialized.
// As a side-effect, all parent classes also become Assigned|Overflowed.
//
// Cost: O(Depth(Class))
//
// Post-condition: State is >= Initialized.
// Returns: The precise SubtypeCheckInfo::State.
static SubtypeCheckInfo::State EnsureInitialized(ClassPtr klass)
REQUIRES(Locks::subtype_check_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
return InitializeOrAssign(klass, /*assign=*/false).GetState();
}
// Force this class's SubtypeCheckInfo state into Assigned|Overflowed.
// As a side-effect, all parent classes also become Assigned|Overflowed.
//
// Cost: O(Depth(Class))
//
// Post-condition: State is Assigned|Overflowed.
// Returns: The precise SubtypeCheckInfo::State.
static SubtypeCheckInfo::State EnsureAssigned(ClassPtr klass)
REQUIRES(Locks::subtype_check_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
return InitializeOrAssign(klass, /*assign=*/true).GetState();
}
// Resets the SubtypeCheckInfo into the Uninitialized state.
//
// Intended only for the AOT image writer.
// This is a static function to avoid calling klass.Depth(), which is unsupported
// in some portions of the image writer.
//
// Cost: O(1).
//
// Returns: A state that is always Uninitialized.
static SubtypeCheckInfo::State ForceUninitialize(ClassPtr klass)
REQUIRES(Locks::subtype_check_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Trying to do this in a real runtime will break thread safety invariants
// of existing live objects in the class hierarchy.
// This is only safe as the last step when the classes are about to be
// written out as an image and IsSubClass is never used again.
DCHECK(Runtime::Current() == nullptr || Runtime::Current()->IsAotCompiler())
<< "This only makes sense when compiling an app image.";
// Directly read/write the class field here.
// As this method is used by image_writer on a copy,
// the Class* there is not a real class and using it for anything
// more complicated (e.g. ObjPtr or Depth call) will fail dchecks.
// OK. zero-initializing subtype_check_info_ puts us into the kUninitialized state.
SubtypeCheckBits scb_uninitialized = SubtypeCheckBits{};
WriteSubtypeCheckBits(klass, scb_uninitialized);
// Do not use "SubtypeCheckInfo" API here since that requires Depth()
// which would cause a dcheck failure.
return SubtypeCheckInfo::kUninitialized;
}
// Retrieve the state of this class's SubtypeCheckInfo.
//
// Cost: O(Depth(Class)).
//
// Returns: The precise SubtypeCheckInfo::State.
static SubtypeCheckInfo::State GetState(ClassPtr klass)
REQUIRES(Locks::subtype_check_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
return GetSubtypeCheckInfo(klass).GetState();
}
// Retrieve the path to root bitstring as a plain uintN_t value that is amenable to
// be used by a fast check "encoded_src & mask_target == encoded_target".
//
// Cost: O(Depth(Class)).
//
// Returns the encoded_src value. Must be >= Initialized (EnsureInitialized).
static BitString::StorageType GetEncodedPathToRootForSource(ClassPtr klass)
REQUIRES(Locks::subtype_check_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_NE(SubtypeCheckInfo::kUninitialized, GetSubtypeCheckInfo(klass).GetState());
return GetSubtypeCheckInfo(klass).GetEncodedPathToRoot();
}
// Retrieve the path to root bitstring as a plain uintN_t value that is amenable to
// be used by a fast check "encoded_src & mask_target == encoded_target".
//
// Cost: O(Depth(Class)).
//
// Returns the encoded_target value. Must be Assigned (EnsureAssigned).
static BitString::StorageType GetEncodedPathToRootForTarget(ClassPtr klass)
REQUIRES(Locks::subtype_check_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
SubtypeCheckInfo sci = GetSubtypeCheckInfo(klass);
DCHECK_EQ(SubtypeCheckInfo::kAssigned, sci.GetState());
return sci.GetEncodedPathToRoot();
}
// Retrieve the path to root bitstring mask as a plain uintN_t value that is amenable to
// be used by a fast check "encoded_src & mask_target == encoded_target".
//
// Cost: O(Depth(Class)).
//
// Returns the mask_target value. Must be Assigned (EnsureAssigned).
static BitString::StorageType GetEncodedPathToRootMask(ClassPtr klass)
REQUIRES(Locks::subtype_check_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
SubtypeCheckInfo sci = GetSubtypeCheckInfo(klass);
DCHECK_EQ(SubtypeCheckInfo::kAssigned, sci.GetState());
return sci.GetEncodedPathToRootMask();
}
// Is the source class a subclass of the target?
//
// The source state must be at least Initialized, and the target state
// must be Assigned, otherwise the result will return kUnknownSubtypeOf.
//
// See EnsureInitialized and EnsureAssigned. Ideally,
// EnsureInitialized will be called previously on all possible sources,
// and EnsureAssigned will be called previously on all possible targets.
//
// Runtime cost: O(Depth(Class)), but would be O(1) if depth was known.
//
// If the result is known, return kSubtypeOf or kNotSubtypeOf.
static SubtypeCheckInfo::Result IsSubtypeOf(ClassPtr source, ClassPtr target)
REQUIRES_SHARED(Locks::mutator_lock_) {
SubtypeCheckInfo sci = GetSubtypeCheckInfo(source);
SubtypeCheckInfo target_sci = GetSubtypeCheckInfo(target);
return sci.IsSubtypeOf(target_sci);
}
// Print SubtypeCheck bitstring and overflow to a stream (e.g. for oatdump).
static std::ostream& Dump(ClassPtr klass, std::ostream& os)
REQUIRES_SHARED(Locks::mutator_lock_) {
return os << GetSubtypeCheckInfo(klass);
}
static void WriteStatus(ClassPtr klass, ClassStatus status)
REQUIRES_SHARED(Locks::mutator_lock_) {
WriteStatusImpl(klass, status);
}
private:
static ClassPtr GetParentClass(ClassPtr klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(klass->HasSuperClass());
return ClassPtr(klass->GetSuperClass());
}
static SubtypeCheckInfo InitializeOrAssign(ClassPtr klass, bool assign)
REQUIRES(Locks::subtype_check_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (UNLIKELY(!klass->HasSuperClass())) {
// Object root always goes directly from Uninitialized -> Assigned.
const SubtypeCheckInfo root_sci = GetSubtypeCheckInfo(klass);
if (root_sci.GetState() != SubtypeCheckInfo::kUninitialized) {
return root_sci; // No change needed.
}
const SubtypeCheckInfo new_root_sci = root_sci.CreateRoot();
SetSubtypeCheckInfo(klass, new_root_sci);
// The object root is always in the Uninitialized|Assigned state.
DCHECK_EQ(SubtypeCheckInfo::kAssigned, GetSubtypeCheckInfo(klass).GetState())
<< "Invalid object root state, must be Assigned";
return new_root_sci;
}
// Force all ancestors to Assigned | Overflowed.
ClassPtr parent_klass = GetParentClass(klass);
size_t parent_depth = InitializeOrAssign(parent_klass, /*assign=*/true).GetDepth();
if (kIsDebugBuild) {
SubtypeCheckInfo::State parent_state = GetSubtypeCheckInfo(parent_klass).GetState();
DCHECK(parent_state == SubtypeCheckInfo::kAssigned ||
parent_state == SubtypeCheckInfo::kOverflowed)
<< "Expected parent Assigned|Overflowed, but was: " << parent_state;
}
// Read.
SubtypeCheckInfo sci = GetSubtypeCheckInfo(klass, parent_depth + 1u);
SubtypeCheckInfo parent_sci = GetSubtypeCheckInfo(parent_klass, parent_depth);
// Modify.
const SubtypeCheckInfo::State sci_state = sci.GetState();
// Skip doing any work if the state is already up-to-date.
// - assign == false -> Initialized or higher.
// - assign == true -> Assigned or higher.
if (sci_state == SubtypeCheckInfo::kUninitialized ||
(sci_state == SubtypeCheckInfo::kInitialized && assign)) {
// Copy parent path into the child.
//
// If assign==true, this also appends Parent.Next value to the end.
// Then the Parent.Next value is incremented to avoid allocating
// the same value again to another node.
sci = parent_sci.CreateChild(assign); // Note: Parent could be mutated.
} else {
// Nothing to do, already >= Initialized.
return sci;
}
// Post-condition: EnsureAssigned -> Assigned|Overflowed.
// Post-condition: EnsureInitialized -> Not Uninitialized.
DCHECK_NE(sci.GetState(), SubtypeCheckInfo::kUninitialized);
if (assign) {
DCHECK_NE(sci.GetState(), SubtypeCheckInfo::kInitialized);
}
// Write.
SetSubtypeCheckInfo(klass, sci); // self
SetSubtypeCheckInfo(parent_klass, parent_sci); // parent
return sci;
}
static SubtypeCheckBitsAndStatus ReadField(ClassPtr klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
SubtypeCheckBitsAndStatus current_bits_and_status;
int32_t int32_data = klass->GetField32Volatile(klass->StatusOffset());
current_bits_and_status.int32_alias_ = int32_data;
if (kIsDebugBuild) {
SubtypeCheckBitsAndStatus tmp;
memcpy(&tmp, &int32_data, sizeof(tmp));
DCHECK_EQ(0, memcmp(&tmp, ¤t_bits_and_status, sizeof(tmp))) << int32_data;
}
return current_bits_and_status;
}
static void WriteSubtypeCheckBits(ClassPtr klass, const SubtypeCheckBits& new_bits)
REQUIRES(Locks::subtype_check_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Use a "CAS" to write the SubtypeCheckBits in the class.
// Although we have exclusive access to the bitstrings, because
// ClassStatus and SubtypeCheckBits share the same word, another thread could
// potentially overwrite that word still.
SubtypeCheckBitsAndStatus new_value;
ClassStatus old_status;
SubtypeCheckBitsAndStatus full_old;
while (true) {
// TODO: Atomic compare-and-swap does not update the 'expected' parameter,
// so we have to read it as a separate step instead.
SubtypeCheckBitsAndStatus old_value = ReadField(klass);
{
SubtypeCheckBits old_bits = old_value.subtype_check_info_;
if (memcmp(&old_bits, &new_bits, sizeof(old_bits)) == 0) {
// Avoid dirtying memory when the data hasn't changed.
return;
}
}
full_old = old_value;
old_status = old_value.status_;
new_value = old_value;
new_value.subtype_check_info_ = new_bits;
if (kIsDebugBuild) {
int32_t int32_data = 0;
memcpy(&int32_data, &new_value, sizeof(int32_t));
DCHECK_EQ(int32_data, new_value.int32_alias_) << int32_data;
DCHECK_EQ(old_status, new_value.status_)
<< "full new: " << bit_cast<uint32_t>(new_value)
<< ", full old: " << bit_cast<uint32_t>(full_old);
}
if (CasFieldWeakSequentiallyConsistent32(klass,
klass->StatusOffset(),
old_value.int32_alias_,
new_value.int32_alias_)) {
break;
}
}
}
static void WriteStatusImpl(ClassPtr klass, ClassStatus status)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Despite not having a lock annotation, this is done with mutual exclusion.
// See Class::SetStatus for more details.
SubtypeCheckBitsAndStatus new_value;
ClassStatus old_status;
while (true) {
// TODO: Atomic compare-and-swap does not update the 'expected' parameter,
// so we have to read it as a separate step instead.
SubtypeCheckBitsAndStatus old_value = ReadField(klass);
old_status = old_value.status_;
if (memcmp(&old_status, &status, sizeof(status)) == 0) {
// Avoid dirtying memory when the data hasn't changed.
return;
}
new_value = old_value;
new_value.status_ = status;
if (CasFieldWeakSequentiallyConsistent32(klass,
klass->StatusOffset(),
old_value.int32_alias_,
new_value.int32_alias_)) {
break;
}
}
}
static bool CasFieldWeakSequentiallyConsistent32(ClassPtr klass,
MemberOffset offset,
int32_t old_value,
int32_t new_value)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (Runtime::Current() != nullptr && Runtime::Current()->IsActiveTransaction()) {
return klass->template CasField32</*kTransactionActive=*/true>(offset,
old_value,
new_value,
CASMode::kWeak,
std::memory_order_seq_cst);
} else {
return klass->template CasField32</*kTransactionActive=*/false>(offset,
old_value,
new_value,
CASMode::kWeak,
std::memory_order_seq_cst);
}
}
// Get the SubtypeCheckInfo for a klass. O(Depth(Class)) since
// it also requires calling klass->Depth.
//
// Anything calling this function will also be O(Depth(Class)).
static SubtypeCheckInfo GetSubtypeCheckInfo(ClassPtr klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
return GetSubtypeCheckInfo(klass, klass->Depth());
}
// Get the SubtypeCheckInfo for a klass with known depth.
static SubtypeCheckInfo GetSubtypeCheckInfo(ClassPtr klass, size_t depth)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_EQ(depth, klass->Depth());
SubtypeCheckBitsAndStatus current_bits_and_status = ReadField(klass);
const SubtypeCheckInfo current =
SubtypeCheckInfo::Create(current_bits_and_status.subtype_check_info_, depth);
return current;
}
static void SetSubtypeCheckInfo(ClassPtr klass, const SubtypeCheckInfo& new_sci)
REQUIRES(Locks::subtype_check_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
SubtypeCheckBits new_bits = new_sci.GetSubtypeCheckBits();
WriteSubtypeCheckBits(klass, new_bits);
}
// Tests can inherit this class. Normal code should use static methods.
SubtypeCheck() = default;
SubtypeCheck(const SubtypeCheck& other) = default;
SubtypeCheck(SubtypeCheck&& other) = default;
~SubtypeCheck() = default;
friend struct MockSubtypeCheck;
};
} // namespace art
#endif // ART_RUNTIME_SUBTYPE_CHECK_H_
|