1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_THREAD_INL_H_
#define ART_RUNTIME_THREAD_INL_H_
#include "thread.h"
#include "arch/instruction_set.h"
#include "base/aborting.h"
#include "base/casts.h"
#include "base/mutex-inl.h"
#include "base/time_utils.h"
#include "jni/jni_env_ext.h"
#include "managed_stack-inl.h"
#include "obj_ptr.h"
#include "suspend_reason.h"
#include "thread-current-inl.h"
#include "thread_pool.h"
namespace art {
// Quickly access the current thread from a JNIEnv.
static inline Thread* ThreadForEnv(JNIEnv* env) {
JNIEnvExt* full_env(down_cast<JNIEnvExt*>(env));
return full_env->GetSelf();
}
inline void Thread::AllowThreadSuspension() {
DCHECK_EQ(Thread::Current(), this);
if (UNLIKELY(TestAllFlags())) {
CheckSuspend();
}
// Invalidate the current thread's object pointers (ObjPtr) to catch possible moving GC bugs due
// to missing handles.
PoisonObjectPointers();
}
inline void Thread::CheckSuspend() {
DCHECK_EQ(Thread::Current(), this);
for (;;) {
if (ReadFlag(kCheckpointRequest)) {
RunCheckpointFunction();
} else if (ReadFlag(kSuspendRequest)) {
FullSuspendCheck();
} else if (ReadFlag(kEmptyCheckpointRequest)) {
RunEmptyCheckpoint();
} else {
break;
}
}
}
inline void Thread::CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex) {
Thread* self = Thread::Current();
DCHECK_EQ(self, this);
for (;;) {
if (ReadFlag(kEmptyCheckpointRequest)) {
RunEmptyCheckpoint();
// Check we hold only an expected mutex when accessing weak ref.
if (kIsDebugBuild) {
for (int i = kLockLevelCount - 1; i >= 0; --i) {
BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
if (held_mutex != nullptr &&
held_mutex != Locks::mutator_lock_ &&
held_mutex != cond_var_mutex) {
CHECK(Locks::IsExpectedOnWeakRefAccess(held_mutex))
<< "Holding unexpected mutex " << held_mutex->GetName()
<< " when accessing weak ref";
}
}
}
} else {
break;
}
}
}
inline void Thread::CheckEmptyCheckpointFromMutex() {
DCHECK_EQ(Thread::Current(), this);
for (;;) {
if (ReadFlag(kEmptyCheckpointRequest)) {
RunEmptyCheckpoint();
} else {
break;
}
}
}
inline ThreadState Thread::SetState(ThreadState new_state) {
// Should only be used to change between suspended states.
// Cannot use this code to change into or from Runnable as changing to Runnable should
// fail if old_state_and_flags.suspend_request is true and changing from Runnable might
// miss passing an active suspend barrier.
DCHECK_NE(new_state, kRunnable);
if (kIsDebugBuild && this != Thread::Current()) {
std::string name;
GetThreadName(name);
LOG(FATAL) << "Thread \"" << name << "\"(" << this << " != Thread::Current()="
<< Thread::Current() << ") changing state to " << new_state;
}
union StateAndFlags old_state_and_flags;
old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
CHECK_NE(old_state_and_flags.as_struct.state, kRunnable) << new_state << " " << *this << " "
<< *Thread::Current();
tls32_.state_and_flags.as_struct.state = new_state;
return static_cast<ThreadState>(old_state_and_flags.as_struct.state);
}
inline bool Thread::IsThreadSuspensionAllowable() const {
if (tls32_.no_thread_suspension != 0) {
return false;
}
for (int i = kLockLevelCount - 1; i >= 0; --i) {
if (i != kMutatorLock &&
i != kUserCodeSuspensionLock &&
GetHeldMutex(static_cast<LockLevel>(i)) != nullptr) {
return false;
}
}
// Thread autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
// have the mutex meaning we need to do this hack.
auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
return tls32_.user_code_suspend_count != 0;
};
if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
return false;
}
return true;
}
inline void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const {
if (kIsDebugBuild) {
if (gAborting == 0) {
CHECK_EQ(0u, tls32_.no_thread_suspension) << tlsPtr_.last_no_thread_suspension_cause;
}
if (check_locks) {
bool bad_mutexes_held = false;
for (int i = kLockLevelCount - 1; i >= 0; --i) {
// We expect no locks except the mutator_lock_. User code suspension lock is OK as long as
// we aren't going to be held suspended due to SuspendReason::kForUserCode.
if (i != kMutatorLock && i != kUserCodeSuspensionLock) {
BaseMutex* held_mutex = GetHeldMutex(static_cast<LockLevel>(i));
if (held_mutex != nullptr) {
LOG(ERROR) << "holding \"" << held_mutex->GetName()
<< "\" at point where thread suspension is expected";
bad_mutexes_held = true;
}
}
}
// Make sure that if we hold the user_code_suspension_lock_ we aren't suspending due to
// user_code_suspend_count which would prevent the thread from ever waking up. Thread
// autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
// have the mutex meaning we need to do this hack.
auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
return tls32_.user_code_suspend_count != 0;
};
if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
LOG(ERROR) << "suspending due to user-code while holding \""
<< Locks::user_code_suspension_lock_->GetName() << "\"! Thread would never "
<< "wake up.";
bad_mutexes_held = true;
}
if (gAborting == 0) {
CHECK(!bad_mutexes_held);
}
}
}
}
inline void Thread::TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) {
DCHECK_NE(new_state, kRunnable);
DCHECK_EQ(GetState(), kRunnable);
union StateAndFlags old_state_and_flags;
union StateAndFlags new_state_and_flags;
while (true) {
old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
if (UNLIKELY((old_state_and_flags.as_struct.flags & kCheckpointRequest) != 0)) {
RunCheckpointFunction();
continue;
}
if (UNLIKELY((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest) != 0)) {
RunEmptyCheckpoint();
continue;
}
// Change the state but keep the current flags (kCheckpointRequest is clear).
DCHECK_EQ((old_state_and_flags.as_struct.flags & kCheckpointRequest), 0);
DCHECK_EQ((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest), 0);
new_state_and_flags.as_struct.flags = old_state_and_flags.as_struct.flags;
new_state_and_flags.as_struct.state = new_state;
// CAS the value with a memory ordering.
bool done =
tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakRelease(old_state_and_flags.as_int,
new_state_and_flags.as_int);
if (LIKELY(done)) {
break;
}
}
}
inline void Thread::PassActiveSuspendBarriers() {
while (true) {
uint16_t current_flags = tls32_.state_and_flags.as_struct.flags;
if (LIKELY((current_flags &
(kCheckpointRequest | kEmptyCheckpointRequest | kActiveSuspendBarrier)) == 0)) {
break;
} else if ((current_flags & kActiveSuspendBarrier) != 0) {
PassActiveSuspendBarriers(this);
} else {
// Impossible
LOG(FATAL) << "Fatal, thread transitioned into suspended without running the checkpoint";
}
}
}
inline void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) {
AssertThreadSuspensionIsAllowable();
PoisonObjectPointersIfDebug();
DCHECK_EQ(this, Thread::Current());
// Change to non-runnable state, thereby appearing suspended to the system.
TransitionToSuspendedAndRunCheckpoints(new_state);
// Mark the release of the share of the mutator_lock_.
Locks::mutator_lock_->TransitionFromRunnableToSuspended(this);
// Once suspended - check the active suspend barrier flag
PassActiveSuspendBarriers();
}
inline ThreadState Thread::TransitionFromSuspendedToRunnable() {
union StateAndFlags old_state_and_flags;
old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
int16_t old_state = old_state_and_flags.as_struct.state;
DCHECK_NE(static_cast<ThreadState>(old_state), kRunnable);
do {
Locks::mutator_lock_->AssertNotHeld(this); // Otherwise we starve GC..
old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
if (LIKELY(old_state_and_flags.as_struct.flags == 0)) {
// Optimize for the return from native code case - this is the fast path.
// Atomically change from suspended to runnable if no suspend request pending.
union StateAndFlags new_state_and_flags;
new_state_and_flags.as_int = old_state_and_flags.as_int;
new_state_and_flags.as_struct.state = kRunnable;
// CAS the value with a memory barrier.
if (LIKELY(tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakAcquire(
old_state_and_flags.as_int,
new_state_and_flags.as_int))) {
// Mark the acquisition of a share of the mutator_lock_.
Locks::mutator_lock_->TransitionFromSuspendedToRunnable(this);
break;
}
} else if ((old_state_and_flags.as_struct.flags & kActiveSuspendBarrier) != 0) {
PassActiveSuspendBarriers(this);
} else if ((old_state_and_flags.as_struct.flags &
(kCheckpointRequest | kEmptyCheckpointRequest)) != 0) {
// Impossible
LOG(FATAL) << "Transitioning to runnable with checkpoint flag, "
<< " flags=" << old_state_and_flags.as_struct.flags
<< " state=" << old_state_and_flags.as_struct.state;
} else if ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) {
// Wait while our suspend count is non-zero.
// We pass null to the MutexLock as we may be in a situation where the
// runtime is shutting down. Guarding ourselves from that situation
// requires to take the shutdown lock, which is undesirable here.
Thread* thread_to_pass = nullptr;
if (kIsDebugBuild && !IsDaemon()) {
// We know we can make our debug locking checks on non-daemon threads,
// so re-enable them on debug builds.
thread_to_pass = this;
}
MutexLock mu(thread_to_pass, *Locks::thread_suspend_count_lock_);
ScopedTransitioningToRunnable scoped_transitioning_to_runnable(this);
old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
while ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) {
// Re-check when Thread::resume_cond_ is notified.
Thread::resume_cond_->Wait(thread_to_pass);
old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
}
DCHECK_EQ(GetSuspendCount(), 0);
}
} while (true);
// Run the flip function, if set.
Closure* flip_func = GetFlipFunction();
if (flip_func != nullptr) {
flip_func->Run(this);
}
return static_cast<ThreadState>(old_state);
}
inline mirror::Object* Thread::AllocTlab(size_t bytes) {
DCHECK_GE(TlabSize(), bytes);
++tlsPtr_.thread_local_objects;
mirror::Object* ret = reinterpret_cast<mirror::Object*>(tlsPtr_.thread_local_pos);
tlsPtr_.thread_local_pos += bytes;
return ret;
}
inline bool Thread::PushOnThreadLocalAllocationStack(mirror::Object* obj) {
DCHECK_LE(tlsPtr_.thread_local_alloc_stack_top, tlsPtr_.thread_local_alloc_stack_end);
if (tlsPtr_.thread_local_alloc_stack_top < tlsPtr_.thread_local_alloc_stack_end) {
// There's room.
DCHECK_LE(reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_top) +
sizeof(StackReference<mirror::Object>),
reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_end));
DCHECK(tlsPtr_.thread_local_alloc_stack_top->AsMirrorPtr() == nullptr);
tlsPtr_.thread_local_alloc_stack_top->Assign(obj);
++tlsPtr_.thread_local_alloc_stack_top;
return true;
}
return false;
}
inline void Thread::SetThreadLocalAllocationStack(StackReference<mirror::Object>* start,
StackReference<mirror::Object>* end) {
DCHECK(Thread::Current() == this) << "Should be called by self";
DCHECK(start != nullptr);
DCHECK(end != nullptr);
DCHECK_ALIGNED(start, sizeof(StackReference<mirror::Object>));
DCHECK_ALIGNED(end, sizeof(StackReference<mirror::Object>));
DCHECK_LT(start, end);
tlsPtr_.thread_local_alloc_stack_end = end;
tlsPtr_.thread_local_alloc_stack_top = start;
}
inline void Thread::RevokeThreadLocalAllocationStack() {
if (kIsDebugBuild) {
// Note: self is not necessarily equal to this thread since thread may be suspended.
Thread* self = Thread::Current();
DCHECK(this == self || IsSuspended() || GetState() == kWaitingPerformingGc)
<< GetState() << " thread " << this << " self " << self;
}
tlsPtr_.thread_local_alloc_stack_end = nullptr;
tlsPtr_.thread_local_alloc_stack_top = nullptr;
}
inline void Thread::PoisonObjectPointersIfDebug() {
if (kObjPtrPoisoning) {
Thread::Current()->PoisonObjectPointers();
}
}
inline bool Thread::ModifySuspendCount(Thread* self,
int delta,
AtomicInteger* suspend_barrier,
SuspendReason reason) {
if (delta > 0 && ((kUseReadBarrier && this != self) || suspend_barrier != nullptr)) {
// When delta > 0 (requesting a suspend), ModifySuspendCountInternal() may fail either if
// active_suspend_barriers is full or we are in the middle of a thread flip. Retry in a loop.
while (true) {
if (LIKELY(ModifySuspendCountInternal(self, delta, suspend_barrier, reason))) {
return true;
} else {
// Failure means the list of active_suspend_barriers is full or we are in the middle of a
// thread flip, we should release the thread_suspend_count_lock_ (to avoid deadlock) and
// wait till the target thread has executed or Thread::PassActiveSuspendBarriers() or the
// flip function. Note that we could not simply wait for the thread to change to a suspended
// state, because it might need to run checkpoint function before the state change or
// resumes from the resume_cond_, which also needs thread_suspend_count_lock_.
//
// The list of active_suspend_barriers is very unlikely to be full since more than
// kMaxSuspendBarriers threads need to execute SuspendAllInternal() simultaneously, and
// target thread stays in kRunnable in the mean time.
Locks::thread_suspend_count_lock_->ExclusiveUnlock(self);
NanoSleep(100000);
Locks::thread_suspend_count_lock_->ExclusiveLock(self);
}
}
} else {
return ModifySuspendCountInternal(self, delta, suspend_barrier, reason);
}
}
inline ShadowFrame* Thread::PushShadowFrame(ShadowFrame* new_top_frame) {
new_top_frame->CheckConsistentVRegs();
return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame);
}
inline ShadowFrame* Thread::PopShadowFrame() {
return tlsPtr_.managed_stack.PopShadowFrame();
}
inline uint8_t* Thread::GetStackEndForInterpreter(bool implicit_overflow_check) const {
uint8_t* end = tlsPtr_.stack_end + (implicit_overflow_check
? GetStackOverflowReservedBytes(kRuntimeISA)
: 0);
if (kIsDebugBuild) {
// In a debuggable build, but especially under ASAN, the access-checks interpreter has a
// potentially humongous stack size. We don't want to take too much of the stack regularly,
// so do not increase the regular reserved size (for compiled code etc) and only report the
// virtually smaller stack to the interpreter here.
end += GetStackOverflowReservedBytes(kRuntimeISA);
}
return end;
}
inline void Thread::ResetDefaultStackEnd() {
// Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room
// to throw a StackOverflowError.
tlsPtr_.stack_end = tlsPtr_.stack_begin + GetStackOverflowReservedBytes(kRuntimeISA);
}
} // namespace art
#endif // ART_RUNTIME_THREAD_INL_H_
|