1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "thread_pool.h"
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <pthread.h>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include "base/bit_utils.h"
#include "base/casts.h"
#include "base/stl_util.h"
#include "base/time_utils.h"
#include "base/utils.h"
#include "runtime.h"
#include "thread-current-inl.h"
namespace art {
using android::base::StringPrintf;
static constexpr bool kMeasureWaitTime = false;
ThreadPoolWorker::ThreadPoolWorker(ThreadPool* thread_pool, const std::string& name,
size_t stack_size)
: thread_pool_(thread_pool),
name_(name) {
// Add an inaccessible page to catch stack overflow.
stack_size += kPageSize;
std::string error_msg;
stack_ = MemMap::MapAnonymous(name.c_str(),
stack_size,
PROT_READ | PROT_WRITE,
/*low_4gb=*/ false,
&error_msg);
CHECK(stack_.IsValid()) << error_msg;
CHECK_ALIGNED(stack_.Begin(), kPageSize);
CheckedCall(mprotect,
"mprotect bottom page of thread pool worker stack",
stack_.Begin(),
kPageSize,
PROT_NONE);
const char* reason = "new thread pool worker thread";
pthread_attr_t attr;
CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), reason);
CHECK_PTHREAD_CALL(pthread_attr_setstack, (&attr, stack_.Begin(), stack_.Size()), reason);
CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Callback, this), reason);
CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), reason);
}
ThreadPoolWorker::~ThreadPoolWorker() {
CHECK_PTHREAD_CALL(pthread_join, (pthread_, nullptr), "thread pool worker shutdown");
}
void ThreadPoolWorker::SetPthreadPriority(int priority) {
CHECK_GE(priority, PRIO_MIN);
CHECK_LE(priority, PRIO_MAX);
#if defined(ART_TARGET_ANDROID)
int result = setpriority(PRIO_PROCESS, pthread_gettid_np(pthread_), priority);
if (result != 0) {
PLOG(ERROR) << "Failed to setpriority to :" << priority;
}
#else
UNUSED(priority);
#endif
}
void ThreadPoolWorker::Run() {
Thread* self = Thread::Current();
Task* task = nullptr;
thread_pool_->creation_barier_.Pass(self);
while ((task = thread_pool_->GetTask(self)) != nullptr) {
task->Run(self);
task->Finalize();
}
}
void* ThreadPoolWorker::Callback(void* arg) {
ThreadPoolWorker* worker = reinterpret_cast<ThreadPoolWorker*>(arg);
Runtime* runtime = Runtime::Current();
CHECK(runtime->AttachCurrentThread(
worker->name_.c_str(),
true,
// Thread-groups are only tracked by the peer j.l.Thread objects. If we aren't creating peers
// we don't need to specify the thread group. We want to place these threads in the System
// thread group because that thread group is where important threads that debuggers and
// similar tools should not mess with are placed. As this is an internal-thread-pool we might
// rely on being able to (for example) wait for all threads to finish some task. If debuggers
// are suspending these threads that might not be possible.
worker->thread_pool_->create_peers_ ? runtime->GetSystemThreadGroup() : nullptr,
worker->thread_pool_->create_peers_));
worker->thread_ = Thread::Current();
// Mark thread pool workers as runtime-threads.
worker->thread_->SetIsRuntimeThread(true);
// Do work until its time to shut down.
worker->Run();
runtime->DetachCurrentThread();
return nullptr;
}
void ThreadPool::AddTask(Thread* self, Task* task) {
MutexLock mu(self, task_queue_lock_);
tasks_.push_back(task);
// If we have any waiters, signal one.
if (started_ && waiting_count_ != 0) {
task_queue_condition_.Signal(self);
}
}
void ThreadPool::RemoveAllTasks(Thread* self) {
// The ThreadPool is responsible for calling Finalize (which usually delete
// the task memory) on all the tasks.
Task* task = nullptr;
while ((task = TryGetTask(self)) != nullptr) {
task->Finalize();
}
MutexLock mu(self, task_queue_lock_);
tasks_.clear();
}
ThreadPool::ThreadPool(const char* name,
size_t num_threads,
bool create_peers,
size_t worker_stack_size)
: name_(name),
task_queue_lock_("task queue lock"),
task_queue_condition_("task queue condition", task_queue_lock_),
completion_condition_("task completion condition", task_queue_lock_),
started_(false),
shutting_down_(false),
waiting_count_(0),
start_time_(0),
total_wait_time_(0),
creation_barier_(0),
max_active_workers_(num_threads),
create_peers_(create_peers),
worker_stack_size_(worker_stack_size) {
CreateThreads();
}
void ThreadPool::CreateThreads() {
CHECK(threads_.empty());
Thread* self = Thread::Current();
{
MutexLock mu(self, task_queue_lock_);
shutting_down_ = false;
// Add one since the caller of constructor waits on the barrier too.
creation_barier_.Init(self, max_active_workers_);
while (GetThreadCount() < max_active_workers_) {
const std::string worker_name = StringPrintf("%s worker thread %zu", name_.c_str(),
GetThreadCount());
threads_.push_back(
new ThreadPoolWorker(this, worker_name, worker_stack_size_));
}
}
}
void ThreadPool::WaitForWorkersToBeCreated() {
creation_barier_.Increment(Thread::Current(), 0);
}
const std::vector<ThreadPoolWorker*>& ThreadPool::GetWorkers() {
// Wait for all the workers to be created before returning them.
WaitForWorkersToBeCreated();
return threads_;
}
void ThreadPool::DeleteThreads() {
{
Thread* self = Thread::Current();
MutexLock mu(self, task_queue_lock_);
// Tell any remaining workers to shut down.
shutting_down_ = true;
// Broadcast to everyone waiting.
task_queue_condition_.Broadcast(self);
completion_condition_.Broadcast(self);
}
// Wait for the threads to finish. We expect the user of the pool
// not to run multi-threaded calls to `CreateThreads` and `DeleteThreads`,
// so we don't guard the field here.
STLDeleteElements(&threads_);
}
void ThreadPool::SetMaxActiveWorkers(size_t max_workers) {
MutexLock mu(Thread::Current(), task_queue_lock_);
CHECK_LE(max_workers, GetThreadCount());
max_active_workers_ = max_workers;
}
ThreadPool::~ThreadPool() {
DeleteThreads();
RemoveAllTasks(Thread::Current());
}
void ThreadPool::StartWorkers(Thread* self) {
MutexLock mu(self, task_queue_lock_);
started_ = true;
task_queue_condition_.Broadcast(self);
start_time_ = NanoTime();
total_wait_time_ = 0;
}
void ThreadPool::StopWorkers(Thread* self) {
MutexLock mu(self, task_queue_lock_);
started_ = false;
}
Task* ThreadPool::GetTask(Thread* self) {
MutexLock mu(self, task_queue_lock_);
while (!IsShuttingDown()) {
const size_t thread_count = GetThreadCount();
// Ensure that we don't use more threads than the maximum active workers.
const size_t active_threads = thread_count - waiting_count_;
// <= since self is considered an active worker.
if (active_threads <= max_active_workers_) {
Task* task = TryGetTaskLocked();
if (task != nullptr) {
return task;
}
}
++waiting_count_;
if (waiting_count_ == GetThreadCount() && !HasOutstandingTasks()) {
// We may be done, lets broadcast to the completion condition.
completion_condition_.Broadcast(self);
}
const uint64_t wait_start = kMeasureWaitTime ? NanoTime() : 0;
task_queue_condition_.Wait(self);
if (kMeasureWaitTime) {
const uint64_t wait_end = NanoTime();
total_wait_time_ += wait_end - std::max(wait_start, start_time_);
}
--waiting_count_;
}
// We are shutting down, return null to tell the worker thread to stop looping.
return nullptr;
}
Task* ThreadPool::TryGetTask(Thread* self) {
MutexLock mu(self, task_queue_lock_);
return TryGetTaskLocked();
}
Task* ThreadPool::TryGetTaskLocked() {
if (HasOutstandingTasks()) {
Task* task = tasks_.front();
tasks_.pop_front();
return task;
}
return nullptr;
}
void ThreadPool::Wait(Thread* self, bool do_work, bool may_hold_locks) {
if (do_work) {
CHECK(!create_peers_);
Task* task = nullptr;
while ((task = TryGetTask(self)) != nullptr) {
task->Run(self);
task->Finalize();
}
}
// Wait until each thread is waiting and the task list is empty.
MutexLock mu(self, task_queue_lock_);
while (!shutting_down_ && (waiting_count_ != GetThreadCount() || HasOutstandingTasks())) {
if (!may_hold_locks) {
completion_condition_.Wait(self);
} else {
completion_condition_.WaitHoldingLocks(self);
}
}
}
size_t ThreadPool::GetTaskCount(Thread* self) {
MutexLock mu(self, task_queue_lock_);
return tasks_.size();
}
void ThreadPool::SetPthreadPriority(int priority) {
for (ThreadPoolWorker* worker : threads_) {
worker->SetPthreadPriority(priority);
}
}
} // namespace art
|