1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "thread_pool.h"
#include <string>
#include "base/atomic.h"
#include "common_runtime_test.h"
#include "scoped_thread_state_change-inl.h"
#include "thread-inl.h"
namespace art {
class CountTask : public Task {
public:
explicit CountTask(AtomicInteger* count) : count_(count), verbose_(false) {}
void Run(Thread* self) override {
if (verbose_) {
LOG(INFO) << "Running: " << *self;
}
// Simulate doing some work.
usleep(100);
// Increment the counter which keeps track of work completed.
++*count_;
}
void Finalize() override {
if (verbose_) {
LOG(INFO) << "Finalizing: " << *Thread::Current();
}
delete this;
}
private:
AtomicInteger* const count_;
const bool verbose_;
};
class ThreadPoolTest : public CommonRuntimeTest {
public:
static int32_t num_threads;
};
int32_t ThreadPoolTest::num_threads = 4;
// Check that the thread pool actually runs tasks that you assign it.
TEST_F(ThreadPoolTest, CheckRun) {
Thread* self = Thread::Current();
ThreadPool thread_pool("Thread pool test thread pool", num_threads);
AtomicInteger count(0);
static const int32_t num_tasks = num_threads * 4;
for (int32_t i = 0; i < num_tasks; ++i) {
thread_pool.AddTask(self, new CountTask(&count));
}
thread_pool.StartWorkers(self);
// Wait for tasks to complete.
thread_pool.Wait(self, true, false);
// Make sure that we finished all the work.
EXPECT_EQ(num_tasks, count.load(std::memory_order_seq_cst));
}
TEST_F(ThreadPoolTest, StopStart) {
Thread* self = Thread::Current();
ThreadPool thread_pool("Thread pool test thread pool", num_threads);
AtomicInteger count(0);
static const int32_t num_tasks = num_threads * 4;
for (int32_t i = 0; i < num_tasks; ++i) {
thread_pool.AddTask(self, new CountTask(&count));
}
usleep(200);
// Check that no threads started prematurely.
EXPECT_EQ(0, count.load(std::memory_order_seq_cst));
// Signal the threads to start processing tasks.
thread_pool.StartWorkers(self);
usleep(200);
thread_pool.StopWorkers(self);
AtomicInteger bad_count(0);
thread_pool.AddTask(self, new CountTask(&bad_count));
usleep(200);
// Ensure that the task added after the workers were stopped doesn't get run.
EXPECT_EQ(0, bad_count.load(std::memory_order_seq_cst));
// Allow tasks to finish up and delete themselves.
thread_pool.StartWorkers(self);
thread_pool.Wait(self, false, false);
}
TEST_F(ThreadPoolTest, StopWait) {
Thread* self = Thread::Current();
ThreadPool thread_pool("Thread pool test thread pool", num_threads);
AtomicInteger count(0);
static const int32_t num_tasks = num_threads * 100;
for (int32_t i = 0; i < num_tasks; ++i) {
thread_pool.AddTask(self, new CountTask(&count));
}
// Signal the threads to start processing tasks.
thread_pool.StartWorkers(self);
usleep(200);
thread_pool.StopWorkers(self);
thread_pool.Wait(self, false, false); // We should not deadlock here.
// Drain the task list. Note: we have to restart here, as no tasks will be finished when
// the pool is stopped.
thread_pool.StartWorkers(self);
thread_pool.Wait(self, /* do_work= */ true, false);
}
class TreeTask : public Task {
public:
TreeTask(ThreadPool* const thread_pool, AtomicInteger* count, int depth)
: thread_pool_(thread_pool),
count_(count),
depth_(depth) {}
void Run(Thread* self) override {
if (depth_ > 1) {
thread_pool_->AddTask(self, new TreeTask(thread_pool_, count_, depth_ - 1));
thread_pool_->AddTask(self, new TreeTask(thread_pool_, count_, depth_ - 1));
}
// Increment the counter which keeps track of work completed.
++*count_;
}
void Finalize() override {
delete this;
}
private:
ThreadPool* const thread_pool_;
AtomicInteger* const count_;
const int depth_;
};
// Test that adding new tasks from within a task works.
TEST_F(ThreadPoolTest, RecursiveTest) {
Thread* self = Thread::Current();
ThreadPool thread_pool("Thread pool test thread pool", num_threads);
AtomicInteger count(0);
static const int depth = 8;
thread_pool.AddTask(self, new TreeTask(&thread_pool, &count, depth));
thread_pool.StartWorkers(self);
thread_pool.Wait(self, true, false);
EXPECT_EQ((1 << depth) - 1, count.load(std::memory_order_seq_cst));
}
class PeerTask : public Task {
public:
PeerTask() {}
void Run(Thread* self) override {
ScopedObjectAccess soa(self);
CHECK(self->GetPeer() != nullptr);
}
void Finalize() override {
delete this;
}
};
class NoPeerTask : public Task {
public:
NoPeerTask() {}
void Run(Thread* self) override {
ScopedObjectAccess soa(self);
CHECK(self->GetPeer() == nullptr);
}
void Finalize() override {
delete this;
}
};
// Tests for create_peer functionality.
TEST_F(ThreadPoolTest, PeerTest) {
Thread* self = Thread::Current();
{
ThreadPool thread_pool("Thread pool test thread pool", 1);
thread_pool.AddTask(self, new NoPeerTask());
thread_pool.StartWorkers(self);
thread_pool.Wait(self, false, false);
}
{
// To create peers, the runtime needs to be started.
self->TransitionFromSuspendedToRunnable();
bool started = runtime_->Start();
ASSERT_TRUE(started);
ThreadPool thread_pool("Thread pool test thread pool", 1, true);
thread_pool.AddTask(self, new PeerTask());
thread_pool.StartWorkers(self);
thread_pool.Wait(self, false, false);
}
}
} // namespace art
|