1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_
#define ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_
#include "memory_region.h"
#include "bit_utils.h"
#include "memory_tool.h"
#include <array>
namespace art {
// Bit memory region is a bit offset subregion of a normal memoryregion. This is useful for
// abstracting away the bit start offset to avoid needing passing as an argument everywhere.
class BitMemoryRegion final : public ValueObject {
public:
BitMemoryRegion() = default;
ALWAYS_INLINE BitMemoryRegion(uint8_t* data, ssize_t bit_start, size_t bit_size) {
// Normalize the data pointer. Note that bit_start may be negative.
data_ = AlignDown(data + (bit_start >> kBitsPerByteLog2), kPageSize);
bit_start_ = bit_start + kBitsPerByte * (data - data_);
bit_size_ = bit_size;
}
ALWAYS_INLINE explicit BitMemoryRegion(MemoryRegion region)
: BitMemoryRegion(region.begin(), /* bit_start */ 0, region.size_in_bits()) {
}
ALWAYS_INLINE BitMemoryRegion(MemoryRegion region, size_t bit_offset, size_t bit_length)
: BitMemoryRegion(region) {
*this = Subregion(bit_offset, bit_length);
}
ALWAYS_INLINE bool IsValid() const { return data_ != nullptr; }
const uint8_t* data() const {
DCHECK_ALIGNED(bit_start_, kBitsPerByte);
return data_ + bit_start_ / kBitsPerByte;
}
size_t size_in_bits() const {
return bit_size_;
}
void Resize(size_t bit_size) {
bit_size_ = bit_size;
}
ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset, size_t bit_length) const {
DCHECK_LE(bit_offset, bit_size_);
DCHECK_LE(bit_length, bit_size_ - bit_offset);
BitMemoryRegion result = *this;
result.bit_start_ += bit_offset;
result.bit_size_ = bit_length;
return result;
}
ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset) const {
DCHECK_LE(bit_offset, bit_size_);
BitMemoryRegion result = *this;
result.bit_start_ += bit_offset;
result.bit_size_ -= bit_offset;
return result;
}
// Load a single bit in the region. The bit at offset 0 is the least
// significant bit in the first byte.
ALWAYS_INLINE bool LoadBit(size_t bit_offset) const {
DCHECK_LT(bit_offset, bit_size_);
size_t index = (bit_start_ + bit_offset) / kBitsPerByte;
size_t shift = (bit_start_ + bit_offset) % kBitsPerByte;
return ((data_[index] >> shift) & 1) != 0;
}
ALWAYS_INLINE void StoreBit(size_t bit_offset, bool value) {
DCHECK_LT(bit_offset, bit_size_);
size_t index = (bit_start_ + bit_offset) / kBitsPerByte;
size_t shift = (bit_start_ + bit_offset) % kBitsPerByte;
data_[index] &= ~(1 << shift); // Clear bit.
data_[index] |= (value ? 1 : 0) << shift; // Set bit.
DCHECK_EQ(value, LoadBit(bit_offset));
}
// Load `bit_length` bits from `data` starting at given `bit_offset`.
// The least significant bit is stored in the smallest memory offset.
template<typename Result = size_t>
ATTRIBUTE_NO_SANITIZE_ADDRESS // We might touch extra bytes due to the alignment.
ATTRIBUTE_NO_SANITIZE_HWADDRESS // The hwasan uses different attribute.
ALWAYS_INLINE Result LoadBits(size_t bit_offset, size_t bit_length) const {
static_assert(std::is_integral_v<Result>, "Result must be integral");
static_assert(std::is_unsigned_v<Result>, "Result must be unsigned");
DCHECK(IsAligned<sizeof(Result)>(data_));
DCHECK_LE(bit_offset, bit_size_);
DCHECK_LE(bit_length, bit_size_ - bit_offset);
DCHECK_LE(bit_length, BitSizeOf<Result>());
if (bit_length == 0) {
return 0;
}
// Load naturally-aligned value which contains the least significant bit.
Result* data = reinterpret_cast<Result*>(data_);
size_t width = BitSizeOf<Result>();
size_t index = (bit_start_ + bit_offset) / width;
size_t shift = (bit_start_ + bit_offset) % width;
Result value = data[index] >> shift;
// Load extra value containing the most significant bit (it might be the same one).
// We can not just load the following value as that could potentially cause SIGSEGV.
Result extra = data[index + (shift + (bit_length - 1)) / width];
// Mask to clear unwanted bits (the 1s are needed to avoid avoid undefined shift).
Result clear = (std::numeric_limits<Result>::max() << 1) << (bit_length - 1);
// Prepend the extra value. We add explicit '& (width - 1)' so that the shift is defined.
// It is a no-op for `shift != 0` and if `shift == 0` then `value == extra` because of
// bit_length <= width causing the `value` and `extra` to be read from the same location.
// The '& (width - 1)' is implied by the shift instruction on ARM and removed by compiler.
return (value | (extra << ((width - shift) & (width - 1)))) & ~clear;
}
// Store `bit_length` bits in `data` starting at given `bit_offset`.
// The least significant bit is stored in the smallest memory offset.
ALWAYS_INLINE void StoreBits(size_t bit_offset, size_t value, size_t bit_length) {
DCHECK_LE(bit_offset, bit_size_);
DCHECK_LE(bit_length, bit_size_ - bit_offset);
DCHECK_LE(bit_length, BitSizeOf<size_t>());
DCHECK_LE(value, MaxInt<size_t>(bit_length));
if (bit_length == 0) {
return;
}
// Write data byte by byte to avoid races with other threads
// on bytes that do not overlap with this region.
size_t mask = std::numeric_limits<size_t>::max() >> (BitSizeOf<size_t>() - bit_length);
size_t index = (bit_start_ + bit_offset) / kBitsPerByte;
size_t shift = (bit_start_ + bit_offset) % kBitsPerByte;
data_[index] &= ~(mask << shift); // Clear bits.
data_[index] |= (value << shift); // Set bits.
size_t finished_bits = kBitsPerByte - shift;
for (int i = 1; finished_bits < bit_length; i++, finished_bits += kBitsPerByte) {
data_[index + i] &= ~(mask >> finished_bits); // Clear bits.
data_[index + i] |= (value >> finished_bits); // Set bits.
}
DCHECK_EQ(value, LoadBits(bit_offset, bit_length));
}
// Copy bits from other bit region.
ALWAYS_INLINE void CopyBits(const BitMemoryRegion& src) {
DCHECK_EQ(size_in_bits(), src.size_in_bits());
// Hopefully, the loads of the unused `value` shall be optimized away.
VisitChunks(
[this, &src](size_t offset, size_t num_bits, size_t value ATTRIBUTE_UNUSED) ALWAYS_INLINE {
StoreChunk(offset, src.LoadBits(offset, num_bits), num_bits);
return true;
});
}
// And bits from other bit region.
ALWAYS_INLINE void AndBits(const BitMemoryRegion& src) {
DCHECK_EQ(size_in_bits(), src.size_in_bits());
VisitChunks([this, &src](size_t offset, size_t num_bits, size_t value) ALWAYS_INLINE {
StoreChunk(offset, value & src.LoadBits(offset, num_bits), num_bits);
return true;
});
}
// Or bits from other bit region.
ALWAYS_INLINE void OrBits(const BitMemoryRegion& src) {
DCHECK_EQ(size_in_bits(), src.size_in_bits());
VisitChunks([this, &src](size_t offset, size_t num_bits, size_t value) ALWAYS_INLINE {
StoreChunk(offset, value | src.LoadBits(offset, num_bits), num_bits);
return true;
});
}
// Xor bits from other bit region.
ALWAYS_INLINE void XorBits(const BitMemoryRegion& src) {
DCHECK_EQ(size_in_bits(), src.size_in_bits());
VisitChunks([this, &src](size_t offset, size_t num_bits, size_t value) ALWAYS_INLINE {
StoreChunk(offset, value ^ src.LoadBits(offset, num_bits), num_bits);
return true;
});
}
// Count the number of set bits within this region.
ALWAYS_INLINE size_t PopCount() const {
size_t result = 0u;
VisitChunks([&](size_t offset ATTRIBUTE_UNUSED,
size_t num_bits ATTRIBUTE_UNUSED,
size_t value) ALWAYS_INLINE {
result += POPCOUNT(value);
return true;
});
return result;
}
// Count the number of set bits within the given bit range.
ALWAYS_INLINE size_t PopCount(size_t bit_offset, size_t bit_length) const {
return Subregion(bit_offset, bit_length).PopCount();
}
// Check if this region has all bits clear.
ALWAYS_INLINE bool HasAllBitsClear() const {
return VisitChunks([](size_t offset ATTRIBUTE_UNUSED,
size_t num_bits ATTRIBUTE_UNUSED,
size_t value) ALWAYS_INLINE {
return value == 0u;
});
}
// Check if this region has any bit set.
ALWAYS_INLINE bool HasSomeBitSet() const {
return !HasAllBitsClear();
}
// Check if there is any bit set within the given bit range.
ALWAYS_INLINE bool HasSomeBitSet(size_t bit_offset, size_t bit_length) const {
return Subregion(bit_offset, bit_length).HasSomeBitSet();
}
static int Compare(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) {
if (lhs.size_in_bits() != rhs.size_in_bits()) {
return (lhs.size_in_bits() < rhs.size_in_bits()) ? -1 : 1;
}
int result = 0;
bool equals = lhs.VisitChunks(
[&](size_t offset, size_t num_bits, size_t lhs_value) ALWAYS_INLINE {
size_t rhs_value = rhs.LoadBits(offset, num_bits);
if (lhs_value == rhs_value) {
return true;
}
// We have found a difference. To avoid the comparison being dependent on how the region
// is split into chunks, check the lowest bit that differs. (Android is little-endian.)
int bit = CTZ(lhs_value ^ rhs_value);
result = ((rhs_value >> bit) & 1u) != 0u ? 1 : -1;
return false; // Stop iterating.
});
DCHECK_EQ(equals, result == 0);
return result;
}
static bool Equals(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) {
if (lhs.size_in_bits() != rhs.size_in_bits()) {
return false;
}
return lhs.VisitChunks([&rhs](size_t offset, size_t num_bits, size_t lhs_value) ALWAYS_INLINE {
return lhs_value == rhs.LoadBits(offset, num_bits);
});
}
private:
// Visit the region in aligned `size_t` chunks. The first and last chunk may have fewer bits.
//
// Returns `true` if the iteration visited all chunks successfully, i.e. none of the
// calls to `visitor(offset, num_bits, value)` returned `false`; otherwise `false`.
template <typename VisitorType>
ATTRIBUTE_NO_SANITIZE_ADDRESS // We might touch extra bytes due to the alignment.
ATTRIBUTE_NO_SANITIZE_HWADDRESS // The hwasan uses different attribute.
ALWAYS_INLINE bool VisitChunks(VisitorType&& visitor) const {
constexpr size_t kChunkSize = BitSizeOf<size_t>();
size_t remaining_bits = bit_size_;
if (remaining_bits == 0) {
return true;
}
DCHECK(IsAligned<sizeof(size_t)>(data_));
const size_t* data = reinterpret_cast<const size_t*>(data_);
size_t offset = 0u;
size_t bit_start = bit_start_;
data += bit_start / kChunkSize;
if ((bit_start % kChunkSize) != 0u) {
size_t leading_bits = kChunkSize - (bit_start % kChunkSize);
size_t value = (*data) >> (bit_start % kChunkSize);
if (leading_bits > remaining_bits) {
leading_bits = remaining_bits;
value = value & ~(std::numeric_limits<size_t>::max() << remaining_bits);
}
if (!visitor(offset, leading_bits, value)) {
return false;
}
offset += leading_bits;
remaining_bits -= leading_bits;
++data;
}
while (remaining_bits >= kChunkSize) {
size_t value = *data;
if (!visitor(offset, kChunkSize, value)) {
return false;
}
offset += kChunkSize;
remaining_bits -= kChunkSize;
++data;
}
if (remaining_bits != 0u) {
size_t value = (*data) & ~(std::numeric_limits<size_t>::max() << remaining_bits);
if (!visitor(offset, remaining_bits, value)) {
return false;
}
}
return true;
}
ALWAYS_INLINE void StoreChunk(size_t bit_offset, size_t value, size_t bit_length) {
if (bit_length == BitSizeOf<size_t>()) {
DCHECK_ALIGNED(bit_start_ + bit_offset, BitSizeOf<size_t>());
uint8_t* data = data_ + (bit_start_ + bit_offset) / kBitsPerByte;
DCHECK_ALIGNED(data, sizeof(size_t));
reinterpret_cast<size_t*>(data)[0] = value;
} else {
StoreBits(bit_offset, value, bit_length);
}
}
uint8_t* data_ = nullptr; // The pointer is page aligned.
size_t bit_start_ = 0;
size_t bit_size_ = 0;
};
// Minimum number of bits used for varint. A varint represents either a value stored "inline" or
// the number of bytes that are required to encode the value.
constexpr uint32_t kVarintBits = 4;
// Maximum value which is stored "inline". We use the rest of the values to encode the number of
// bytes required to encode the value when the value is greater than kVarintMax.
// We encode any value less than or equal to 11 inline. We use 12, 13, 14 and 15
// to represent that the value is encoded in 1, 2, 3 and 4 bytes respectively.
//
// For example if we want to encode 1, 15, 16, 7, 11, 256:
//
// Low numbers (1, 7, 11) are encoded inline. 15 and 12 are set with 12 to show
// we need to load one byte for each to have their real values (15 and 12), and
// 256 is set with 13 to show we need to load two bytes. This is done to
// compress the values in the bit array and keep the size down. Where the actual value
// is read from depends on the use case.
//
// Values greater than kVarintMax could be encoded as a separate list referred
// to as InterleavedVarints (see ReadInterleavedVarints / WriteInterleavedVarints).
// This is used when there are fixed number of fields like CodeInfo headers.
// In our example the interleaved encoding looks like below:
//
// Meaning: 1--- 15-- 12-- 7--- 11-- 256- 15------- 12------- 256----------------
// Bits: 0001 1100 1100 0111 1011 1101 0000 1111 0000 1100 0000 0001 0000 0000
//
// In other cases the value is recorded just following the size encoding. This is
// referred as consecutive encoding (See ReadVarint / WriteVarint). In our
// example the consecutively encoded varints looks like below:
//
// Meaning: 1--- 15-- 15------- 12-- 12------- 7--- 11-- 256- 256----------------
// Bits: 0001 1100 0000 1100 1100 0000 1100 0111 1011 1101 0000 0001 0000 0000
constexpr uint32_t kVarintMax = 11;
class BitMemoryReader {
public:
BitMemoryReader(BitMemoryReader&&) = default;
explicit BitMemoryReader(BitMemoryRegion data)
: finished_region_(data.Subregion(0, 0) /* set the length to zero */ ) {
}
explicit BitMemoryReader(const uint8_t* data, ssize_t bit_offset = 0)
: finished_region_(const_cast<uint8_t*>(data), bit_offset, /* bit_length */ 0) {
}
const uint8_t* data() const { return finished_region_.data(); }
BitMemoryRegion GetReadRegion() const { return finished_region_; }
size_t NumberOfReadBits() const { return finished_region_.size_in_bits(); }
ALWAYS_INLINE BitMemoryRegion ReadRegion(size_t bit_length) {
size_t bit_offset = finished_region_.size_in_bits();
finished_region_.Resize(bit_offset + bit_length);
return finished_region_.Subregion(bit_offset, bit_length);
}
template<typename Result = size_t>
ALWAYS_INLINE Result ReadBits(size_t bit_length) {
return ReadRegion(bit_length).LoadBits<Result>(/* bit_offset */ 0, bit_length);
}
ALWAYS_INLINE bool ReadBit() {
return ReadRegion(/* bit_length */ 1).LoadBit(/* bit_offset */ 0);
}
// Read variable-length bit-packed integer.
// The first four bits determine the variable length of the encoded integer:
// Values 0..11 represent the result as-is, with no further following bits.
// Values 12..15 mean the result is in the next 8/16/24/32-bits respectively.
ALWAYS_INLINE uint32_t ReadVarint() {
uint32_t x = ReadBits(kVarintBits);
return (x <= kVarintMax) ? x : ReadBits((x - kVarintMax) * kBitsPerByte);
}
// Read N 'interleaved' varints (different to just reading consecutive varints).
// All small values are stored first and the large values are stored after them.
// This requires fewer bit-reads compared to indidually storing the varints.
template<size_t N>
ALWAYS_INLINE std::array<uint32_t, N> ReadInterleavedVarints() {
static_assert(N * kVarintBits <= sizeof(uint64_t) * kBitsPerByte, "N too big");
std::array<uint32_t, N> values;
// StackMap BitTable uses over 8 varints in the header, so we need uint64_t.
uint64_t data = ReadBits<uint64_t>(N * kVarintBits);
for (size_t i = 0; i < N; i++) {
values[i] = BitFieldExtract(data, i * kVarintBits, kVarintBits);
}
// Do the second part in its own loop as that seems to produce better code in clang.
for (size_t i = 0; i < N; i++) {
if (UNLIKELY(values[i] > kVarintMax)) {
values[i] = ReadBits((values[i] - kVarintMax) * kBitsPerByte);
}
}
return values;
}
private:
// Represents all of the bits which were read so far. There is no upper bound.
// Therefore, by definition, the "cursor" is always at the end of the region.
BitMemoryRegion finished_region_;
DISALLOW_COPY_AND_ASSIGN(BitMemoryReader);
};
template<typename Vector>
class BitMemoryWriter {
public:
explicit BitMemoryWriter(Vector* out, size_t bit_offset = 0)
: out_(out), bit_start_(bit_offset), bit_offset_(bit_offset) {
DCHECK_EQ(NumberOfWrittenBits(), 0u);
}
void Truncate(size_t bit_offset) {
DCHECK_GE(bit_offset, bit_start_);
DCHECK_LE(bit_offset, bit_offset_);
bit_offset_ = bit_offset;
DCHECK_LE(BitsToBytesRoundUp(bit_offset), out_->size());
out_->resize(BitsToBytesRoundUp(bit_offset)); // Shrink.
}
BitMemoryRegion GetWrittenRegion() const {
return BitMemoryRegion(out_->data(), bit_start_, bit_offset_ - bit_start_);
}
const uint8_t* data() const { return out_->data(); }
size_t NumberOfWrittenBits() const { return bit_offset_ - bit_start_; }
ALWAYS_INLINE BitMemoryRegion Allocate(size_t bit_length) {
out_->resize(BitsToBytesRoundUp(bit_offset_ + bit_length));
BitMemoryRegion region(out_->data(), bit_offset_, bit_length);
DCHECK_LE(bit_length, std::numeric_limits<size_t>::max() - bit_offset_) << "Overflow";
bit_offset_ += bit_length;
return region;
}
ALWAYS_INLINE void WriteRegion(const BitMemoryRegion& region) {
Allocate(region.size_in_bits()).CopyBits(region);
}
ALWAYS_INLINE void WriteBits(uint32_t value, size_t bit_length) {
Allocate(bit_length).StoreBits(/* bit_offset */ 0, value, bit_length);
}
ALWAYS_INLINE void WriteBit(bool value) {
Allocate(1).StoreBit(/* bit_offset */ 0, value);
}
template<size_t N>
ALWAYS_INLINE void WriteInterleavedVarints(std::array<uint32_t, N> values) {
// Write small values (or the number of bytes needed for the large values).
for (uint32_t value : values) {
if (value > kVarintMax) {
WriteBits(kVarintMax + BitsToBytesRoundUp(MinimumBitsToStore(value)), kVarintBits);
} else {
WriteBits(value, kVarintBits);
}
}
// Write large values.
for (uint32_t value : values) {
if (value > kVarintMax) {
WriteBits(value, BitsToBytesRoundUp(MinimumBitsToStore(value)) * kBitsPerByte);
}
}
}
ALWAYS_INLINE void WriteVarint(uint32_t value) {
WriteInterleavedVarints<1>({value});
}
void WriteBytesAligned(const uint8_t* bytes, size_t length) {
DCHECK_ALIGNED(bit_start_, kBitsPerByte);
DCHECK_ALIGNED(bit_offset_, kBitsPerByte);
DCHECK_EQ(BitsToBytesRoundUp(bit_offset_), out_->size());
out_->insert(out_->end(), bytes, bytes + length);
bit_offset_ += length * kBitsPerByte;
}
ALWAYS_INLINE void ByteAlign() {
DCHECK_ALIGNED(bit_start_, kBitsPerByte);
bit_offset_ = RoundUp(bit_offset_, kBitsPerByte);
}
private:
Vector* out_;
size_t bit_start_;
size_t bit_offset_;
DISALLOW_COPY_AND_ASSIGN(BitMemoryWriter);
};
} // namespace art
#endif // ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_
|