File: bit_memory_region.h

package info (click to toggle)
android-platform-art 14.0.0%2Br15-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 96,788 kB
  • sloc: cpp: 522,217; java: 194,312; asm: 28,950; python: 14,910; xml: 5,087; sh: 4,528; ansic: 4,035; makefile: 111; perl: 77
file content (517 lines) | stat: -rw-r--r-- 20,552 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_
#define ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_

#include "memory_region.h"

#include "bit_utils.h"
#include "memory_tool.h"

#include <array>

namespace art {

// Bit memory region is a bit offset subregion of a normal memoryregion. This is useful for
// abstracting away the bit start offset to avoid needing passing as an argument everywhere.
class BitMemoryRegion final : public ValueObject {
 public:
  BitMemoryRegion() = default;
  ALWAYS_INLINE BitMemoryRegion(uint8_t* data, ssize_t bit_start, size_t bit_size) {
    // Normalize the data pointer. Note that bit_start may be negative.
    data_ = AlignDown(data + (bit_start >> kBitsPerByteLog2), kPageSize);
    bit_start_ = bit_start + kBitsPerByte * (data - data_);
    bit_size_ = bit_size;
  }
  ALWAYS_INLINE explicit BitMemoryRegion(MemoryRegion region)
    : BitMemoryRegion(region.begin(), /* bit_start */ 0, region.size_in_bits()) {
  }
  ALWAYS_INLINE BitMemoryRegion(MemoryRegion region, size_t bit_offset, size_t bit_length)
    : BitMemoryRegion(region) {
    *this = Subregion(bit_offset, bit_length);
  }

  ALWAYS_INLINE bool IsValid() const { return data_ != nullptr; }

  const uint8_t* data() const {
    DCHECK_ALIGNED(bit_start_, kBitsPerByte);
    return data_ + bit_start_ / kBitsPerByte;
  }

  size_t size_in_bits() const {
    return bit_size_;
  }

  void Resize(size_t bit_size) {
    bit_size_ = bit_size;
  }

  ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset, size_t bit_length) const {
    DCHECK_LE(bit_offset, bit_size_);
    DCHECK_LE(bit_length, bit_size_ - bit_offset);
    BitMemoryRegion result = *this;
    result.bit_start_ += bit_offset;
    result.bit_size_ = bit_length;
    return result;
  }

  ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset) const {
    DCHECK_LE(bit_offset, bit_size_);
    BitMemoryRegion result = *this;
    result.bit_start_ += bit_offset;
    result.bit_size_ -= bit_offset;
    return result;
  }

  // Load a single bit in the region. The bit at offset 0 is the least
  // significant bit in the first byte.
  ALWAYS_INLINE bool LoadBit(size_t bit_offset) const {
    DCHECK_LT(bit_offset, bit_size_);
    size_t index = (bit_start_ + bit_offset) / kBitsPerByte;
    size_t shift = (bit_start_ + bit_offset) % kBitsPerByte;
    return ((data_[index] >> shift) & 1) != 0;
  }

  ALWAYS_INLINE void StoreBit(size_t bit_offset, bool value) {
    DCHECK_LT(bit_offset, bit_size_);
    size_t index = (bit_start_ + bit_offset) / kBitsPerByte;
    size_t shift = (bit_start_ + bit_offset) % kBitsPerByte;
    data_[index] &= ~(1 << shift);  // Clear bit.
    data_[index] |= (value ? 1 : 0) << shift;  // Set bit.
    DCHECK_EQ(value, LoadBit(bit_offset));
  }

  // Load `bit_length` bits from `data` starting at given `bit_offset`.
  // The least significant bit is stored in the smallest memory offset.
  template<typename Result = size_t>
  ATTRIBUTE_NO_SANITIZE_ADDRESS  // We might touch extra bytes due to the alignment.
  ATTRIBUTE_NO_SANITIZE_HWADDRESS  // The hwasan uses different attribute.
  ALWAYS_INLINE Result LoadBits(size_t bit_offset, size_t bit_length) const {
    static_assert(std::is_integral_v<Result>, "Result must be integral");
    static_assert(std::is_unsigned_v<Result>, "Result must be unsigned");
    DCHECK(IsAligned<sizeof(Result)>(data_));
    DCHECK_LE(bit_offset, bit_size_);
    DCHECK_LE(bit_length, bit_size_ - bit_offset);
    DCHECK_LE(bit_length, BitSizeOf<Result>());
    if (bit_length == 0) {
      return 0;
    }
    // Load naturally-aligned value which contains the least significant bit.
    Result* data = reinterpret_cast<Result*>(data_);
    size_t width = BitSizeOf<Result>();
    size_t index = (bit_start_ + bit_offset) / width;
    size_t shift = (bit_start_ + bit_offset) % width;
    Result value = data[index] >> shift;
    // Load extra value containing the most significant bit (it might be the same one).
    // We can not just load the following value as that could potentially cause SIGSEGV.
    Result extra = data[index + (shift + (bit_length - 1)) / width];
    // Mask to clear unwanted bits (the 1s are needed to avoid avoid undefined shift).
    Result clear = (std::numeric_limits<Result>::max() << 1) << (bit_length - 1);
    // Prepend the extra value.  We add explicit '& (width - 1)' so that the shift is defined.
    // It is a no-op for `shift != 0` and if `shift == 0` then `value == extra` because of
    // bit_length <= width causing the `value` and `extra` to be read from the same location.
    // The '& (width - 1)' is implied by the shift instruction on ARM and removed by compiler.
    return (value | (extra << ((width - shift) & (width - 1)))) & ~clear;
  }

  // Store `bit_length` bits in `data` starting at given `bit_offset`.
  // The least significant bit is stored in the smallest memory offset.
  ALWAYS_INLINE void StoreBits(size_t bit_offset, size_t value, size_t bit_length) {
    DCHECK_LE(bit_offset, bit_size_);
    DCHECK_LE(bit_length, bit_size_ - bit_offset);
    DCHECK_LE(bit_length, BitSizeOf<size_t>());
    DCHECK_LE(value, MaxInt<size_t>(bit_length));
    if (bit_length == 0) {
      return;
    }
    // Write data byte by byte to avoid races with other threads
    // on bytes that do not overlap with this region.
    size_t mask = std::numeric_limits<size_t>::max() >> (BitSizeOf<size_t>() - bit_length);
    size_t index = (bit_start_ + bit_offset) / kBitsPerByte;
    size_t shift = (bit_start_ + bit_offset) % kBitsPerByte;
    data_[index] &= ~(mask << shift);  // Clear bits.
    data_[index] |= (value << shift);  // Set bits.
    size_t finished_bits = kBitsPerByte - shift;
    for (int i = 1; finished_bits < bit_length; i++, finished_bits += kBitsPerByte) {
      data_[index + i] &= ~(mask >> finished_bits);  // Clear bits.
      data_[index + i] |= (value >> finished_bits);  // Set bits.
    }
    DCHECK_EQ(value, LoadBits(bit_offset, bit_length));
  }

  // Copy bits from other bit region.
  ALWAYS_INLINE void CopyBits(const BitMemoryRegion& src) {
    DCHECK_EQ(size_in_bits(), src.size_in_bits());
    // Hopefully, the loads of the unused `value` shall be optimized away.
    VisitChunks(
        [this, &src](size_t offset, size_t num_bits, size_t value ATTRIBUTE_UNUSED) ALWAYS_INLINE {
          StoreChunk(offset, src.LoadBits(offset, num_bits), num_bits);
          return true;
        });
  }

  // And bits from other bit region.
  ALWAYS_INLINE void AndBits(const BitMemoryRegion& src) {
    DCHECK_EQ(size_in_bits(), src.size_in_bits());
    VisitChunks([this, &src](size_t offset, size_t num_bits, size_t value) ALWAYS_INLINE {
      StoreChunk(offset, value & src.LoadBits(offset, num_bits), num_bits);
      return true;
    });
  }

  // Or bits from other bit region.
  ALWAYS_INLINE void OrBits(const BitMemoryRegion& src) {
    DCHECK_EQ(size_in_bits(), src.size_in_bits());
    VisitChunks([this, &src](size_t offset, size_t num_bits, size_t value) ALWAYS_INLINE {
      StoreChunk(offset, value | src.LoadBits(offset, num_bits), num_bits);
      return true;
    });
  }

  // Xor bits from other bit region.
  ALWAYS_INLINE void XorBits(const BitMemoryRegion& src) {
    DCHECK_EQ(size_in_bits(), src.size_in_bits());
    VisitChunks([this, &src](size_t offset, size_t num_bits, size_t value) ALWAYS_INLINE {
      StoreChunk(offset, value ^ src.LoadBits(offset, num_bits), num_bits);
      return true;
    });
  }

  // Count the number of set bits within this region.
  ALWAYS_INLINE size_t PopCount() const {
    size_t result = 0u;
    VisitChunks([&](size_t offset ATTRIBUTE_UNUSED,
                    size_t num_bits ATTRIBUTE_UNUSED,
                    size_t value) ALWAYS_INLINE {
                      result += POPCOUNT(value);
                      return true;
                    });
    return result;
  }

  // Count the number of set bits within the given bit range.
  ALWAYS_INLINE size_t PopCount(size_t bit_offset, size_t bit_length) const {
    return Subregion(bit_offset, bit_length).PopCount();
  }

  // Check if this region has all bits clear.
  ALWAYS_INLINE bool HasAllBitsClear() const {
    return VisitChunks([](size_t offset ATTRIBUTE_UNUSED,
                          size_t num_bits ATTRIBUTE_UNUSED,
                          size_t value) ALWAYS_INLINE {
                            return value == 0u;
                          });
  }

  // Check if this region has any bit set.
  ALWAYS_INLINE bool HasSomeBitSet() const {
    return !HasAllBitsClear();
  }

  // Check if there is any bit set within the given bit range.
  ALWAYS_INLINE bool HasSomeBitSet(size_t bit_offset, size_t bit_length) const {
    return Subregion(bit_offset, bit_length).HasSomeBitSet();
  }

  static int Compare(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) {
    if (lhs.size_in_bits() != rhs.size_in_bits()) {
      return (lhs.size_in_bits() < rhs.size_in_bits()) ? -1 : 1;
    }
    int result = 0;
    bool equals = lhs.VisitChunks(
        [&](size_t offset, size_t num_bits, size_t lhs_value) ALWAYS_INLINE {
          size_t rhs_value = rhs.LoadBits(offset, num_bits);
          if (lhs_value == rhs_value) {
            return true;
          }
          // We have found a difference. To avoid the comparison being dependent on how the region
          // is split into chunks, check the lowest bit that differs. (Android is little-endian.)
          int bit = CTZ(lhs_value ^ rhs_value);
          result = ((rhs_value >> bit) & 1u) != 0u ? 1 : -1;
          return false;  // Stop iterating.
        });
    DCHECK_EQ(equals, result == 0);
    return result;
  }

  static bool Equals(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) {
    if (lhs.size_in_bits() != rhs.size_in_bits()) {
      return false;
    }
    return lhs.VisitChunks([&rhs](size_t offset, size_t num_bits, size_t lhs_value) ALWAYS_INLINE {
      return lhs_value == rhs.LoadBits(offset, num_bits);
    });
  }

 private:
  // Visit the region in aligned `size_t` chunks. The first and last chunk may have fewer bits.
  //
  // Returns `true` if the iteration visited all chunks successfully, i.e. none of the
  // calls to `visitor(offset, num_bits, value)` returned `false`; otherwise `false`.
  template <typename VisitorType>
  ATTRIBUTE_NO_SANITIZE_ADDRESS  // We might touch extra bytes due to the alignment.
  ATTRIBUTE_NO_SANITIZE_HWADDRESS  // The hwasan uses different attribute.
  ALWAYS_INLINE bool VisitChunks(VisitorType&& visitor) const {
    constexpr size_t kChunkSize = BitSizeOf<size_t>();
    size_t remaining_bits = bit_size_;
    if (remaining_bits == 0) {
      return true;
    }
    DCHECK(IsAligned<sizeof(size_t)>(data_));
    const size_t* data = reinterpret_cast<const size_t*>(data_);
    size_t offset = 0u;
    size_t bit_start = bit_start_;
    data += bit_start / kChunkSize;
    if ((bit_start % kChunkSize) != 0u) {
      size_t leading_bits = kChunkSize - (bit_start % kChunkSize);
      size_t value = (*data) >> (bit_start % kChunkSize);
      if (leading_bits > remaining_bits) {
        leading_bits = remaining_bits;
        value = value & ~(std::numeric_limits<size_t>::max() << remaining_bits);
      }
      if (!visitor(offset, leading_bits, value)) {
        return false;
      }
      offset += leading_bits;
      remaining_bits -= leading_bits;
      ++data;
    }
    while (remaining_bits >= kChunkSize) {
      size_t value = *data;
      if (!visitor(offset, kChunkSize, value)) {
        return false;
      }
      offset += kChunkSize;
      remaining_bits -= kChunkSize;
      ++data;
    }
    if (remaining_bits != 0u) {
      size_t value = (*data) & ~(std::numeric_limits<size_t>::max() << remaining_bits);
      if (!visitor(offset, remaining_bits, value)) {
        return false;
      }
    }
    return true;
  }

  ALWAYS_INLINE void StoreChunk(size_t bit_offset, size_t value, size_t bit_length) {
    if (bit_length == BitSizeOf<size_t>()) {
      DCHECK_ALIGNED(bit_start_ + bit_offset, BitSizeOf<size_t>());
      uint8_t* data = data_ + (bit_start_ + bit_offset) / kBitsPerByte;
      DCHECK_ALIGNED(data, sizeof(size_t));
      reinterpret_cast<size_t*>(data)[0] = value;
    } else {
      StoreBits(bit_offset, value, bit_length);
    }
  }

  uint8_t* data_ = nullptr;  // The pointer is page aligned.
  size_t bit_start_ = 0;
  size_t bit_size_ = 0;
};

// Minimum number of bits used for varint. A varint represents either a value stored "inline" or
// the number of bytes that are required to encode the value.
constexpr uint32_t kVarintBits = 4;
// Maximum value which is stored "inline". We use the rest of the values to encode the number of
// bytes required to encode the value when the value is greater than kVarintMax.
// We encode any value less than or equal to 11 inline. We use 12, 13, 14 and 15
// to represent that the value is encoded in 1, 2, 3 and 4 bytes respectively.
//
// For example if we want to encode 1, 15, 16, 7, 11, 256:
//
// Low numbers (1, 7, 11) are encoded inline. 15 and 12 are set with 12 to show
// we need to load one byte for each to have their real values (15 and 12), and
// 256 is set with 13 to show we need to load two bytes. This is done to
// compress the values in the bit array and keep the size down. Where the actual value
// is read from depends on the use case.
//
// Values greater than kVarintMax could be encoded as a separate list referred
// to as InterleavedVarints (see ReadInterleavedVarints / WriteInterleavedVarints).
// This is used when there are fixed number of fields like CodeInfo headers.
// In our example the interleaved encoding looks like below:
//
// Meaning: 1--- 15-- 12-- 7--- 11-- 256- 15------- 12------- 256----------------
// Bits:    0001 1100 1100 0111 1011 1101 0000 1111 0000 1100 0000 0001 0000 0000
//
// In other cases the value is recorded just following the size encoding. This is
// referred as consecutive encoding (See ReadVarint / WriteVarint). In our
// example the consecutively encoded varints looks like below:
//
// Meaning: 1--- 15-- 15------- 12-- 12------- 7--- 11-- 256- 256----------------
// Bits:    0001 1100 0000 1100 1100 0000 1100 0111 1011 1101 0000 0001 0000 0000
constexpr uint32_t kVarintMax = 11;

class BitMemoryReader {
 public:
  BitMemoryReader(BitMemoryReader&&) = default;
  explicit BitMemoryReader(BitMemoryRegion data)
      : finished_region_(data.Subregion(0, 0) /* set the length to zero */ ) {
  }
  explicit BitMemoryReader(const uint8_t* data, ssize_t bit_offset = 0)
      : finished_region_(const_cast<uint8_t*>(data), bit_offset, /* bit_length */ 0) {
  }

  const uint8_t* data() const { return finished_region_.data(); }

  BitMemoryRegion GetReadRegion() const { return finished_region_; }

  size_t NumberOfReadBits() const { return finished_region_.size_in_bits(); }

  ALWAYS_INLINE BitMemoryRegion ReadRegion(size_t bit_length) {
    size_t bit_offset = finished_region_.size_in_bits();
    finished_region_.Resize(bit_offset + bit_length);
    return finished_region_.Subregion(bit_offset, bit_length);
  }

  template<typename Result = size_t>
  ALWAYS_INLINE Result ReadBits(size_t bit_length) {
    return ReadRegion(bit_length).LoadBits<Result>(/* bit_offset */ 0, bit_length);
  }

  ALWAYS_INLINE bool ReadBit() {
    return ReadRegion(/* bit_length */ 1).LoadBit(/* bit_offset */ 0);
  }

  // Read variable-length bit-packed integer.
  // The first four bits determine the variable length of the encoded integer:
  //   Values 0..11 represent the result as-is, with no further following bits.
  //   Values 12..15 mean the result is in the next 8/16/24/32-bits respectively.
  ALWAYS_INLINE uint32_t ReadVarint() {
    uint32_t x = ReadBits(kVarintBits);
    return (x <= kVarintMax) ? x : ReadBits((x - kVarintMax) * kBitsPerByte);
  }

  // Read N 'interleaved' varints (different to just reading consecutive varints).
  // All small values are stored first and the large values are stored after them.
  // This requires fewer bit-reads compared to indidually storing the varints.
  template<size_t N>
  ALWAYS_INLINE std::array<uint32_t, N> ReadInterleavedVarints() {
    static_assert(N * kVarintBits <= sizeof(uint64_t) * kBitsPerByte, "N too big");
    std::array<uint32_t, N> values;
    // StackMap BitTable uses over 8 varints in the header, so we need uint64_t.
    uint64_t data = ReadBits<uint64_t>(N * kVarintBits);
    for (size_t i = 0; i < N; i++) {
      values[i] = BitFieldExtract(data, i * kVarintBits, kVarintBits);
    }
    // Do the second part in its own loop as that seems to produce better code in clang.
    for (size_t i = 0; i < N; i++) {
      if (UNLIKELY(values[i] > kVarintMax)) {
        values[i] = ReadBits((values[i] - kVarintMax) * kBitsPerByte);
      }
    }
    return values;
  }

 private:
  // Represents all of the bits which were read so far. There is no upper bound.
  // Therefore, by definition, the "cursor" is always at the end of the region.
  BitMemoryRegion finished_region_;

  DISALLOW_COPY_AND_ASSIGN(BitMemoryReader);
};

template<typename Vector>
class BitMemoryWriter {
 public:
  explicit BitMemoryWriter(Vector* out, size_t bit_offset = 0)
      : out_(out), bit_start_(bit_offset), bit_offset_(bit_offset) {
    DCHECK_EQ(NumberOfWrittenBits(), 0u);
  }

  void Truncate(size_t bit_offset) {
    DCHECK_GE(bit_offset, bit_start_);
    DCHECK_LE(bit_offset, bit_offset_);
    bit_offset_ = bit_offset;
    DCHECK_LE(BitsToBytesRoundUp(bit_offset), out_->size());
    out_->resize(BitsToBytesRoundUp(bit_offset));  // Shrink.
  }

  BitMemoryRegion GetWrittenRegion() const {
    return BitMemoryRegion(out_->data(), bit_start_, bit_offset_ - bit_start_);
  }

  const uint8_t* data() const { return out_->data(); }

  size_t NumberOfWrittenBits() const { return bit_offset_ - bit_start_; }

  ALWAYS_INLINE BitMemoryRegion Allocate(size_t bit_length) {
    out_->resize(BitsToBytesRoundUp(bit_offset_ + bit_length));
    BitMemoryRegion region(out_->data(), bit_offset_, bit_length);
    DCHECK_LE(bit_length, std::numeric_limits<size_t>::max() - bit_offset_) << "Overflow";
    bit_offset_ += bit_length;
    return region;
  }

  ALWAYS_INLINE void WriteRegion(const BitMemoryRegion& region) {
    Allocate(region.size_in_bits()).CopyBits(region);
  }

  ALWAYS_INLINE void WriteBits(uint32_t value, size_t bit_length) {
    Allocate(bit_length).StoreBits(/* bit_offset */ 0, value, bit_length);
  }

  ALWAYS_INLINE void WriteBit(bool value) {
    Allocate(1).StoreBit(/* bit_offset */ 0, value);
  }

  template<size_t N>
  ALWAYS_INLINE void WriteInterleavedVarints(std::array<uint32_t, N> values) {
    // Write small values (or the number of bytes needed for the large values).
    for (uint32_t value : values) {
      if (value > kVarintMax) {
        WriteBits(kVarintMax + BitsToBytesRoundUp(MinimumBitsToStore(value)), kVarintBits);
      } else {
        WriteBits(value, kVarintBits);
      }
    }
    // Write large values.
    for (uint32_t value : values) {
      if (value > kVarintMax) {
        WriteBits(value, BitsToBytesRoundUp(MinimumBitsToStore(value)) * kBitsPerByte);
      }
    }
  }

  ALWAYS_INLINE void WriteVarint(uint32_t value) {
    WriteInterleavedVarints<1>({value});
  }

  void WriteBytesAligned(const uint8_t* bytes, size_t length) {
    DCHECK_ALIGNED(bit_start_, kBitsPerByte);
    DCHECK_ALIGNED(bit_offset_, kBitsPerByte);
    DCHECK_EQ(BitsToBytesRoundUp(bit_offset_), out_->size());
    out_->insert(out_->end(), bytes, bytes + length);
    bit_offset_ += length * kBitsPerByte;
  }

  ALWAYS_INLINE void ByteAlign() {
    DCHECK_ALIGNED(bit_start_, kBitsPerByte);
    bit_offset_ = RoundUp(bit_offset_, kBitsPerByte);
  }

 private:
  Vector* out_;
  size_t bit_start_;
  size_t bit_offset_;

  DISALLOW_COPY_AND_ASSIGN(BitMemoryWriter);
};

}  // namespace art

#endif  // ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_