1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_LIBARTBASE_BASE_BIT_VECTOR_H_
#define ART_LIBARTBASE_BASE_BIT_VECTOR_H_
#include <stdint.h>
#include <cstring>
#include <iterator>
#include "bit_utils.h"
#include "globals.h"
namespace art {
class Allocator;
class ArenaBitVector;
/*
* Expanding bitmap, used for tracking resources. Bits are numbered starting
* from zero. All operations on a BitVector are unsynchronized.
*/
class BitVector {
public:
static constexpr uint32_t kWordBytes = sizeof(uint32_t);
static constexpr uint32_t kWordBits = kWordBytes * 8;
class IndexContainer;
/**
* @brief Convenient iterator across the indexes of the BitVector's set bits.
*
* @details IndexIterator is a Forward iterator (C++11: 24.2.5) from the lowest
* to the highest index of the BitVector's set bits. Instances can be retrieved
* only through BitVector::Indexes() which returns an IndexContainer wrapper
* object with begin() and end() suitable for range-based loops:
* for (uint32_t idx : bit_vector.Indexes()) {
* // Use idx.
* }
*/
class IndexIterator :
public std::iterator<std::forward_iterator_tag, uint32_t, ptrdiff_t, void, uint32_t> {
public:
bool operator==(const IndexIterator& other) const;
bool operator!=(const IndexIterator& other) const {
return !(*this == other);
}
uint32_t operator*() const;
IndexIterator& operator++();
IndexIterator operator++(int);
// Helper function to check for end without comparing with bit_vector.Indexes().end().
bool Done() const {
return bit_index_ == BitSize();
}
private:
struct begin_tag { };
struct end_tag { };
IndexIterator(const BitVector* bit_vector, begin_tag);
IndexIterator(const BitVector* bit_vector, end_tag);
uint32_t BitSize() const {
return storage_size_ * kWordBits;
}
uint32_t FindIndex(uint32_t start_index) const;
const uint32_t* const bit_storage_;
const uint32_t storage_size_; // Size of vector in words.
uint32_t bit_index_; // Current index (size in bits).
friend class BitVector::IndexContainer;
};
/**
* @brief BitVector wrapper class for iteration across indexes of set bits.
*/
class IndexContainer {
public:
explicit IndexContainer(const BitVector* bit_vector) : bit_vector_(bit_vector) { }
IndexIterator begin() const;
IndexIterator end() const;
private:
const BitVector* const bit_vector_;
};
// MoveConstructible but not MoveAssignable, CopyConstructible or CopyAssignable.
BitVector(const BitVector& other) = delete;
BitVector& operator=(const BitVector& other) = delete;
BitVector(BitVector&& other) noexcept
: storage_(other.storage_),
storage_size_(other.storage_size_),
allocator_(other.allocator_),
expandable_(other.expandable_) {
other.storage_ = nullptr;
other.storage_size_ = 0u;
}
BitVector(uint32_t start_bits,
bool expandable,
Allocator* allocator);
BitVector(bool expandable,
Allocator* allocator,
uint32_t storage_size,
uint32_t* storage);
BitVector(const BitVector& src,
bool expandable,
Allocator* allocator);
virtual ~BitVector();
// The number of words necessary to encode bits.
static constexpr uint32_t BitsToWords(uint32_t bits) {
return RoundUp(bits, kWordBits) / kWordBits;
}
// Mark the specified bit as "set".
void SetBit(uint32_t idx) {
/*
* TUNING: this could have pathologically bad growth/expand behavior. Make sure we're
* not using it badly or change resize mechanism.
*/
if (idx >= storage_size_ * kWordBits) {
EnsureSize(idx);
}
storage_[WordIndex(idx)] |= BitMask(idx);
}
// Mark the specified bit as "unset".
void ClearBit(uint32_t idx) {
// If the index is over the size, we don't have to do anything, it is cleared.
if (idx < storage_size_ * kWordBits) {
// Otherwise, go ahead and clear it.
storage_[WordIndex(idx)] &= ~BitMask(idx);
}
}
// Determine whether or not the specified bit is set.
bool IsBitSet(uint32_t idx) const {
// If the index is over the size, whether it is expandable or not, this bit does not exist:
// thus it is not set.
return (idx < (storage_size_ * kWordBits)) && IsBitSet(storage_, idx);
}
// Mark all bits bit as "clear".
void ClearAllBits();
// Mark specified number of bits as "set". Cannot set all bits like ClearAll since there might
// be unused bits - setting those to one will confuse the iterator.
void SetInitialBits(uint32_t num_bits);
void Copy(const BitVector* src);
// Intersect with another bit vector.
void Intersect(const BitVector* src2);
// Union with another bit vector.
bool Union(const BitVector* src);
// Set bits of union_with that are not in not_in.
bool UnionIfNotIn(const BitVector* union_with, const BitVector* not_in);
void Subtract(const BitVector* src);
// Are we equal to another bit vector? Note: expandability attributes must also match.
bool Equal(const BitVector* src) const;
/**
* @brief Are all the bits set the same?
* @details expandability and size can differ as long as the same bits are set.
*/
bool SameBitsSet(const BitVector *src) const;
bool IsSubsetOf(const BitVector *other) const;
// Count the number of bits that are set.
uint32_t NumSetBits() const;
// Count the number of bits that are set in range [0, end).
uint32_t NumSetBits(uint32_t end) const;
IndexContainer Indexes() const {
return IndexContainer(this);
}
uint32_t GetStorageSize() const {
return storage_size_;
}
bool IsExpandable() const {
return expandable_;
}
uint32_t GetRawStorageWord(size_t idx) const {
return storage_[idx];
}
uint32_t* GetRawStorage() {
return storage_;
}
const uint32_t* GetRawStorage() const {
return storage_;
}
size_t GetSizeOf() const {
return storage_size_ * kWordBytes;
}
size_t GetBitSizeOf() const {
return storage_size_ * kWordBits;
}
/**
* @return the highest bit set, -1 if none are set
*/
int GetHighestBitSet() const;
/**
* @return true if there are any bits set, false otherwise.
*/
bool IsAnyBitSet() const {
return GetHighestBitSet() != -1;
}
// Minimum number of bits required to store this vector, 0 if none are set.
size_t GetNumberOfBits() const {
return GetHighestBitSet() + 1;
}
// Is bit set in storage. (No range check.)
static bool IsBitSet(const uint32_t* storage, uint32_t idx) {
return (storage[WordIndex(idx)] & BitMask(idx)) != 0;
}
// Number of bits set in range [0, end) in storage. (No range check.)
static uint32_t NumSetBits(const uint32_t* storage, uint32_t end);
// Fill given memory region with the contents of the vector and zero padding.
void CopyTo(void* dst, size_t len) const {
DCHECK_LE(static_cast<size_t>(GetHighestBitSet() + 1), len * kBitsPerByte);
size_t vec_len = GetSizeOf();
if (vec_len < len) {
void* dst_padding = reinterpret_cast<uint8_t*>(dst) + vec_len;
memcpy(dst, storage_, vec_len);
memset(dst_padding, 0, len - vec_len);
} else {
memcpy(dst, storage_, len);
}
}
void Dump(std::ostream& os, const char* prefix) const;
Allocator* GetAllocator() const;
private:
/**
* @brief Dump the bitvector into buffer in a 00101..01 format.
* @param buffer the ostringstream used to dump the bitvector into.
*/
void DumpHelper(const char* prefix, std::ostringstream& buffer) const;
// Ensure there is space for a bit at idx.
void EnsureSize(uint32_t idx);
// The index of the word within storage.
static constexpr uint32_t WordIndex(uint32_t idx) {
return idx >> 5;
}
// A bit mask to extract the bit for the given index.
static constexpr uint32_t BitMask(uint32_t idx) {
return 1 << (idx & 0x1f);
}
uint32_t* storage_; // The storage for the bit vector.
uint32_t storage_size_; // Current size, in 32-bit words.
Allocator* const allocator_; // Allocator if expandable.
const bool expandable_; // Should the bitmap expand if too small?
};
// Helper for dealing with 2d bit-vector arrays packed into a single bit-vec
class BaseBitVectorArray {
public:
BaseBitVectorArray(const BaseBitVectorArray& bv) = default;
BaseBitVectorArray& operator=(const BaseBitVectorArray& other) = default;
BaseBitVectorArray() : num_columns_(0), num_rows_(0) {}
BaseBitVectorArray(size_t num_rows, size_t num_columns)
: num_columns_(RoundUp(num_columns, BitVector::kWordBits)), num_rows_(num_rows) {}
virtual ~BaseBitVectorArray() {}
bool IsExpandable() const {
return GetRawData().IsExpandable();
}
// Let subclasses provide storage for various types.
virtual const BitVector& GetRawData() const = 0;
virtual BitVector& GetRawData() = 0;
size_t NumRows() const {
return num_rows_;
}
// NB This might be more than the requested size for alignment purposes.
size_t NumColumns() const {
return num_columns_;
}
void Clear() {
GetRawData().ClearAllBits();
}
// Ensure that we can set all bits in the given range. The actual number of
// columns might be larger than requested for alignment purposes.
void Resize(size_t rows, size_t cols, bool clear = true);
void SetBit(size_t row, size_t col) {
DCHECK_LT(col, num_columns_);
DCHECK_LT(row, num_rows_);
GetRawData().SetBit(row * num_columns_ + col);
}
void ClearBit(size_t row, size_t col) {
DCHECK_LT(col, num_columns_);
DCHECK_LT(row, num_rows_);
GetRawData().ClearBit(row * num_columns_ + col);
}
bool IsBitSet(size_t row, size_t col) const {
DCHECK_LT(col, num_columns_);
DCHECK_LT(row, num_rows_);
return GetRawData().IsBitSet(row * num_columns_ + col);
}
// Union the vector of 'other' into 'dest_row'.
void UnionRows(size_t dest_row, size_t other);
static size_t RequiredBitVectorSize(size_t rows, size_t cols) {
return rows * RoundUp(cols, BitVector::kWordBits);
}
static size_t MaxRowsFor(const BitVector& bv, size_t cols) {
return cols != 0 ? bv.GetBitSizeOf() / RoundUp(cols, BitVector::kWordBits) : 0;
}
private:
size_t num_columns_;
size_t num_rows_;
};
// A BitVectorArray with a standard owned BitVector providing the backing
// storage. This should be used when the BitVectorArray is the owner of the
// whole BitVector and should use standard allocators for cleanup/allocation.
// Contrast this with ArenaBitVectorArray which uses arena allocators.
class BitVectorArray final : public BaseBitVectorArray {
public:
BitVectorArray(const BitVectorArray& bv) = delete;
BitVectorArray& operator=(const BitVectorArray& other) = delete;
explicit BitVectorArray(BitVector&& bv) : BaseBitVectorArray(), data_(std::move(bv)) {}
explicit BitVectorArray(BitVector&& bv, size_t cols)
: BaseBitVectorArray(BaseBitVectorArray::MaxRowsFor(bv, cols), cols), data_(std::move(bv)) {}
explicit BitVectorArray(BitVector&& bv, size_t rows, size_t cols)
: BaseBitVectorArray(rows, cols), data_(std::move(bv)) {}
BitVectorArray(uint32_t start_rows, uint32_t start_cols, bool expandable, Allocator* allocator)
: BaseBitVectorArray(start_rows, start_cols),
data_(BaseBitVectorArray::RequiredBitVectorSize(start_rows, start_cols),
expandable,
allocator) {}
BitVectorArray(const BaseBitVectorArray& src, bool expandable, Allocator* allocator)
: BaseBitVectorArray(src.NumRows(), src.NumColumns()),
data_(src.GetRawData(), expandable, allocator) {}
~BitVectorArray() override {}
const BitVector& GetRawData() const override {
return data_;
}
BitVector& GetRawData() override {
return data_;
}
private:
BitVector data_;
};
// A bit vector array that uses an unowned BitVector reference as it's backing
// data.
class BitVectorArrayWrapper final : public BaseBitVectorArray {
public:
BitVectorArrayWrapper& operator=(BitVectorArrayWrapper& other) = default;
BitVectorArrayWrapper(BitVectorArrayWrapper&) = default;
explicit BitVectorArrayWrapper(BitVector* bv) : BaseBitVectorArray(), data_(bv) {}
explicit BitVectorArrayWrapper(BitVector* bv, size_t cols)
: BaseBitVectorArray(BaseBitVectorArray::MaxRowsFor(*bv, cols), cols), data_(bv) {}
explicit BitVectorArrayWrapper(BitVector* bv, size_t rows, size_t cols)
: BaseBitVectorArray(rows, cols), data_(bv) {}
~BitVectorArrayWrapper() override {}
const BitVector& GetRawData() const override {
return *data_;
}
BitVector& GetRawData() override {
return *data_;
}
private:
BitVector* data_;
};
} // namespace art
#endif // ART_LIBARTBASE_BASE_BIT_VECTOR_H_
|