File: stl_util.h

package info (click to toggle)
android-platform-art 14.0.0%2Br15-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 96,788 kB
  • sloc: cpp: 522,217; java: 194,312; asm: 28,950; python: 14,910; xml: 5,087; sh: 4,528; ansic: 4,035; makefile: 111; perl: 77
file content (382 lines) | stat: -rw-r--r-- 12,838 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_LIBARTBASE_BASE_STL_UTIL_H_
#define ART_LIBARTBASE_BASE_STL_UTIL_H_

#include <algorithm>
#include <iterator>
#include <set>
#include <sstream>
#include <optional>

#include <android-base/logging.h>

#include "base/iteration_range.h"

namespace art {

// STLDeleteContainerPointers()
//  For a range within a container of pointers, calls delete
//  (non-array version) on these pointers.
// NOTE: for these three functions, we could just implement a DeleteObject
// functor and then call for_each() on the range and functor, but this
// requires us to pull in all of algorithm.h, which seems expensive.
// For hash_[multi]set, it is important that this deletes behind the iterator
// because the hash_set may call the hash function on the iterator when it is
// advanced, which could result in the hash function trying to deference a
// stale pointer.
template <class ForwardIterator>
void STLDeleteContainerPointers(ForwardIterator begin,
                                ForwardIterator end) {
  while (begin != end) {
    ForwardIterator temp = begin;
    ++begin;
    delete *temp;
  }
}

// STLDeleteElements() deletes all the elements in an STL container and clears
// the container.  This function is suitable for use with a vector, set,
// hash_set, or any other STL container which defines sensible begin(), end(),
// and clear() methods.
//
// If container is null, this function is a no-op.
//
// As an alternative to calling STLDeleteElements() directly, consider
// using a container of std::unique_ptr, which ensures that your container's
// elements are deleted when the container goes out of scope.
template <class T>
void STLDeleteElements(T *container) {
  if (container != nullptr) {
    STLDeleteContainerPointers(container->begin(), container->end());
    container->clear();
  }
}

// Given an STL container consisting of (key, value) pairs, STLDeleteValues
// deletes all the "value" components and clears the container.  Does nothing
// in the case it's given a null pointer.
template <class T>
void STLDeleteValues(T *v) {
  if (v != nullptr) {
    for (typename T::iterator i = v->begin(); i != v->end(); ++i) {
      delete i->second;
    }
    v->clear();
  }
}

// Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below.
struct FreeDelete {
  // NOTE: Deleting a const object is valid but free() takes a non-const pointer.
  void operator()(const void* ptr) const {
    free(const_cast<void*>(ptr));
  }
};

// Alias for std::unique_ptr<> that uses the C function free() to delete objects.
template <typename T>
using UniqueCPtr = std::unique_ptr<T, FreeDelete>;

// Find index of the first element with the specified value known to be in the container.
template <typename Container, typename T>
size_t IndexOfElement(const Container& container, const T& value) {
  auto it = std::find(container.begin(), container.end(), value);
  DCHECK(it != container.end());  // Must exist.
  return std::distance(container.begin(), it);
}

// Remove the first element with the specified value known to be in the container.
template <typename Container, typename T>
void RemoveElement(Container& container, const T& value) {
  auto it = std::find(container.begin(), container.end(), value);
  DCHECK(it != container.end());  // Must exist.
  container.erase(it);
}

// Replace the first element with the specified old_value known to be in the container.
template <typename Container, typename T>
void ReplaceElement(Container& container, const T& old_value, const T& new_value) {
  auto it = std::find(container.begin(), container.end(), old_value);
  DCHECK(it != container.end());  // Must exist.
  *it = new_value;
}

// Search for an element with the specified value and return true if it was found, false otherwise.
template <typename Container, typename T>
bool ContainsElement(const Container& container, const T& value, size_t start_pos = 0u) {
  DCHECK_LE(start_pos, container.size());
  auto start = container.begin();
  std::advance(start, start_pos);
  auto it = std::find(start, container.end(), value);
  return it != container.end();
}

template <typename T>
bool ContainsElement(const std::set<T>& container, const T& value) {
  return container.count(value) != 0u;
}

// 32-bit FNV-1a hash function suitable for std::unordered_map.
// It can be used with any container which works with range-based for loop.
// See http://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
template <typename Vector>
struct FNVHash {
  size_t operator()(const Vector& vector) const {
    uint32_t hash = 2166136261u;
    for (const auto& value : vector) {
      hash = (hash ^ value) * 16777619u;
    }
    return hash;
  }
};

// Returns a copy of the passed vector that doesn't memory-own its entries.
template <typename T>
static inline std::vector<T*> MakeNonOwningPointerVector(const std::vector<std::unique_ptr<T>>& src) {
  std::vector<T*> result;
  result.reserve(src.size());
  for (const std::unique_ptr<T>& t : src) {
    result.push_back(t.get());
  }
  return result;
}

template <typename IterLeft, typename IterRight>
class ZipLeftIter : public std::iterator<
                        std::forward_iterator_tag,
                        std::pair<typename IterLeft::value_type, typename IterRight::value_type>> {
 public:
  ZipLeftIter(IterLeft left, IterRight right) : left_iter_(left), right_iter_(right) {}
  ZipLeftIter<IterLeft, IterRight>& operator++() {
    ++left_iter_;
    ++right_iter_;
    return *this;
  }
  ZipLeftIter<IterLeft, IterRight> operator++(int) {
    ZipLeftIter<IterLeft, IterRight> ret(left_iter_, right_iter_);
    ++(*this);
    return ret;
  }
  bool operator==(const ZipLeftIter<IterLeft, IterRight>& other) const {
    return left_iter_ == other.left_iter_;
  }
  bool operator!=(const ZipLeftIter<IterLeft, IterRight>& other) const {
    return !(*this == other);
  }
  std::pair<typename IterLeft::value_type, typename IterRight::value_type> operator*() const {
    return std::make_pair(*left_iter_, *right_iter_);
  }

 private:
  IterLeft left_iter_;
  IterRight right_iter_;
};

class CountIter : public std::iterator<std::forward_iterator_tag, size_t, size_t, size_t, size_t> {
 public:
  CountIter() : count_(0) {}
  explicit CountIter(size_t count) : count_(count) {}
  CountIter& operator++() {
    ++count_;
    return *this;
  }
  CountIter operator++(int) {
    size_t ret = count_;
    ++count_;
    return CountIter(ret);
  }
  bool operator==(const CountIter& other) const {
    return count_ == other.count_;
  }
  bool operator!=(const CountIter& other) const {
    return !(*this == other);
  }
  size_t operator*() const {
    return count_;
  }

 private:
  size_t count_;
};

// Make an iteration range that returns a pair of the element and the index of the element.
template <typename Iter>
static inline IterationRange<ZipLeftIter<Iter, CountIter>> ZipCount(IterationRange<Iter> iter) {
  return IterationRange(ZipLeftIter(iter.begin(), CountIter(0)),
                        ZipLeftIter(iter.end(), CountIter(-1)));
}

// Make an iteration range that returns a pair of the outputs of two iterators. Stops when the first
// (left) one is exhausted. The left iterator must be at least as long as the right one.
template <typename IterLeft, typename IterRight>
static inline IterationRange<ZipLeftIter<IterLeft, IterRight>> ZipLeft(
    IterationRange<IterLeft> iter_left, IterationRange<IterRight> iter_right) {
  return IterationRange(ZipLeftIter(iter_left.begin(), iter_right.begin()),
                        ZipLeftIter(iter_left.end(), iter_right.end()));
}

static inline IterationRange<CountIter> Range(size_t start, size_t end) {
  return IterationRange(CountIter(start), CountIter(end));
}

static inline IterationRange<CountIter> Range(size_t end) {
  return Range(0, end);
}

template <typename RealIter, typename Filter>
struct FilterIterator
    : public std::iterator<std::forward_iterator_tag, typename RealIter::value_type> {
 public:
  FilterIterator(RealIter rl,
                 Filter cond,
                 std::optional<RealIter> end = std::nullopt)
      : real_iter_(rl), cond_(cond), end_(end) {
    DCHECK(std::make_optional(rl) == end_ || cond_(*real_iter_));
  }

  FilterIterator<RealIter, Filter>& operator++() {
    DCHECK(std::make_optional(real_iter_) != end_);
    do {
      if (std::make_optional(++real_iter_) == end_) {
        break;
      }
    } while (!cond_(*real_iter_));
    return *this;
  }
  FilterIterator<RealIter, Filter> operator++(int) {
    FilterIterator<RealIter, Filter> ret(real_iter_, cond_, end_);
    ++(*this);
    return ret;
  }
  bool operator==(const FilterIterator<RealIter, Filter>& other) const {
    return real_iter_ == other.real_iter_;
  }
  bool operator!=(const FilterIterator<RealIter, Filter>& other) const {
    return !(*this == other);
  }
  typename RealIter::value_type operator*() const {
    return *real_iter_;
  }

 private:
  RealIter real_iter_;
  Filter cond_;
  std::optional<RealIter> end_;
};

template <typename BaseRange, typename FilterT>
static inline auto Filter(BaseRange&& range, FilterT cond) {
  auto end = range.end();
  auto start = std::find_if(range.begin(), end, cond);
  return MakeIterationRange(FilterIterator(start, cond, std::make_optional(end)),
                            FilterIterator(end, cond, std::make_optional(end)));
}

template <typename Val>
struct NonNullFilter {
 public:
  static_assert(std::is_pointer_v<Val>, "Must be pointer type!");
  constexpr bool operator()(Val v) const {
    return v != nullptr;
  }
};

template <typename InnerIter>
using FilterNull = FilterIterator<InnerIter, NonNullFilter<typename InnerIter::value_type>>;

template <typename InnerIter>
static inline IterationRange<FilterNull<InnerIter>> FilterOutNull(IterationRange<InnerIter> inner) {
  return Filter(inner, NonNullFilter<typename InnerIter::value_type>());
}

template <typename Val>
struct SafePrinter  {
  const Val* val_;
};

template<typename Val>
std::ostream& operator<<(std::ostream& os, const SafePrinter<Val>& v) {
  if (v.val_ == nullptr) {
    return os << "NULL";
  } else {
    return os << *v.val_;
  }
}

template<typename Val>
SafePrinter<Val> SafePrint(const Val* v) {
  return SafePrinter<Val>{v};
}

// Helper struct for iterating a split-string without allocation.
struct SplitStringIter : public std::iterator<std::forward_iterator_tag, std::string_view> {
 public:
  // Direct iterator constructor. The iteration state is only the current index.
  // We use that with the split char and the full string to get the current and
  // next segment.
  SplitStringIter(size_t index, char split, std::string_view sv)
      : cur_index_(index), split_on_(split), sv_(sv) {}
  SplitStringIter(const SplitStringIter&) = default;
  SplitStringIter(SplitStringIter&&) = default;
  SplitStringIter& operator=(SplitStringIter&&) = default;
  SplitStringIter& operator=(const SplitStringIter&) = default;

  SplitStringIter& operator++() {
    size_t nxt = sv_.find(split_on_, cur_index_);
    if (nxt == std::string_view::npos) {
      cur_index_ = std::string_view::npos;
    } else {
      cur_index_ = nxt + 1;
    }
    return *this;
  }

  SplitStringIter operator++(int) {
    SplitStringIter ret(cur_index_, split_on_, sv_);
    ++(*this);
    return ret;
  }

  bool operator==(const SplitStringIter& other) const {
    return sv_ == other.sv_ && split_on_ == other.split_on_ && cur_index_== other.cur_index_;
  }

  bool operator!=(const SplitStringIter& other) const {
    return !(*this == other);
  }

  typename std::string_view operator*() const {
    return sv_.substr(cur_index_, sv_.substr(cur_index_).find(split_on_));
  }

 private:
  size_t cur_index_;
  char split_on_;
  std::string_view sv_;
};

// Create an iteration range over the string 'sv' split at each 'target' occurrence.
// Eg: SplitString(":foo::bar") -> ["", "foo", "", "bar"]
inline IterationRange<SplitStringIter> SplitString(std::string_view sv, char target) {
  return MakeIterationRange(SplitStringIter(0, target, sv),
                            SplitStringIter(std::string_view::npos, target, sv));
}

}  // namespace art

#endif  // ART_LIBARTBASE_BASE_STL_UTIL_H_