1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex_file_loader.h"
#include <sys/stat.h>
#include <memory>
#include <optional>
#include "android-base/stringprintf.h"
#include "base/bit_utils.h"
#include "base/file_magic.h"
#include "base/mem_map.h"
#include "base/os.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/unix_file/fd_file.h"
#include "base/zip_archive.h"
#include "compact_dex_file.h"
#include "dex_file.h"
#include "dex_file_verifier.h"
#include "standard_dex_file.h"
namespace art {
#if defined(STATIC_LIB)
#define DEXFILE_SCOPED_TRACE(name)
#else
#define DEXFILE_SCOPED_TRACE(name) ScopedTrace trace(name)
#endif
namespace {
// Technically we do not have a limitation with respect to the number of dex files that can be in a
// multidex APK. However, it's bad practice, as each dex file requires its own tables for symbols
// (types, classes, methods, ...) and dex caches. So warn the user that we open a zip with what
// seems an excessive number.
static constexpr size_t kWarnOnManyDexFilesThreshold = 100;
using android::base::StringPrintf;
class VectorContainer : public DexFileContainer {
public:
explicit VectorContainer(std::vector<uint8_t>&& vector) : vector_(std::move(vector)) { }
~VectorContainer() override { }
bool IsReadOnly() const override { return true; }
bool EnableWrite() override { return true; }
bool DisableWrite() override { return false; }
const uint8_t* Begin() const override { return vector_.data(); }
const uint8_t* End() const override { return vector_.data() + vector_.size(); }
private:
std::vector<uint8_t> vector_;
DISALLOW_COPY_AND_ASSIGN(VectorContainer);
};
class MemMapContainer : public DexFileContainer {
public:
explicit MemMapContainer(MemMap&& mem_map, bool is_file_map = false)
: mem_map_(std::move(mem_map)), is_file_map_(is_file_map) {}
int GetPermissions() const {
if (!mem_map_.IsValid()) {
return 0;
} else {
return mem_map_.GetProtect();
}
}
bool IsReadOnly() const override { return GetPermissions() == PROT_READ; }
bool EnableWrite() override {
CHECK(IsReadOnly());
if (!mem_map_.IsValid()) {
return false;
} else {
return mem_map_.Protect(PROT_READ | PROT_WRITE);
}
}
bool DisableWrite() override {
CHECK(!IsReadOnly());
if (!mem_map_.IsValid()) {
return false;
} else {
return mem_map_.Protect(PROT_READ);
}
}
const uint8_t* Begin() const override { return mem_map_.Begin(); }
const uint8_t* End() const override { return mem_map_.End(); }
bool IsFileMap() const override { return is_file_map_; }
protected:
MemMap mem_map_;
bool is_file_map_;
DISALLOW_COPY_AND_ASSIGN(MemMapContainer);
};
} // namespace
bool DexFileLoader::IsMagicValid(uint32_t magic) {
return IsMagicValid(reinterpret_cast<uint8_t*>(&magic));
}
bool DexFileLoader::IsMagicValid(const uint8_t* magic) {
return StandardDexFile::IsMagicValid(magic) ||
CompactDexFile::IsMagicValid(magic);
}
bool DexFileLoader::IsVersionAndMagicValid(const uint8_t* magic) {
if (StandardDexFile::IsMagicValid(magic)) {
return StandardDexFile::IsVersionValid(magic);
}
if (CompactDexFile::IsMagicValid(magic)) {
return CompactDexFile::IsVersionValid(magic);
}
return false;
}
bool DexFileLoader::IsMultiDexLocation(const char* location) {
return strrchr(location, kMultiDexSeparator) != nullptr;
}
std::string DexFileLoader::GetMultiDexClassesDexName(size_t index) {
return (index == 0) ? "classes.dex" : StringPrintf("classes%zu.dex", index + 1);
}
std::string DexFileLoader::GetMultiDexLocation(size_t index, const char* dex_location) {
return (index == 0)
? dex_location
: StringPrintf("%s%cclasses%zu.dex", dex_location, kMultiDexSeparator, index + 1);
}
std::string DexFileLoader::GetDexCanonicalLocation(const char* dex_location) {
CHECK_NE(dex_location, static_cast<const char*>(nullptr));
std::string base_location = GetBaseLocation(dex_location);
const char* suffix = dex_location + base_location.size();
DCHECK(suffix[0] == 0 || suffix[0] == kMultiDexSeparator);
#ifdef _WIN32
// Warning: No symbolic link processing here.
PLOG(WARNING) << "realpath is unsupported on Windows.";
#else
// Warning: Bionic implementation of realpath() allocates > 12KB on the stack.
// Do not run this code on a small stack, e.g. in signal handler.
UniqueCPtr<const char[]> path(realpath(base_location.c_str(), nullptr));
if (path != nullptr && path.get() != base_location) {
return std::string(path.get()) + suffix;
}
#endif
if (suffix[0] == 0) {
return base_location;
} else {
return dex_location;
}
}
// All of the implementations here should be independent of the runtime.
DexFileLoader::DexFileLoader(const uint8_t* base, size_t size, const std::string& location)
: DexFileLoader(std::make_shared<MemoryDexFileContainer>(base, base + size), location) {}
DexFileLoader::DexFileLoader(std::vector<uint8_t>&& memory, const std::string& location)
: DexFileLoader(std::make_shared<VectorContainer>(std::move(memory)), location) {}
DexFileLoader::DexFileLoader(MemMap&& mem_map, const std::string& location)
: DexFileLoader(std::make_shared<MemMapContainer>(std::move(mem_map)), location) {}
std::unique_ptr<const DexFile> DexFileLoader::Open(uint32_t location_checksum,
const OatDexFile* oat_dex_file,
bool verify,
bool verify_checksum,
std::string* error_msg) {
DEXFILE_SCOPED_TRACE(std::string("Open dex file ") + location_);
uint32_t magic;
if (!InitAndReadMagic(&magic, error_msg) || !MapRootContainer(error_msg)) {
DCHECK(!error_msg->empty());
return {};
}
DCHECK(root_container_ != nullptr);
std::unique_ptr<const DexFile> dex_file = OpenCommon(root_container_,
root_container_->Begin(),
root_container_->Size(),
location_,
location_checksum,
oat_dex_file,
verify,
verify_checksum,
error_msg,
nullptr);
return dex_file;
}
bool DexFileLoader::InitAndReadMagic(uint32_t* magic, std::string* error_msg) {
if (root_container_ != nullptr) {
if (root_container_->Size() < sizeof(uint32_t)) {
*error_msg = StringPrintf("Unable to open '%s' : Size is too small", location_.c_str());
return false;
}
*magic = *reinterpret_cast<const uint32_t*>(root_container_->Begin());
} else {
// Open the file if we have not been given the file-descriptor directly before.
if (!file_.has_value()) {
CHECK(!filename_.empty());
file_.emplace(filename_, O_RDONLY, /* check_usage= */ false);
if (file_->Fd() == -1) {
*error_msg = StringPrintf("Unable to open '%s' : %s", filename_.c_str(), strerror(errno));
return false;
}
}
if (!ReadMagicAndReset(file_->Fd(), magic, error_msg)) {
return false;
}
}
return true;
}
bool DexFileLoader::MapRootContainer(std::string* error_msg) {
if (root_container_ != nullptr) {
return true;
}
CHECK(MemMap::IsInitialized());
CHECK(file_.has_value());
struct stat sbuf;
memset(&sbuf, 0, sizeof(sbuf));
if (fstat(file_->Fd(), &sbuf) == -1) {
*error_msg = StringPrintf("DexFile: fstat '%s' failed: %s", filename_.c_str(), strerror(errno));
return false;
}
if (S_ISDIR(sbuf.st_mode)) {
*error_msg = StringPrintf("Attempt to mmap directory '%s'", filename_.c_str());
return false;
}
MemMap map = MemMap::MapFile(sbuf.st_size,
PROT_READ,
MAP_PRIVATE,
file_->Fd(),
0,
/*low_4gb=*/false,
filename_.c_str(),
error_msg);
if (!map.IsValid()) {
DCHECK(!error_msg->empty());
return false;
}
root_container_ = std::make_shared<MemMapContainer>(std::move(map));
return true;
}
bool DexFileLoader::Open(bool verify,
bool verify_checksum,
bool allow_no_dex_files,
DexFileLoaderErrorCode* error_code,
std::string* error_msg,
std::vector<std::unique_ptr<const DexFile>>* dex_files) {
DEXFILE_SCOPED_TRACE(std::string("Open dex file ") + location_);
DCHECK(dex_files != nullptr) << "DexFile::Open: out-param is nullptr";
uint32_t magic;
if (!InitAndReadMagic(&magic, error_msg)) {
return false;
}
if (IsZipMagic(magic)) {
std::unique_ptr<ZipArchive> zip_archive(
file_.has_value() ?
ZipArchive::OpenFromOwnedFd(file_->Fd(), location_.c_str(), error_msg) :
ZipArchive::OpenFromMemory(
root_container_->Begin(), root_container_->Size(), location_.c_str(), error_msg));
if (zip_archive.get() == nullptr) {
DCHECK(!error_msg->empty());
return false;
}
for (size_t i = 0;; ++i) {
std::string name = GetMultiDexClassesDexName(i);
std::string multidex_location = GetMultiDexLocation(i, location_.c_str());
bool ok = OpenFromZipEntry(*zip_archive,
name.c_str(),
multidex_location,
verify,
verify_checksum,
error_code,
error_msg,
dex_files);
if (!ok) {
// We keep opening consecutive dex entries as long as we can (until entry is not found).
if (*error_code == DexFileLoaderErrorCode::kEntryNotFound) {
// Success if we loaded at least one entry, or if empty zip is explicitly allowed.
return i > 0 || allow_no_dex_files;
}
return false;
}
if (i == kWarnOnManyDexFilesThreshold) {
LOG(WARNING) << location_ << " has in excess of " << kWarnOnManyDexFilesThreshold
<< " dex files. Please consider coalescing and shrinking the number to "
" avoid runtime overhead.";
}
}
}
if (IsMagicValid(magic)) {
if (!MapRootContainer(error_msg)) {
return false;
}
DCHECK(root_container_ != nullptr);
std::unique_ptr<const DexFile> dex_file =
OpenCommon(root_container_,
root_container_->Begin(),
root_container_->Size(),
location_,
/*location_checksum*/ {}, // Use default checksum from dex header.
/*oat_dex_file=*/nullptr,
verify,
verify_checksum,
error_msg,
nullptr);
if (dex_file.get() != nullptr) {
dex_files->push_back(std::move(dex_file));
return true;
} else {
return false;
}
}
*error_msg = StringPrintf("Expected valid zip or dex file");
return false;
}
std::unique_ptr<DexFile> DexFileLoader::OpenCommon(std::shared_ptr<DexFileContainer> container,
const uint8_t* base,
size_t size,
const std::string& location,
std::optional<uint32_t> location_checksum,
const OatDexFile* oat_dex_file,
bool verify,
bool verify_checksum,
std::string* error_msg,
DexFileLoaderErrorCode* error_code) {
if (container == nullptr) {
// We should never pass null here, but use reasonable default for app compat anyway.
container = std::make_shared<MemoryDexFileContainer>(base, size);
}
if (error_code != nullptr) {
*error_code = DexFileLoaderErrorCode::kDexFileError;
}
std::unique_ptr<DexFile> dex_file;
auto header = reinterpret_cast<const DexFile::Header*>(base);
if (size >= sizeof(StandardDexFile::Header) && StandardDexFile::IsMagicValid(base)) {
uint32_t checksum = location_checksum.value_or(header->checksum_);
dex_file.reset(new StandardDexFile(base, size, location, checksum, oat_dex_file, container));
} else if (size >= sizeof(CompactDexFile::Header) && CompactDexFile::IsMagicValid(base)) {
uint32_t checksum = location_checksum.value_or(header->checksum_);
dex_file.reset(new CompactDexFile(base, size, location, checksum, oat_dex_file, container));
} else {
*error_msg = StringPrintf("Invalid or truncated dex file '%s'", location.c_str());
}
if (dex_file == nullptr) {
*error_msg =
StringPrintf("Failed to open dex file '%s': %s", location.c_str(), error_msg->c_str());
return nullptr;
}
if (!dex_file->Init(error_msg)) {
dex_file.reset();
return nullptr;
}
// NB: Dex verifier does not understand the compact dex format.
if (verify && !dex_file->IsCompactDexFile()) {
DEXFILE_SCOPED_TRACE(std::string("Verify dex file ") + location);
if (!dex::Verify(dex_file.get(), location.c_str(), verify_checksum, error_msg)) {
if (error_code != nullptr) {
*error_code = DexFileLoaderErrorCode::kVerifyError;
}
return nullptr;
}
}
if (error_code != nullptr) {
*error_code = DexFileLoaderErrorCode::kNoError;
}
return dex_file;
}
bool DexFileLoader::OpenFromZipEntry(const ZipArchive& zip_archive,
const char* entry_name,
const std::string& location,
bool verify,
bool verify_checksum,
DexFileLoaderErrorCode* error_code,
std::string* error_msg,
std::vector<std::unique_ptr<const DexFile>>* dex_files) const {
CHECK(!location.empty());
std::unique_ptr<ZipEntry> zip_entry(zip_archive.Find(entry_name, error_msg));
if (zip_entry == nullptr) {
*error_code = DexFileLoaderErrorCode::kEntryNotFound;
return false;
}
if (zip_entry->GetUncompressedLength() == 0) {
*error_msg = StringPrintf("Dex file '%s' has zero length", location.c_str());
*error_code = DexFileLoaderErrorCode::kDexFileError;
return false;
}
CHECK(MemMap::IsInitialized());
MemMap map;
bool is_file_map = false;
if (file_.has_value() && zip_entry->IsUncompressed()) {
if (!zip_entry->IsAlignedTo(alignof(DexFile::Header))) {
// Do not mmap unaligned ZIP entries because
// doing so would fail dex verification which requires 4 byte alignment.
LOG(WARNING) << "Can't mmap dex file " << location << "!" << entry_name << " directly; "
<< "please zipalign to " << alignof(DexFile::Header) << " bytes. "
<< "Falling back to extracting file.";
} else {
// Map uncompressed files within zip as file-backed to avoid a dirty copy.
map = zip_entry->MapDirectlyFromFile(location.c_str(), /*out*/ error_msg);
if (!map.IsValid()) {
LOG(WARNING) << "Can't mmap dex file " << location << "!" << entry_name << " directly; "
<< "is your ZIP file corrupted? Falling back to extraction.";
// Try again with Extraction which still has a chance of recovery.
}
is_file_map = true;
}
}
if (!map.IsValid()) {
DEXFILE_SCOPED_TRACE(std::string("Extract dex file ") + location);
// Default path for compressed ZIP entries,
// and fallback for stored ZIP entries.
map = zip_entry->ExtractToMemMap(location.c_str(), entry_name, error_msg);
}
if (!map.IsValid()) {
*error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", entry_name, location.c_str(),
error_msg->c_str());
*error_code = DexFileLoaderErrorCode::kExtractToMemoryError;
return false;
}
auto container = std::make_shared<MemMapContainer>(std::move(map), is_file_map);
container->SetIsZip();
if (!container->DisableWrite()) {
*error_msg = StringPrintf("Failed to make dex file '%s' read only", location.c_str());
*error_code = DexFileLoaderErrorCode::kMakeReadOnlyError;
return false;
}
std::unique_ptr<const DexFile> dex_file = OpenCommon(container,
container->Begin(),
container->Size(),
location,
zip_entry->GetCrc32(),
/*oat_dex_file=*/nullptr,
verify,
verify_checksum,
error_msg,
error_code);
if (dex_file == nullptr) {
return false;
}
CHECK(dex_file->IsReadOnly()) << location;
dex_files->push_back(std::move(dex_file));
return true;
}
std::unique_ptr<const DexFile> DexFileLoader::Open(
const uint8_t* base,
size_t size,
const std::string& location,
uint32_t location_checksum,
const OatDexFile* oat_dex_file,
bool verify,
bool verify_checksum,
std::string* error_msg,
std::unique_ptr<DexFileContainer> container) const {
return OpenCommon(base,
size,
/*data_base=*/nullptr,
/*data_size=*/0,
location,
location_checksum,
oat_dex_file,
verify,
verify_checksum,
error_msg,
std::move(container),
/*verify_result=*/nullptr);
}
std::unique_ptr<DexFile> DexFileLoader::OpenCommon(const uint8_t* base,
size_t size,
const uint8_t* data_base,
size_t data_size,
const std::string& location,
uint32_t location_checksum,
const OatDexFile* oat_dex_file,
bool verify,
bool verify_checksum,
std::string* error_msg,
std::unique_ptr<DexFileContainer> old_container,
VerifyResult* verify_result) {
CHECK(data_base == base || data_base == nullptr);
CHECK(data_size == size || data_size == 0);
CHECK(verify_result == nullptr);
// The provided container probably does implent the new API.
// We don't use it, but let's at least call its destructor.
struct NewContainer : public MemoryDexFileContainer {
using MemoryDexFileContainer::MemoryDexFileContainer; // ctor.
std::unique_ptr<DexFileContainer> old_container_ = nullptr;
};
auto new_container = std::make_shared<NewContainer>(base, size);
new_container->old_container_ = std::move(old_container);
return OpenCommon(std::move(new_container),
base,
size,
location,
location_checksum,
oat_dex_file,
verify,
verify_checksum,
error_msg,
/*error_code=*/nullptr);
}
} // namespace art
|