File: debugger.cc

package info (click to toggle)
android-platform-art 14.0.0%2Br15-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 96,788 kB
  • sloc: cpp: 522,217; java: 194,312; asm: 28,950; python: 14,910; xml: 5,087; sh: 4,528; ansic: 4,035; makefile: 111; perl: 77
file content (1097 lines) | stat: -rw-r--r-- 39,060 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "debugger.h"

#include <sys/uio.h>

#include <functional>
#include <memory>
#include <set>
#include <vector>

#include "android-base/macros.h"
#include "android-base/stringprintf.h"

#include "arch/context.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/endian_utils.h"
#include "base/enums.h"
#include "base/logging.h"
#include "base/memory_tool.h"
#include "base/safe_map.h"
#include "base/time_utils.h"
#include "class_linker-inl.h"
#include "class_linker.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_annotations.h"
#include "dex/dex_file_types.h"
#include "dex/dex_instruction.h"
#include "dex/utf.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/allocation_record.h"
#include "gc/gc_cause.h"
#include "gc/scoped_gc_critical_section.h"
#include "gc/space/bump_pointer_space-walk-inl.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "handle_scope-inl.h"
#include "instrumentation.h"
#include "jni/jni_internal.h"
#include "jvalue-inl.h"
#include "mirror/array-alloc-inl.h"
#include "mirror/class-alloc-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class.h"
#include "mirror/class_loader.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string-alloc-inl.h"
#include "mirror/string-inl.h"
#include "mirror/throwable.h"
#include "nativehelper/scoped_local_ref.h"
#include "nativehelper/scoped_primitive_array.h"
#include "oat_file.h"
#include "obj_ptr-inl.h"
#include "reflection.h"
#include "reflective_handle.h"
#include "reflective_handle_scope-inl.h"
#include "runtime-inl.h"
#include "runtime_callbacks.h"
#include "scoped_thread_state_change-inl.h"
#include "scoped_thread_state_change.h"
#include "stack.h"
#include "thread.h"
#include "thread_list.h"
#include "thread_pool.h"
#include "well_known_classes.h"

namespace art {

using android::base::StringPrintf;

// Limit alloc_record_count to the 2BE value (64k-1) that is the limit of the current protocol.
static uint16_t CappedAllocRecordCount(size_t alloc_record_count) {
  const size_t cap = 0xffff;
  if (alloc_record_count > cap) {
    return cap;
  }
  return alloc_record_count;
}

// JDWP is allowed unless the Zygote forbids it.
static bool gJdwpAllowed = true;

static bool gDdmThreadNotification = false;

// DDMS GC-related settings.
static Dbg::HpifWhen gDdmHpifWhen = Dbg::HPIF_WHEN_NEVER;
static Dbg::HpsgWhen gDdmHpsgWhen = Dbg::HPSG_WHEN_NEVER;
static Dbg::HpsgWhat gDdmHpsgWhat;
static Dbg::HpsgWhen gDdmNhsgWhen = Dbg::HPSG_WHEN_NEVER;
static Dbg::HpsgWhat gDdmNhsgWhat;

Dbg::DbgThreadLifecycleCallback Dbg::thread_lifecycle_callback_;

void Dbg::GcDidFinish() {
  if (gDdmHpifWhen != HPIF_WHEN_NEVER) {
    ScopedObjectAccess soa(Thread::Current());
    VLOG(jdwp) << "Sending heap info to DDM";
    DdmSendHeapInfo(gDdmHpifWhen);
  }
  if (gDdmHpsgWhen != HPSG_WHEN_NEVER) {
    ScopedObjectAccess soa(Thread::Current());
    VLOG(jdwp) << "Dumping heap to DDM";
    DdmSendHeapSegments(false);
  }
  if (gDdmNhsgWhen != HPSG_WHEN_NEVER) {
    ScopedObjectAccess soa(Thread::Current());
    VLOG(jdwp) << "Dumping native heap to DDM";
    DdmSendHeapSegments(true);
  }
}

void Dbg::SetJdwpAllowed(bool allowed) {
  gJdwpAllowed = allowed;
}

bool Dbg::IsJdwpAllowed() {
  return gJdwpAllowed;
}

// Do we need to deoptimize the stack to handle an exception?
bool Dbg::IsForcedInterpreterNeededForExceptionImpl(Thread* thread) {
  // Deoptimization is required if at least one method in the stack needs it. However we
  // skip frames that will be unwound (thus not executed).
  bool needs_deoptimization = false;
  StackVisitor::WalkStack(
      [&](art::StackVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
        // The visitor is meant to be used when handling exception from compiled code only.
        CHECK(!visitor->IsShadowFrame()) << "We only expect to visit compiled frame: "
                                         << ArtMethod::PrettyMethod(visitor->GetMethod());
        ArtMethod* method = visitor->GetMethod();
        if (method == nullptr) {
          // We reach an upcall and don't need to deoptimize this part of the stack (ManagedFragment)
          // so we can stop the visit.
          DCHECK(!needs_deoptimization);
          return false;
        }
        if (Runtime::Current()->GetInstrumentation()->InterpretOnly()) {
          // We found a compiled frame in the stack but instrumentation is set to interpret
          // everything: we need to deoptimize.
          needs_deoptimization = true;
          return false;
        }
        if (Runtime::Current()->GetInstrumentation()->IsDeoptimized(method)) {
          // We found a deoptimized method in the stack.
          needs_deoptimization = true;
          return false;
        }
        ShadowFrame* frame = visitor->GetThread()->FindDebuggerShadowFrame(visitor->GetFrameId());
        if (frame != nullptr) {
          // The debugger allocated a ShadowFrame to update a variable in the stack: we need to
          // deoptimize the stack to execute (and deallocate) this frame.
          needs_deoptimization = true;
          return false;
        }
        return true;
      },
      thread,
      /* context= */ nullptr,
      art::StackVisitor::StackWalkKind::kIncludeInlinedFrames,
      /* check_suspended */ true,
      /* include_transitions */ true);
  return needs_deoptimization;
}


bool Dbg::DdmHandleChunk(JNIEnv* env,
                         uint32_t type,
                         const ArrayRef<const jbyte>& data,
                         /*out*/uint32_t* out_type,
                         /*out*/std::vector<uint8_t>* out_data) {
  ScopedObjectAccess soa(env);
  StackHandleScope<1u> hs(soa.Self());
  Handle<mirror::ByteArray> data_array =
      hs.NewHandle(mirror::ByteArray::Alloc(soa.Self(), data.size()));
  if (data_array == nullptr) {
    LOG(WARNING) << "byte[] allocation failed: " << data.size();
    env->ExceptionClear();
    return false;
  }
  memcpy(data_array->GetData(), data.data(), data.size());
  // Call "private static Chunk dispatch(int type, byte[] data, int offset, int length)".
  ArtMethod* dispatch = WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_dispatch;
  ObjPtr<mirror::Object> chunk = dispatch->InvokeStatic<'L', 'I', 'L', 'I', 'I'>(
      soa.Self(), type, data_array.Get(), 0, static_cast<jint>(data.size()));
  if (soa.Self()->IsExceptionPending()) {
    LOG(INFO) << StringPrintf("Exception thrown by dispatcher for 0x%08x", type) << std::endl
              << soa.Self()->GetException()->Dump();
    soa.Self()->ClearException();
    return false;
  }

  if (chunk == nullptr) {
    return false;
  }

  /*
   * Pull the pieces out of the chunk.  We copy the results into a
   * newly-allocated buffer that the caller can free.  We don't want to
   * continue using the Chunk object because nothing has a reference to it.
   *
   * We could avoid this by returning type/data/offset/length and having
   * the caller be aware of the object lifetime issues, but that
   * integrates the JDWP code more tightly into the rest of the runtime, and doesn't work
   * if we have responses for multiple chunks.
   *
   * So we're pretty much stuck with copying data around multiple times.
   */
  ObjPtr<mirror::ByteArray> reply_data = ObjPtr<mirror::ByteArray>::DownCast(
      WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_data->GetObject(chunk));
  jint offset = WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_offset->GetInt(chunk);
  jint length = WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_length->GetInt(chunk);
  *out_type = WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_type->GetInt(chunk);

  VLOG(jdwp) << StringPrintf("DDM reply: type=0x%08x data=%p offset=%d length=%d",
                             type,
                             reply_data.Ptr(),
                             offset,
                             length);

  if (reply_data == nullptr) {
    LOG(INFO) << "Null reply data";
    return false;
  }

  jint reply_length = reply_data->GetLength();
  if (offset < 0 || offset > reply_length || length < 0 || length > reply_length - offset) {
    LOG(INFO) << "Invalid reply data range: offset=" << offset << ", length=" << length
              << " reply_length=" << reply_length;
    return false;
  }

  out_data->resize(length);
  memcpy(out_data->data(), reply_data->GetData() + offset, length);

  return true;
}

void Dbg::DdmBroadcast(bool connect) {
  VLOG(jdwp) << "Broadcasting DDM " << (connect ? "connect" : "disconnect") << "...";

  Thread* self = Thread::Current();
  if (self->GetState() != ThreadState::kRunnable) {
    LOG(ERROR) << "DDM broadcast in thread state " << self->GetState();
    /* try anyway? */
  }

  // TODO: Can we really get here while not `Runnable`? If not, we do not need the `soa`.
  ScopedObjectAccessUnchecked soa(self);
  JNIEnv* env = self->GetJniEnv();
  jint event = connect ? 1 /*DdmServer.CONNECTED*/ : 2 /*DdmServer.DISCONNECTED*/;
  ArtMethod* broadcast = WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_broadcast;
  broadcast->InvokeStatic<'V', 'I'>(self, event);
  if (self->IsExceptionPending()) {
    LOG(ERROR) << "DdmServer.broadcast " << event << " failed";
    env->ExceptionDescribe();
    env->ExceptionClear();
  }
}

void Dbg::DdmConnected() {
  Dbg::DdmBroadcast(true);
}

void Dbg::DdmDisconnected() {
  Dbg::DdmBroadcast(false);
  gDdmThreadNotification = false;
}


/*
 * Send a notification when a thread starts, stops, or changes its name.
 *
 * Because we broadcast the full set of threads when the notifications are
 * first enabled, it's possible for "thread" to be actively executing.
 */
void Dbg::DdmSendThreadNotification(Thread* t, uint32_t type) {
  Locks::mutator_lock_->AssertNotExclusiveHeld(Thread::Current());
  if (!gDdmThreadNotification) {
    return;
  }

  RuntimeCallbacks* cb = Runtime::Current()->GetRuntimeCallbacks();
  if (type == CHUNK_TYPE("THDE")) {
    uint8_t buf[4];
    Set4BE(&buf[0], t->GetThreadId());
    cb->DdmPublishChunk(CHUNK_TYPE("THDE"), ArrayRef<const uint8_t>(buf));
  } else {
    CHECK(type == CHUNK_TYPE("THCR") || type == CHUNK_TYPE("THNM")) << type;
    StackHandleScope<1> hs(Thread::Current());
    Handle<mirror::String> name(hs.NewHandle(t->GetThreadName()));
    size_t char_count = (name != nullptr) ? name->GetLength() : 0;
    const jchar* chars = (name != nullptr) ? name->GetValue() : nullptr;
    bool is_compressed = (name != nullptr) ? name->IsCompressed() : false;

    std::vector<uint8_t> bytes;
    Append4BE(bytes, t->GetThreadId());
    if (is_compressed) {
      const uint8_t* chars_compressed = name->GetValueCompressed();
      AppendUtf16CompressedBE(bytes, chars_compressed, char_count);
    } else {
      AppendUtf16BE(bytes, chars, char_count);
    }
    CHECK_EQ(bytes.size(), char_count*2 + sizeof(uint32_t)*2);
    cb->DdmPublishChunk(type, ArrayRef<const uint8_t>(bytes));
  }
}

void Dbg::DdmSetThreadNotification(bool enable) {
  // Enable/disable thread notifications.
  gDdmThreadNotification = enable;
  if (enable) {
    // Use a Checkpoint to cause every currently running thread to send their own notification when
    // able. We then wait for every thread thread active at the time to post the creation
    // notification. Threads created later will send this themselves.
    Thread* self = Thread::Current();
    ScopedObjectAccess soa(self);
    Barrier finish_barrier(0);
    FunctionClosure fc([&](Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_) {
      Thread* cls_self = Thread::Current();
      Locks::mutator_lock_->AssertSharedHeld(cls_self);
      Dbg::DdmSendThreadNotification(thread, CHUNK_TYPE("THCR"));
      finish_barrier.Pass(cls_self);
    });
    size_t checkpoints = Runtime::Current()->GetThreadList()->RunCheckpoint(&fc);
    ScopedThreadSuspension sts(self, ThreadState::kWaitingForCheckPointsToRun);
    finish_barrier.Increment(self, checkpoints);
  }
}

void Dbg::PostThreadStartOrStop(Thread* t, uint32_t type) {
  Dbg::DdmSendThreadNotification(t, type);
}

void Dbg::PostThreadStart(Thread* t) {
  Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THCR"));
}

void Dbg::PostThreadDeath(Thread* t) {
  Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THDE"));
}

int Dbg::DdmHandleHpifChunk(HpifWhen when) {
  if (when == HPIF_WHEN_NOW) {
    DdmSendHeapInfo(when);
    return 1;
  }

  if (when != HPIF_WHEN_NEVER && when != HPIF_WHEN_NEXT_GC && when != HPIF_WHEN_EVERY_GC) {
    LOG(ERROR) << "invalid HpifWhen value: " << static_cast<int>(when);
    return 0;
  }

  gDdmHpifWhen = when;
  return 1;
}

bool Dbg::DdmHandleHpsgNhsgChunk(Dbg::HpsgWhen when, Dbg::HpsgWhat what, bool native) {
  if (when != HPSG_WHEN_NEVER && when != HPSG_WHEN_EVERY_GC) {
    LOG(ERROR) << "invalid HpsgWhen value: " << static_cast<int>(when);
    return false;
  }

  if (what != HPSG_WHAT_MERGED_OBJECTS && what != HPSG_WHAT_DISTINCT_OBJECTS) {
    LOG(ERROR) << "invalid HpsgWhat value: " << static_cast<int>(what);
    return false;
  }

  if (native) {
    gDdmNhsgWhen = when;
    gDdmNhsgWhat = what;
  } else {
    gDdmHpsgWhen = when;
    gDdmHpsgWhat = what;
  }
  return true;
}

void Dbg::DdmSendHeapInfo(HpifWhen reason) {
  // If there's a one-shot 'when', reset it.
  if (reason == gDdmHpifWhen) {
    if (gDdmHpifWhen == HPIF_WHEN_NEXT_GC) {
      gDdmHpifWhen = HPIF_WHEN_NEVER;
    }
  }

  /*
   * Chunk HPIF (client --> server)
   *
   * Heap Info. General information about the heap,
   * suitable for a summary display.
   *
   *   [u4]: number of heaps
   *
   *   For each heap:
   *     [u4]: heap ID
   *     [u8]: timestamp in ms since Unix epoch
   *     [u1]: capture reason (same as 'when' value from server)
   *     [u4]: max heap size in bytes (-Xmx)
   *     [u4]: current heap size in bytes
   *     [u4]: current number of bytes allocated
   *     [u4]: current number of objects allocated
   */
  uint8_t heap_count = 1;
  gc::Heap* heap = Runtime::Current()->GetHeap();
  std::vector<uint8_t> bytes;
  Append4BE(bytes, heap_count);
  Append4BE(bytes, 1);  // Heap id (bogus; we only have one heap).
  Append8BE(bytes, MilliTime());
  Append1BE(bytes, reason);
  Append4BE(bytes, heap->GetMaxMemory());  // Max allowed heap size in bytes.
  Append4BE(bytes, heap->GetTotalMemory());  // Current heap size in bytes.
  Append4BE(bytes, heap->GetBytesAllocated());
  Append4BE(bytes, heap->GetObjectsAllocated());
  CHECK_EQ(bytes.size(), 4U + (heap_count * (4 + 8 + 1 + 4 + 4 + 4 + 4)));
  Runtime::Current()->GetRuntimeCallbacks()->DdmPublishChunk(CHUNK_TYPE("HPIF"),
                                                             ArrayRef<const uint8_t>(bytes));
}

enum HpsgSolidity {
  SOLIDITY_FREE = 0,
  SOLIDITY_HARD = 1,
  SOLIDITY_SOFT = 2,
  SOLIDITY_WEAK = 3,
  SOLIDITY_PHANTOM = 4,
  SOLIDITY_FINALIZABLE = 5,
  SOLIDITY_SWEEP = 6,
};

enum HpsgKind {
  KIND_OBJECT = 0,
  KIND_CLASS_OBJECT = 1,
  KIND_ARRAY_1 = 2,
  KIND_ARRAY_2 = 3,
  KIND_ARRAY_4 = 4,
  KIND_ARRAY_8 = 5,
  KIND_UNKNOWN = 6,
  KIND_NATIVE = 7,
};

#define HPSG_PARTIAL (1<<7)
#define HPSG_STATE(solidity, kind) ((uint8_t)((((kind) & 0x7) << 3) | ((solidity) & 0x7)))

class HeapChunkContext {
 public:
  // Maximum chunk size.  Obtain this from the formula:
  // (((maximum_heap_size / ALLOCATION_UNIT_SIZE) + 255) / 256) * 2
  HeapChunkContext(bool merge, bool native)
      : buf_(16384 - 16),
        type_(0),
        chunk_overhead_(0) {
    Reset();
    if (native) {
      type_ = CHUNK_TYPE("NHSG");
    } else {
      type_ = merge ? CHUNK_TYPE("HPSG") : CHUNK_TYPE("HPSO");
    }
  }

  ~HeapChunkContext() {
    if (p_ > &buf_[0]) {
      Flush();
    }
  }

  void SetChunkOverhead(size_t chunk_overhead) {
    chunk_overhead_ = chunk_overhead;
  }

  void ResetStartOfNextChunk() {
    startOfNextMemoryChunk_ = nullptr;
  }

  void EnsureHeader(const void* chunk_ptr) {
    if (!needHeader_) {
      return;
    }

    // Start a new HPSx chunk.
    Write4BE(&p_, 1);  // Heap id (bogus; we only have one heap).
    Write1BE(&p_, 8);  // Size of allocation unit, in bytes.

    Write4BE(&p_, reinterpret_cast<uintptr_t>(chunk_ptr));  // virtual address of segment start.
    Write4BE(&p_, 0);  // offset of this piece (relative to the virtual address).
    // [u4]: length of piece, in allocation units
    // We won't know this until we're done, so save the offset and stuff in a fake value.
    pieceLenField_ = p_;
    Write4BE(&p_, 0x55555555);
    needHeader_ = false;
  }

  void Flush() REQUIRES_SHARED(Locks::mutator_lock_) {
    if (pieceLenField_ == nullptr) {
      // Flush immediately post Reset (maybe back-to-back Flush). Ignore.
      CHECK(needHeader_);
      return;
    }
    // Patch the "length of piece" field.
    CHECK_LE(&buf_[0], pieceLenField_);
    CHECK_LE(pieceLenField_, p_);
    Set4BE(pieceLenField_, totalAllocationUnits_);

    ArrayRef<const uint8_t> out(&buf_[0], p_ - &buf_[0]);
    Runtime::Current()->GetRuntimeCallbacks()->DdmPublishChunk(type_, out);
    Reset();
  }

  static void HeapChunkJavaCallback(void* start, void* end, size_t used_bytes, void* arg)
      REQUIRES_SHARED(Locks::heap_bitmap_lock_,
                            Locks::mutator_lock_) {
    reinterpret_cast<HeapChunkContext*>(arg)->HeapChunkJavaCallback(start, end, used_bytes);
  }

  static void HeapChunkNativeCallback(void* start, void* end, size_t used_bytes, void* arg)
      REQUIRES_SHARED(Locks::mutator_lock_) {
    reinterpret_cast<HeapChunkContext*>(arg)->HeapChunkNativeCallback(start, end, used_bytes);
  }

 private:
  enum { ALLOCATION_UNIT_SIZE = 8 };

  void Reset() {
    p_ = &buf_[0];
    ResetStartOfNextChunk();
    totalAllocationUnits_ = 0;
    needHeader_ = true;
    pieceLenField_ = nullptr;
  }

  bool IsNative() const {
    return type_ == CHUNK_TYPE("NHSG");
  }

  // Returns true if the object is not an empty chunk.
  bool ProcessRecord(void* start, size_t used_bytes) REQUIRES_SHARED(Locks::mutator_lock_) {
    // Note: heap call backs cannot manipulate the heap upon which they are crawling, care is taken
    // in the following code not to allocate memory, by ensuring buf_ is of the correct size
    if (used_bytes == 0) {
      if (start == nullptr) {
        // Reset for start of new heap.
        startOfNextMemoryChunk_ = nullptr;
        Flush();
      }
      // Only process in use memory so that free region information
      // also includes dlmalloc book keeping.
      return false;
    }
    if (startOfNextMemoryChunk_ != nullptr) {
      // Transmit any pending free memory. Native free memory of over kMaxFreeLen could be because
      // of the use of mmaps, so don't report. If not free memory then start a new segment.
      bool flush = true;
      if (start > startOfNextMemoryChunk_) {
        const size_t kMaxFreeLen = 2 * kPageSize;
        void* free_start = startOfNextMemoryChunk_;
        void* free_end = start;
        const size_t free_len =
            reinterpret_cast<uintptr_t>(free_end) - reinterpret_cast<uintptr_t>(free_start);
        if (!IsNative() || free_len < kMaxFreeLen) {
          AppendChunk(HPSG_STATE(SOLIDITY_FREE, 0), free_start, free_len, IsNative());
          flush = false;
        }
      }
      if (flush) {
        startOfNextMemoryChunk_ = nullptr;
        Flush();
      }
    }
    return true;
  }

  void HeapChunkNativeCallback(void* start, void* /*end*/, size_t used_bytes)
      REQUIRES_SHARED(Locks::mutator_lock_) {
    if (ProcessRecord(start, used_bytes)) {
      uint8_t state = ExamineNativeObject(start);
      AppendChunk(state, start, used_bytes + chunk_overhead_, /*is_native=*/ true);
      startOfNextMemoryChunk_ = reinterpret_cast<char*>(start) + used_bytes + chunk_overhead_;
    }
  }

  void HeapChunkJavaCallback(void* start, void* /*end*/, size_t used_bytes)
      REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
    if (ProcessRecord(start, used_bytes)) {
      // Determine the type of this chunk.
      // OLD-TODO: if context.merge, see if this chunk is different from the last chunk.
      // If it's the same, we should combine them.
      uint8_t state = ExamineJavaObject(reinterpret_cast<mirror::Object*>(start));
      AppendChunk(state, start, used_bytes + chunk_overhead_, /*is_native=*/ false);
      startOfNextMemoryChunk_ = reinterpret_cast<char*>(start) + used_bytes + chunk_overhead_;
    }
  }

  void AppendChunk(uint8_t state, void* ptr, size_t length, bool is_native)
      REQUIRES_SHARED(Locks::mutator_lock_) {
    // Make sure there's enough room left in the buffer.
    // We need to use two bytes for every fractional 256 allocation units used by the chunk plus
    // 17 bytes for any header.
    const size_t needed = ((RoundUp(length / ALLOCATION_UNIT_SIZE, 256) / 256) * 2) + 17;
    size_t byte_left = &buf_.back() - p_;
    if (byte_left < needed) {
      if (is_native) {
      // Cannot trigger memory allocation while walking native heap.
        return;
      }
      Flush();
    }

    byte_left = &buf_.back() - p_;
    if (byte_left < needed) {
      LOG(WARNING) << "Chunk is too big to transmit (chunk_len=" << length << ", "
          << needed << " bytes)";
      return;
    }
    EnsureHeader(ptr);
    // Write out the chunk description.
    length /= ALLOCATION_UNIT_SIZE;   // Convert to allocation units.
    totalAllocationUnits_ += length;
    while (length > 256) {
      *p_++ = state | HPSG_PARTIAL;
      *p_++ = 255;     // length - 1
      length -= 256;
    }
    *p_++ = state;
    *p_++ = length - 1;
  }

  uint8_t ExamineNativeObject(const void* p) REQUIRES_SHARED(Locks::mutator_lock_) {
    return p == nullptr ? HPSG_STATE(SOLIDITY_FREE, 0) : HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE);
  }

  uint8_t ExamineJavaObject(ObjPtr<mirror::Object> o)
      REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    if (o == nullptr) {
      return HPSG_STATE(SOLIDITY_FREE, 0);
    }
    // It's an allocated chunk. Figure out what it is.
    gc::Heap* heap = Runtime::Current()->GetHeap();
    if (!heap->IsLiveObjectLocked(o)) {
      LOG(ERROR) << "Invalid object in managed heap: " << o;
      return HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE);
    }
    ObjPtr<mirror::Class> c = o->GetClass();
    if (c == nullptr) {
      // The object was probably just created but hasn't been initialized yet.
      return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
    }
    if (!heap->IsValidObjectAddress(c.Ptr())) {
      LOG(ERROR) << "Invalid class for managed heap object: " << o << " " << c;
      return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN);
    }
    if (c->GetClass() == nullptr) {
      LOG(ERROR) << "Null class of class " << c << " for object " << o;
      return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN);
    }
    if (c->IsClassClass()) {
      return HPSG_STATE(SOLIDITY_HARD, KIND_CLASS_OBJECT);
    }
    if (c->IsArrayClass()) {
      switch (c->GetComponentSize()) {
      case 1: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_1);
      case 2: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_2);
      case 4: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4);
      case 8: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_8);
      }
    }
    return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
  }

  std::vector<uint8_t> buf_;
  uint8_t* p_;
  uint8_t* pieceLenField_;
  void* startOfNextMemoryChunk_;
  size_t totalAllocationUnits_;
  uint32_t type_;
  bool needHeader_;
  size_t chunk_overhead_;

  DISALLOW_COPY_AND_ASSIGN(HeapChunkContext);
};


void Dbg::DdmSendHeapSegments(bool native) {
  Dbg::HpsgWhen when = native ? gDdmNhsgWhen : gDdmHpsgWhen;
  Dbg::HpsgWhat what = native ? gDdmNhsgWhat : gDdmHpsgWhat;
  if (when == HPSG_WHEN_NEVER) {
    return;
  }
  RuntimeCallbacks* cb = Runtime::Current()->GetRuntimeCallbacks();
  // Figure out what kind of chunks we'll be sending.
  CHECK(what == HPSG_WHAT_MERGED_OBJECTS || what == HPSG_WHAT_DISTINCT_OBJECTS)
      << static_cast<int>(what);

  // First, send a heap start chunk.
  uint8_t heap_id[4];
  Set4BE(&heap_id[0], 1);  // Heap id (bogus; we only have one heap).
  cb->DdmPublishChunk(native ? CHUNK_TYPE("NHST") : CHUNK_TYPE("HPST"),
                      ArrayRef<const uint8_t>(heap_id));
  Thread* self = Thread::Current();
  Locks::mutator_lock_->AssertSharedHeld(self);

  // Send a series of heap segment chunks.
  HeapChunkContext context(what == HPSG_WHAT_MERGED_OBJECTS, native);
  auto bump_pointer_space_visitor = [&](mirror::Object* obj)
      REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
    const size_t size = RoundUp(obj->SizeOf(), kObjectAlignment);
    HeapChunkContext::HeapChunkJavaCallback(
        obj, reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(obj) + size), size, &context);
  };
  if (native) {
    UNIMPLEMENTED(WARNING) << "Native heap inspection is not supported";
  } else {
    gc::Heap* heap = Runtime::Current()->GetHeap();
    for (const auto& space : heap->GetContinuousSpaces()) {
      if (space->IsDlMallocSpace()) {
        ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
        // dlmalloc's chunk header is 2 * sizeof(size_t), but if the previous chunk is in use for an
        // allocation then the first sizeof(size_t) may belong to it.
        context.SetChunkOverhead(sizeof(size_t));
        space->AsDlMallocSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context);
      } else if (space->IsRosAllocSpace()) {
        context.SetChunkOverhead(0);
        // Need to acquire the mutator lock before the heap bitmap lock with exclusive access since
        // RosAlloc's internal logic doesn't know to release and reacquire the heap bitmap lock.
        ScopedThreadSuspension sts(self, ThreadState::kSuspended);
        ScopedSuspendAll ssa(__FUNCTION__);
        ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
        space->AsRosAllocSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context);
      } else if (space->IsBumpPointerSpace()) {
        ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
        context.SetChunkOverhead(0);
        space->AsBumpPointerSpace()->Walk(bump_pointer_space_visitor);
        HeapChunkContext::HeapChunkJavaCallback(nullptr, nullptr, 0, &context);
      } else if (space->IsRegionSpace()) {
        heap->IncrementDisableMovingGC(self);
        {
          ScopedThreadSuspension sts(self, ThreadState::kSuspended);
          ScopedSuspendAll ssa(__FUNCTION__);
          ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
          context.SetChunkOverhead(0);
          space->AsRegionSpace()->Walk(bump_pointer_space_visitor);
          HeapChunkContext::HeapChunkJavaCallback(nullptr, nullptr, 0, &context);
        }
        heap->DecrementDisableMovingGC(self);
      } else {
        UNIMPLEMENTED(WARNING) << "Not counting objects in space " << *space;
      }
      context.ResetStartOfNextChunk();
    }
    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
    // Walk the large objects, these are not in the AllocSpace.
    context.SetChunkOverhead(0);
    heap->GetLargeObjectsSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context);
  }

  // Finally, send a heap end chunk.
  cb->DdmPublishChunk(native ? CHUNK_TYPE("NHEN") : CHUNK_TYPE("HPEN"),
                      ArrayRef<const uint8_t>(heap_id));
}

void Dbg::SetAllocTrackingEnabled(bool enable) {
  gc::AllocRecordObjectMap::SetAllocTrackingEnabled(enable);
}

class StringTable {
 private:
  struct Entry {
    explicit Entry(const char* data_in)
        : data(data_in), hash(ComputeModifiedUtf8Hash(data_in)), index(0) {
    }
    Entry(const Entry& entry) = default;
    Entry(Entry&& entry) = default;

    // Pointer to the actual string data.
    const char* data;

    // The hash of the data.
    const uint32_t hash;

    // The index. This will be filled in on Finish and is not part of the ordering, so mark it
    // mutable.
    mutable uint32_t index;

    bool operator==(const Entry& other) const {
      return strcmp(data, other.data) == 0;
    }
  };
  struct EntryHash {
    size_t operator()(const Entry& entry) const {
      return entry.hash;
    }
  };

 public:
  StringTable() : finished_(false) {
  }

  void Add(const char* str, bool copy_string) {
    DCHECK(!finished_);
    if (UNLIKELY(copy_string)) {
      // Check whether it's already there.
      Entry entry(str);
      if (table_.find(entry) != table_.end()) {
        return;
      }

      // Make a copy.
      size_t str_len = strlen(str);
      char* copy = new char[str_len + 1];
      strlcpy(copy, str, str_len + 1);
      string_backup_.emplace_back(copy);
      str = copy;
    }
    Entry entry(str);
    table_.insert(entry);
  }

  // Update all entries and give them an index. Note that this is likely not the insertion order,
  // as the set will with high likelihood reorder elements. Thus, Add must not be called after
  // Finish, and Finish must be called before IndexOf. In that case, WriteTo will walk in
  // the same order as Finish, and indices will agree. The order invariant, as well as indices,
  // are enforced through debug checks.
  void Finish() {
    DCHECK(!finished_);
    finished_ = true;
    uint32_t index = 0;
    for (auto& entry : table_) {
      entry.index = index;
      ++index;
    }
  }

  size_t IndexOf(const char* s) const {
    DCHECK(finished_);
    Entry entry(s);
    auto it = table_.find(entry);
    if (it == table_.end()) {
      LOG(FATAL) << "IndexOf(\"" << s << "\") failed";
    }
    return it->index;
  }

  size_t Size() const {
    return table_.size();
  }

  void WriteTo(std::vector<uint8_t>& bytes) const {
    DCHECK(finished_);
    uint32_t cur_index = 0;
    for (const auto& entry : table_) {
      DCHECK_EQ(cur_index++, entry.index);

      size_t s_len = CountModifiedUtf8Chars(entry.data);
      std::unique_ptr<uint16_t[]> s_utf16(new uint16_t[s_len]);
      ConvertModifiedUtf8ToUtf16(s_utf16.get(), entry.data);
      AppendUtf16BE(bytes, s_utf16.get(), s_len);
    }
  }

 private:
  std::unordered_set<Entry, EntryHash> table_;
  std::vector<std::unique_ptr<char[]>> string_backup_;

  bool finished_;

  DISALLOW_COPY_AND_ASSIGN(StringTable);
};


static const char* GetMethodSourceFile(ArtMethod* method)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  DCHECK(method != nullptr);
  const char* source_file = method->GetDeclaringClassSourceFile();
  return (source_file != nullptr) ? source_file : "";
}

/*
 * The data we send to DDMS contains everything we have recorded.
 *
 * Message header (all values big-endian):
 * (1b) message header len (to allow future expansion); includes itself
 * (1b) entry header len
 * (1b) stack frame len
 * (2b) number of entries
 * (4b) offset to string table from start of message
 * (2b) number of class name strings
 * (2b) number of method name strings
 * (2b) number of source file name strings
 * For each entry:
 *   (4b) total allocation size
 *   (2b) thread id
 *   (2b) allocated object's class name index
 *   (1b) stack depth
 *   For each stack frame:
 *     (2b) method's class name
 *     (2b) method name
 *     (2b) method source file
 *     (2b) line number, clipped to 32767; -2 if native; -1 if no source
 * (xb) class name strings
 * (xb) method name strings
 * (xb) source file strings
 *
 * As with other DDM traffic, strings are sent as a 4-byte length
 * followed by UTF-16 data.
 *
 * We send up 16-bit unsigned indexes into string tables.  In theory there
 * can be (kMaxAllocRecordStackDepth * alloc_record_max_) unique strings in
 * each table, but in practice there should be far fewer.
 *
 * The chief reason for using a string table here is to keep the size of
 * the DDMS message to a minimum.  This is partly to make the protocol
 * efficient, but also because we have to form the whole thing up all at
 * once in a memory buffer.
 *
 * We use separate string tables for class names, method names, and source
 * files to keep the indexes small.  There will generally be no overlap
 * between the contents of these tables.
 */
jbyteArray Dbg::GetRecentAllocations() {
  if ((false)) {
    DumpRecentAllocations();
  }

  Thread* self = Thread::Current();
  std::vector<uint8_t> bytes;
  {
    MutexLock mu(self, *Locks::alloc_tracker_lock_);
    gc::AllocRecordObjectMap* records = Runtime::Current()->GetHeap()->GetAllocationRecords();
    // In case this method is called when allocation tracker is not enabled,
    // we should still send some data back.
    gc::AllocRecordObjectMap fallback_record_map;
    if (records == nullptr) {
      CHECK(!Runtime::Current()->GetHeap()->IsAllocTrackingEnabled());
      records = &fallback_record_map;
    }
    // We don't need to wait on the condition variable records->new_record_condition_, because this
    // function only reads the class objects, which are already marked so it doesn't change their
    // reachability.

    //
    // Part 1: generate string tables.
    //
    StringTable class_names;
    StringTable method_names;
    StringTable filenames;

    VLOG(jdwp) << "Collecting StringTables.";

    const uint16_t capped_count = CappedAllocRecordCount(records->GetRecentAllocationSize());
    uint16_t count = capped_count;
    size_t alloc_byte_count = 0;
    for (auto it = records->RBegin(), end = records->REnd();
         count > 0 && it != end; count--, it++) {
      const gc::AllocRecord* record = &it->second;
      std::string temp;
      const char* class_descr = record->GetClassDescriptor(&temp);
      class_names.Add(class_descr, !temp.empty());

      // Size + tid + class name index + stack depth.
      alloc_byte_count += 4u + 2u + 2u + 1u;

      for (size_t i = 0, depth = record->GetDepth(); i < depth; i++) {
        ArtMethod* m = record->StackElement(i).GetMethod();
        class_names.Add(m->GetDeclaringClassDescriptor(), false);
        method_names.Add(m->GetName(), false);
        filenames.Add(GetMethodSourceFile(m), false);
      }

      // Depth * (class index + method name index + file name index + line number).
      alloc_byte_count += record->GetDepth() * (2u + 2u + 2u + 2u);
    }

    class_names.Finish();
    method_names.Finish();
    filenames.Finish();
    VLOG(jdwp) << "Done collecting StringTables:" << std::endl
               << "  ClassNames: " << class_names.Size() << std::endl
               << "  MethodNames: " << method_names.Size() << std::endl
               << "  Filenames: " << filenames.Size();

    LOG(INFO) << "recent allocation records: " << capped_count;
    LOG(INFO) << "allocation records all objects: " << records->Size();

    //
    // Part 2: Generate the output and store it in the buffer.
    //

    // (1b) message header len (to allow future expansion); includes itself
    // (1b) entry header len
    // (1b) stack frame len
    const int kMessageHeaderLen = 15;
    const int kEntryHeaderLen = 9;
    const int kStackFrameLen = 8;
    Append1BE(bytes, kMessageHeaderLen);
    Append1BE(bytes, kEntryHeaderLen);
    Append1BE(bytes, kStackFrameLen);

    // (2b) number of entries
    // (4b) offset to string table from start of message
    // (2b) number of class name strings
    // (2b) number of method name strings
    // (2b) number of source file name strings
    Append2BE(bytes, capped_count);
    size_t string_table_offset = bytes.size();
    Append4BE(bytes, 0);  // We'll patch this later...
    Append2BE(bytes, class_names.Size());
    Append2BE(bytes, method_names.Size());
    Append2BE(bytes, filenames.Size());

    VLOG(jdwp) << "Dumping allocations with stacks";

    // Enlarge the vector for the allocation data.
    size_t reserve_size = bytes.size() + alloc_byte_count;
    bytes.reserve(reserve_size);

    std::string temp;
    count = capped_count;
    // The last "count" number of allocation records in "records" are the most recent "count" number
    // of allocations. Reverse iterate to get them. The most recent allocation is sent first.
    for (auto it = records->RBegin(), end = records->REnd();
         count > 0 && it != end; count--, it++) {
      // For each entry:
      // (4b) total allocation size
      // (2b) thread id
      // (2b) allocated object's class name index
      // (1b) stack depth
      const gc::AllocRecord* record = &it->second;
      size_t stack_depth = record->GetDepth();
      size_t allocated_object_class_name_index =
          class_names.IndexOf(record->GetClassDescriptor(&temp));
      Append4BE(bytes, record->ByteCount());
      Append2BE(bytes, static_cast<uint16_t>(record->GetTid()));
      Append2BE(bytes, allocated_object_class_name_index);
      Append1BE(bytes, stack_depth);

      for (size_t stack_frame = 0; stack_frame < stack_depth; ++stack_frame) {
        // For each stack frame:
        // (2b) method's class name
        // (2b) method name
        // (2b) method source file
        // (2b) line number, clipped to 32767; -2 if native; -1 if no source
        ArtMethod* m = record->StackElement(stack_frame).GetMethod();
        size_t class_name_index = class_names.IndexOf(m->GetDeclaringClassDescriptor());
        size_t method_name_index = method_names.IndexOf(m->GetName());
        size_t file_name_index = filenames.IndexOf(GetMethodSourceFile(m));
        Append2BE(bytes, class_name_index);
        Append2BE(bytes, method_name_index);
        Append2BE(bytes, file_name_index);
        Append2BE(bytes, record->StackElement(stack_frame).ComputeLineNumber());
      }
    }

    CHECK_EQ(bytes.size(), reserve_size);
    VLOG(jdwp) << "Dumping tables.";

    // (xb) class name strings
    // (xb) method name strings
    // (xb) source file strings
    Set4BE(&bytes[string_table_offset], bytes.size());
    class_names.WriteTo(bytes);
    method_names.WriteTo(bytes);
    filenames.WriteTo(bytes);

    VLOG(jdwp) << "GetRecentAllocations: data created. " << bytes.size();
  }
  JNIEnv* env = self->GetJniEnv();
  jbyteArray result = env->NewByteArray(bytes.size());
  if (result != nullptr) {
    env->SetByteArrayRegion(result, 0, bytes.size(), reinterpret_cast<const jbyte*>(&bytes[0]));
  }
  return result;
}

void Dbg::DbgThreadLifecycleCallback::ThreadStart(Thread* self) {
  Dbg::PostThreadStart(self);
}

void Dbg::DbgThreadLifecycleCallback::ThreadDeath(Thread* self) {
  Dbg::PostThreadDeath(self);
}

}  // namespace art