1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "exec_utils.h"
#include <poll.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <ctime>
#include <string_view>
#ifdef __BIONIC__
#include <sys/pidfd.h>
#endif
#include <chrono>
#include <climits>
#include <condition_variable>
#include <cstdint>
#include <mutex>
#include <string>
#include <thread>
#include <vector>
#include <cstring>
#include "android-base/file.h"
#include "android-base/parseint.h"
#include "android-base/scopeguard.h"
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#include "android-base/unique_fd.h"
#include "base/macros.h"
#include "base/utils.h"
#include "runtime.h"
namespace art {
namespace {
using ::android::base::ParseInt;
using ::android::base::ReadFileToString;
using ::android::base::StringPrintf;
using ::android::base::unique_fd;
std::string ToCommandLine(const std::vector<std::string>& args) {
return android::base::Join(args, ' ');
}
// Fork and execute a command specified in a subprocess.
// If there is a runtime (Runtime::Current != nullptr) then the subprocess is created with the
// same environment that existed when the runtime was started.
// Returns the process id of the child process on success, -1 otherwise.
pid_t ExecWithoutWait(const std::vector<std::string>& arg_vector, std::string* error_msg) {
// Convert the args to char pointers.
const char* program = arg_vector[0].c_str();
std::vector<char*> args;
args.reserve(arg_vector.size() + 1);
for (const auto& arg : arg_vector) {
args.push_back(const_cast<char*>(arg.c_str()));
}
args.push_back(nullptr);
// fork and exec
pid_t pid = fork();
if (pid == 0) {
// no allocation allowed between fork and exec
// change process groups, so we don't get reaped by ProcessManager
setpgid(0, 0);
// (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
// Use the snapshot of the environment from the time the runtime was created.
char** envp = (Runtime::Current() == nullptr) ? nullptr : Runtime::Current()->GetEnvSnapshot();
if (envp == nullptr) {
execv(program, &args[0]);
} else {
execve(program, &args[0], envp);
}
// This should be regarded as a crash rather than a normal return.
PLOG(FATAL) << "Failed to execute (" << ToCommandLine(arg_vector) << ")";
UNREACHABLE();
} else if (pid == -1) {
*error_msg = StringPrintf("Failed to execute (%s) because fork failed: %s",
ToCommandLine(arg_vector).c_str(),
strerror(errno));
return -1;
} else {
return pid;
}
}
ExecResult WaitChild(pid_t pid,
const std::vector<std::string>& arg_vector,
bool no_wait,
std::string* error_msg) {
siginfo_t info;
// WNOWAIT leaves the child in a waitable state. The call is still blocking.
int options = WEXITED | (no_wait ? WNOWAIT : 0);
if (TEMP_FAILURE_RETRY(waitid(P_PID, pid, &info, options)) != 0) {
*error_msg = StringPrintf("waitid failed for (%s) pid %d: %s",
ToCommandLine(arg_vector).c_str(),
pid,
strerror(errno));
return {.status = ExecResult::kUnknown};
}
if (info.si_pid != pid) {
*error_msg = StringPrintf("waitid failed for (%s): wanted pid %d, got %d: %s",
ToCommandLine(arg_vector).c_str(),
pid,
info.si_pid,
strerror(errno));
return {.status = ExecResult::kUnknown};
}
if (info.si_code != CLD_EXITED) {
*error_msg =
StringPrintf("Failed to execute (%s) because the child process is terminated by signal %d",
ToCommandLine(arg_vector).c_str(),
info.si_status);
return {.status = ExecResult::kSignaled, .signal = info.si_status};
}
return {.status = ExecResult::kExited, .exit_code = info.si_status};
}
// A fallback implementation of `WaitChildWithTimeout` that creates a thread to wait instead of
// relying on `pidfd_open`.
ExecResult WaitChildWithTimeoutFallback(pid_t pid,
const std::vector<std::string>& arg_vector,
int timeout_ms,
std::string* error_msg) {
bool child_exited = false;
bool timed_out = false;
std::condition_variable cv;
std::mutex m;
std::thread wait_thread([&]() {
std::unique_lock<std::mutex> lock(m);
if (!cv.wait_for(lock, std::chrono::milliseconds(timeout_ms), [&] { return child_exited; })) {
timed_out = true;
kill(pid, SIGKILL);
}
});
ExecResult result = WaitChild(pid, arg_vector, /*no_wait=*/true, error_msg);
{
std::unique_lock<std::mutex> lock(m);
child_exited = true;
}
cv.notify_all();
wait_thread.join();
// The timeout error should have a higher priority than any other error.
if (timed_out) {
*error_msg =
StringPrintf("Failed to execute (%s) because the child process timed out after %dms",
ToCommandLine(arg_vector).c_str(),
timeout_ms);
return ExecResult{.status = ExecResult::kTimedOut};
}
return result;
}
// Waits for the child process to finish and leaves the child in a waitable state.
ExecResult WaitChildWithTimeout(pid_t pid,
unique_fd pidfd,
const std::vector<std::string>& arg_vector,
int timeout_ms,
std::string* error_msg) {
auto cleanup = android::base::make_scope_guard([&]() {
kill(pid, SIGKILL);
std::string ignored_error_msg;
WaitChild(pid, arg_vector, /*no_wait=*/true, &ignored_error_msg);
});
struct pollfd pfd;
pfd.fd = pidfd.get();
pfd.events = POLLIN;
int poll_ret = TEMP_FAILURE_RETRY(poll(&pfd, /*nfds=*/1, timeout_ms));
pidfd.reset();
if (poll_ret < 0) {
*error_msg = StringPrintf("poll failed for pid %d: %s", pid, strerror(errno));
return {.status = ExecResult::kUnknown};
}
if (poll_ret == 0) {
*error_msg =
StringPrintf("Failed to execute (%s) because the child process timed out after %dms",
ToCommandLine(arg_vector).c_str(),
timeout_ms);
return {.status = ExecResult::kTimedOut};
}
cleanup.Disable();
return WaitChild(pid, arg_vector, /*no_wait=*/true, error_msg);
}
bool ParseProcStat(const std::string& stat_content,
int64_t uptime_ms,
int64_t ticks_per_sec,
/*out*/ ProcessStat* stat) {
size_t pos = stat_content.rfind(") ");
if (pos == std::string::npos) {
return false;
}
std::vector<std::string> stat_fields;
// Skip the first two fields. The second field is the parenthesized process filename, which can
// contain anything, including spaces.
Split(std::string_view(stat_content).substr(pos + 2), ' ', &stat_fields);
constexpr int kSkippedFields = 2;
int64_t utime, stime, cutime, cstime, starttime;
if (stat_fields.size() < 22 - kSkippedFields ||
!ParseInt(stat_fields[13 - kSkippedFields], &utime) ||
!ParseInt(stat_fields[14 - kSkippedFields], &stime) ||
!ParseInt(stat_fields[15 - kSkippedFields], &cutime) ||
!ParseInt(stat_fields[16 - kSkippedFields], &cstime) ||
!ParseInt(stat_fields[21 - kSkippedFields], &starttime)) {
return false;
}
stat->cpu_time_ms = (utime + stime + cutime + cstime) * 1000 / ticks_per_sec;
stat->wall_time_ms = uptime_ms - starttime * 1000 / ticks_per_sec;
return true;
}
} // namespace
int ExecUtils::ExecAndReturnCode(const std::vector<std::string>& arg_vector,
std::string* error_msg) const {
return ExecAndReturnResult(arg_vector, /*timeout_sec=*/-1, error_msg).exit_code;
}
ExecResult ExecUtils::ExecAndReturnResult(const std::vector<std::string>& arg_vector,
int timeout_sec,
std::string* error_msg) const {
return ExecAndReturnResult(arg_vector, timeout_sec, ExecCallbacks(), /*stat=*/nullptr, error_msg);
}
ExecResult ExecUtils::ExecAndReturnResult(const std::vector<std::string>& arg_vector,
int timeout_sec,
const ExecCallbacks& callbacks,
/*out*/ ProcessStat* stat,
/*out*/ std::string* error_msg) const {
if (timeout_sec > INT_MAX / 1000) {
*error_msg = "Timeout too large";
return {.status = ExecResult::kStartFailed};
}
// Start subprocess.
pid_t pid = ExecWithoutWait(arg_vector, error_msg);
if (pid == -1) {
return {.status = ExecResult::kStartFailed};
}
callbacks.on_start(pid);
// Wait for subprocess to finish.
ExecResult result;
if (timeout_sec >= 0) {
unique_fd pidfd = PidfdOpen(pid);
if (pidfd.get() >= 0) {
result =
WaitChildWithTimeout(pid, std::move(pidfd), arg_vector, timeout_sec * 1000, error_msg);
} else {
LOG(DEBUG) << StringPrintf(
"pidfd_open failed for pid %d: %s, falling back", pid, strerror(errno));
result = WaitChildWithTimeoutFallback(pid, arg_vector, timeout_sec * 1000, error_msg);
}
} else {
result = WaitChild(pid, arg_vector, /*no_wait=*/true, error_msg);
}
if (stat != nullptr) {
std::string local_error_msg;
if (!GetStat(pid, stat, &local_error_msg)) {
LOG(ERROR) << "Failed to get process stat: " << local_error_msg;
}
}
callbacks.on_end(pid);
std::string local_error_msg;
// TODO(jiakaiz): Use better logic to detect waitid failure.
if (WaitChild(pid, arg_vector, /*no_wait=*/false, &local_error_msg).status ==
ExecResult::kUnknown) {
LOG(ERROR) << "Failed to clean up child process '" << arg_vector[0] << "': " << local_error_msg;
}
return result;
}
bool ExecUtils::Exec(const std::vector<std::string>& arg_vector, std::string* error_msg) const {
int status = ExecAndReturnCode(arg_vector, error_msg);
if (status < 0) {
// Internal error. The error message is already set.
return false;
}
if (status > 0) {
*error_msg =
StringPrintf("Failed to execute (%s) because the child process returns non-zero exit code",
ToCommandLine(arg_vector).c_str());
return false;
}
return true;
}
unique_fd ExecUtils::PidfdOpen(pid_t pid) const {
#ifdef __BIONIC__
return unique_fd(pidfd_open(pid, /*flags=*/0));
#else
// There is no glibc wrapper for pidfd_open.
#ifndef SYS_pidfd_open
constexpr int SYS_pidfd_open = 434;
#endif
return unique_fd(syscall(SYS_pidfd_open, pid, /*flags=*/0));
#endif
}
std::string ExecUtils::GetProcStat(pid_t pid) const {
std::string stat_content;
if (!ReadFileToString(StringPrintf("/proc/%d/stat", pid), &stat_content)) {
stat_content = "";
}
return stat_content;
}
int64_t ExecUtils::GetUptimeMs() const {
timespec t;
clock_gettime(CLOCK_MONOTONIC, &t);
return t.tv_sec * 1000 + t.tv_nsec / 1000000;
}
int64_t ExecUtils::GetTicksPerSec() const { return sysconf(_SC_CLK_TCK); }
bool ExecUtils::GetStat(pid_t pid,
/*out*/ ProcessStat* stat,
/*out*/ std::string* error_msg) const {
int64_t uptime_ms = GetUptimeMs();
std::string stat_content = GetProcStat(pid);
if (stat_content.empty()) {
*error_msg = StringPrintf("Failed to read /proc/%d/stat: %s", pid, strerror(errno));
return false;
}
int64_t ticks_per_sec = GetTicksPerSec();
if (!ParseProcStat(stat_content, uptime_ms, ticks_per_sec, stat)) {
*error_msg = StringPrintf("Failed to parse /proc/%d/stat '%s'", pid, stat_content.c_str());
return false;
}
return true;
}
} // namespace art
|