1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
|
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
#define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
#include <map>
#include <unordered_set>
#include <vector>
#include "art_field-inl.h"
#include "base/macros.h"
#include "debug/elf_compilation_unit.h"
#include "debug/elf_debug_loc_writer.h"
#include "debug/method_debug_info.h"
#include "dex/code_item_accessors-inl.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file.h"
#include "dwarf/debug_abbrev_writer.h"
#include "dwarf/debug_info_entry_writer.h"
#include "elf/elf_builder.h"
#include "heap_poisoning.h"
#include "linear_alloc-inl.h"
#include "mirror/array.h"
#include "mirror/class-inl.h"
#include "mirror/class.h"
#include "oat_file.h"
#include "obj_ptr-inl.h"
namespace art HIDDEN {
namespace debug {
static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) {
std::vector<const char*> names;
DCHECK(mi->dex_file != nullptr);
CodeItemDebugInfoAccessor accessor(*mi->dex_file, mi->code_item, mi->dex_method_index);
if (accessor.HasCodeItem()) {
accessor.VisitParameterNames([&](const dex::StringIndex& id) {
names.push_back(mi->dex_file->StringDataByIdx(id));
});
}
return names;
}
// Helper class to write .debug_info and its supporting sections.
template<typename ElfTypes>
class ElfDebugInfoWriter {
using Elf_Addr = typename ElfTypes::Addr;
public:
explicit ElfDebugInfoWriter(ElfBuilder<ElfTypes>* builder)
: builder_(builder),
debug_abbrev_(&debug_abbrev_buffer_) {
}
void Start() {
builder_->GetDebugInfo()->Start();
}
void End() {
builder_->GetDebugInfo()->End();
builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_);
if (!debug_loc_.empty()) {
builder_->WriteSection(".debug_loc", &debug_loc_);
}
if (!debug_ranges_.empty()) {
builder_->WriteSection(".debug_ranges", &debug_ranges_);
}
}
private:
ElfBuilder<ElfTypes>* builder_;
std::vector<uint8_t> debug_abbrev_buffer_;
dwarf::DebugAbbrevWriter<> debug_abbrev_;
std::vector<uint8_t> debug_loc_;
std::vector<uint8_t> debug_ranges_;
std::unordered_set<const char*> defined_dex_classes_; // For CHECKs only.
template<typename ElfTypes2>
friend class ElfCompilationUnitWriter;
};
// Helper class to write one compilation unit.
// It holds helper methods and temporary state.
template<typename ElfTypes>
class ElfCompilationUnitWriter {
using Elf_Addr = typename ElfTypes::Addr;
public:
explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner)
: owner_(owner),
info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) {
}
void Write(const ElfCompilationUnit& compilation_unit) {
CHECK(!compilation_unit.methods.empty());
const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
? owner_->builder_->GetText()->GetAddress()
: 0;
const bool is64bit = Is64BitInstructionSet(owner_->builder_->GetIsa());
using namespace dwarf; // NOLINT. For easy access to DWARF constants.
info_.StartTag(DW_TAG_compile_unit);
info_.WriteString(DW_AT_producer, "Android dex2oat");
info_.WriteData1(DW_AT_language, DW_LANG_Java);
info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT");
// The low_pc acts as base address for several other addresses/ranges.
info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address);
info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset);
// Write .debug_ranges entries covering code ranges of the whole compilation unit.
dwarf::Writer<> debug_ranges(&owner_->debug_ranges_);
info_.WriteSecOffset(DW_AT_ranges, owner_->debug_ranges_.size());
for (auto mi : compilation_unit.methods) {
uint64_t low_pc = mi->code_address - compilation_unit.code_address;
uint64_t high_pc = low_pc + mi->code_size;
if (is64bit) {
debug_ranges.PushUint64(low_pc);
debug_ranges.PushUint64(high_pc);
} else {
debug_ranges.PushUint32(low_pc);
debug_ranges.PushUint32(high_pc);
}
}
if (is64bit) {
debug_ranges.PushUint64(0); // End of list.
debug_ranges.PushUint64(0);
} else {
debug_ranges.PushUint32(0); // End of list.
debug_ranges.PushUint32(0);
}
const char* last_dex_class_desc = nullptr;
for (auto mi : compilation_unit.methods) {
DCHECK(mi->dex_file != nullptr);
const DexFile* dex = mi->dex_file;
CodeItemDebugInfoAccessor accessor(*dex, mi->code_item, mi->dex_method_index);
const dex::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index);
const dex::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method);
const dex::TypeList* dex_params = dex->GetProtoParameters(dex_proto);
const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method);
const bool is_static = (mi->access_flags & kAccStatic) != 0;
// Enclose the method in correct class definition.
if (last_dex_class_desc != dex_class_desc) {
if (last_dex_class_desc != nullptr) {
EndClassTag();
}
// Write reference tag for the class we are about to declare.
size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type);
type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset);
size_t type_attrib_offset = info_.size();
info_.WriteRef4(DW_AT_type, 0);
info_.EndTag();
// Declare the class that owns this method.
size_t class_offset = StartClassTag(dex_class_desc);
info_.UpdateUint32(type_attrib_offset, class_offset);
info_.WriteFlagPresent(DW_AT_declaration);
// Check that each class is defined only once.
bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second;
CHECK(unique) << "Redefinition of " << dex_class_desc;
last_dex_class_desc = dex_class_desc;
}
int start_depth = info_.Depth();
info_.StartTag(DW_TAG_subprogram);
WriteName(dex->GetMethodName(dex_method));
info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address);
info_.WriteUdata(DW_AT_high_pc, mi->code_size);
std::vector<uint8_t> expr_buffer;
Expression expr(&expr_buffer);
expr.WriteOpCallFrameCfa();
info_.WriteExprLoc(DW_AT_frame_base, expr);
WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto));
// Decode dex register locations for all stack maps.
// It might be expensive, so do it just once and reuse the result.
std::unique_ptr<const CodeInfo> code_info;
std::vector<DexRegisterMap> dex_reg_maps;
if (accessor.HasCodeItem() && mi->code_info != nullptr) {
code_info.reset(new CodeInfo(mi->code_info));
for (StackMap stack_map : code_info->GetStackMaps()) {
dex_reg_maps.push_back(code_info->GetDexRegisterMapOf(stack_map));
}
}
// Write parameters. DecodeDebugLocalInfo returns them as well, but it does not
// guarantee order or uniqueness so it is safer to iterate over them manually.
// DecodeDebugLocalInfo might not also be available if there is no debug info.
std::vector<const char*> param_names = GetParamNames(mi);
uint32_t arg_reg = 0;
if (!is_static) {
info_.StartTag(DW_TAG_formal_parameter);
WriteName("this");
info_.WriteFlagPresent(DW_AT_artificial);
WriteLazyType(dex_class_desc);
if (accessor.HasCodeItem()) {
// Write the stack location of the parameter.
const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
const bool is64bitValue = false;
WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
}
arg_reg++;
info_.EndTag();
}
if (dex_params != nullptr) {
for (uint32_t i = 0; i < dex_params->Size(); ++i) {
info_.StartTag(DW_TAG_formal_parameter);
// Parameter names may not be always available.
if (i < param_names.size()) {
WriteName(param_names[i]);
}
// Write the type.
const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_);
WriteLazyType(type_desc);
const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J';
if (accessor.HasCodeItem()) {
// Write the stack location of the parameter.
const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
}
arg_reg += is64bitValue ? 2 : 1;
info_.EndTag();
}
if (accessor.HasCodeItem()) {
DCHECK_EQ(arg_reg, accessor.InsSize());
}
}
// Write local variables.
std::vector<DexFile::LocalInfo> local_infos;
if (accessor.DecodeDebugLocalInfo(is_static,
mi->dex_method_index,
[&](const DexFile::LocalInfo& entry) {
local_infos.push_back(entry);
})) {
for (const DexFile::LocalInfo& var : local_infos) {
if (var.reg_ < accessor.RegistersSize() - accessor.InsSize()) {
info_.StartTag(DW_TAG_variable);
WriteName(var.name_);
WriteLazyType(var.descriptor_);
bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J';
WriteRegLocation(mi,
dex_reg_maps,
var.reg_,
is64bitValue,
compilation_unit.code_address,
var.start_address_,
var.end_address_);
info_.EndTag();
}
}
}
info_.EndTag();
CHECK_EQ(info_.Depth(), start_depth); // Balanced start/end.
}
if (last_dex_class_desc != nullptr) {
EndClassTag();
}
FinishLazyTypes();
CloseNamespacesAboveDepth(0);
info_.EndTag(); // DW_TAG_compile_unit
CHECK_EQ(info_.Depth(), 0);
std::vector<uint8_t> buffer;
buffer.reserve(info_.data()->size() + KB);
// All compilation units share single table which is at the start of .debug_abbrev.
const size_t debug_abbrev_offset = 0;
WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer);
owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
}
void Write(const ArrayRef<mirror::Class*>& types) REQUIRES_SHARED(Locks::mutator_lock_) {
using namespace dwarf; // NOLINT. For easy access to DWARF constants.
info_.StartTag(DW_TAG_compile_unit);
info_.WriteString(DW_AT_producer, "Android dex2oat");
info_.WriteData1(DW_AT_language, DW_LANG_Java);
// Base class references to be patched at the end.
std::map<size_t, mirror::Class*> base_class_references;
// Already written declarations or definitions.
std::map<mirror::Class*, size_t> class_declarations;
std::vector<uint8_t> expr_buffer;
for (mirror::Class* type : types) {
if (type->IsPrimitive()) {
// For primitive types the definition and the declaration is the same.
if (type->GetPrimitiveType() != Primitive::kPrimVoid) {
WriteTypeDeclaration(type->GetDescriptor(nullptr));
}
} else if (type->IsArrayClass()) {
ObjPtr<mirror::Class> element_type = type->GetComponentType();
uint32_t component_size = type->GetComponentSize();
uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value();
uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
CloseNamespacesAboveDepth(0); // Declare in root namespace.
info_.StartTag(DW_TAG_array_type);
std::string descriptor_string;
WriteLazyType(element_type->GetDescriptor(&descriptor_string));
WriteLinkageName(type);
info_.WriteUdata(DW_AT_data_member_location, data_offset);
info_.StartTag(DW_TAG_subrange_type);
Expression count_expr(&expr_buffer);
count_expr.WriteOpPushObjectAddress();
count_expr.WriteOpPlusUconst(length_offset);
count_expr.WriteOpDerefSize(4); // Array length is always 32-bit wide.
info_.WriteExprLoc(DW_AT_count, count_expr);
info_.EndTag(); // DW_TAG_subrange_type.
info_.EndTag(); // DW_TAG_array_type.
} else if (type->IsInterface()) {
// Skip. Variables cannot have an interface as a dynamic type.
// We do not expose the interface information to the debugger in any way.
} else {
std::string descriptor_string;
const char* desc = type->GetDescriptor(&descriptor_string);
size_t class_offset = StartClassTag(desc);
class_declarations.emplace(type, class_offset);
if (!type->IsVariableSize()) {
info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize());
}
WriteLinkageName(type);
if (type->IsObjectClass()) {
// Generate artificial member which is used to get the dynamic type of variable.
// The run-time value of this field will correspond to linkage name of some type.
// We need to do it only once in j.l.Object since all other types inherit it.
info_.StartTag(DW_TAG_member);
WriteName(".dynamic_type");
WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I");
info_.WriteFlagPresent(DW_AT_artificial);
// Create DWARF expression to get the value of the methods_ field.
Expression expr(&expr_buffer);
// The address of the object has been implicitly pushed on the stack.
// Dereference the klass_ field of Object (32-bit; possibly poisoned).
DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u);
DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u);
expr.WriteOpDerefSize(4);
if (kPoisonHeapReferences) {
expr.WriteOpNeg();
// DWARF stack is pointer sized. Ensure that the high bits are clear.
expr.WriteOpConstu(0xFFFFFFFF);
expr.WriteOpAnd();
}
// Add offset to the methods_ field.
expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value());
// Top of stack holds the location of the field now.
info_.WriteExprLoc(DW_AT_data_member_location, expr);
info_.EndTag(); // DW_TAG_member.
}
// Base class.
ObjPtr<mirror::Class> base_class = type->GetSuperClass();
if (base_class != nullptr) {
info_.StartTag(DW_TAG_inheritance);
base_class_references.emplace(info_.size(), base_class.Ptr());
info_.WriteRef4(DW_AT_type, 0);
info_.WriteUdata(DW_AT_data_member_location, 0);
info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
info_.EndTag(); // DW_TAG_inheritance.
}
// Member variables.
for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) {
ArtField* field = type->GetInstanceField(i);
info_.StartTag(DW_TAG_member);
WriteName(field->GetName());
WriteLazyType(field->GetTypeDescriptor());
info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value());
uint32_t access_flags = field->GetAccessFlags();
if (access_flags & kAccPublic) {
info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
} else if (access_flags & kAccProtected) {
info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected);
} else if (access_flags & kAccPrivate) {
info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
}
info_.EndTag(); // DW_TAG_member.
}
if (type->IsStringClass()) {
// Emit debug info about an artifical class member for java.lang.String which represents
// the first element of the data stored in a string instance. Consumers of the debug
// info will be able to read the content of java.lang.String based on the count (real
// field) and based on the location of this data member.
info_.StartTag(DW_TAG_member);
WriteName("value");
// We don't support fields with C like array types so we just say its type is java char.
WriteLazyType("C"); // char.
info_.WriteUdata(DW_AT_data_member_location,
mirror::String::ValueOffset().Uint32Value());
info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
info_.EndTag(); // DW_TAG_member.
}
EndClassTag();
}
}
// Write base class declarations.
for (const auto& base_class_reference : base_class_references) {
size_t reference_offset = base_class_reference.first;
mirror::Class* base_class = base_class_reference.second;
const auto it = class_declarations.find(base_class);
if (it != class_declarations.end()) {
info_.UpdateUint32(reference_offset, it->second);
} else {
// Declare base class. We can not use the standard WriteLazyType
// since we want to avoid the DW_TAG_reference_tag wrapping.
std::string tmp_storage;
const char* base_class_desc = base_class->GetDescriptor(&tmp_storage);
size_t base_class_declaration_offset = StartClassTag(base_class_desc);
info_.WriteFlagPresent(DW_AT_declaration);
WriteLinkageName(base_class);
EndClassTag();
class_declarations.emplace(base_class, base_class_declaration_offset);
info_.UpdateUint32(reference_offset, base_class_declaration_offset);
}
}
FinishLazyTypes();
CloseNamespacesAboveDepth(0);
info_.EndTag(); // DW_TAG_compile_unit.
CHECK_EQ(info_.Depth(), 0);
std::vector<uint8_t> buffer;
buffer.reserve(info_.data()->size() + KB);
// All compilation units share single table which is at the start of .debug_abbrev.
const size_t debug_abbrev_offset = 0;
WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer);
owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
}
// Write table into .debug_loc which describes location of dex register.
// The dex register might be valid only at some points and it might
// move between machine registers and stack.
void WriteRegLocation(const MethodDebugInfo* method_info,
const std::vector<DexRegisterMap>& dex_register_maps,
uint16_t vreg,
bool is64bitValue,
uint64_t compilation_unit_code_address,
uint32_t dex_pc_low = 0,
uint32_t dex_pc_high = 0xFFFFFFFF) {
WriteDebugLocEntry(method_info,
dex_register_maps,
vreg,
is64bitValue,
compilation_unit_code_address,
dex_pc_low,
dex_pc_high,
owner_->builder_->GetIsa(),
&info_,
&owner_->debug_loc_,
&owner_->debug_ranges_);
}
// Linkage name uniquely identifies type.
// It is used to determine the dynamic type of objects.
// We use the methods_ field of class since it is unique and it is not moved by the GC.
void WriteLinkageName(mirror::Class* type) REQUIRES_SHARED(Locks::mutator_lock_) {
auto* methods_ptr = type->GetMethodsPtr();
if (methods_ptr == nullptr) {
// Some types might have no methods. Allocate empty array instead.
LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc();
void* storage = allocator->Alloc(Thread::Current(),
sizeof(LengthPrefixedArray<ArtMethod>),
LinearAllocKind::kNoGCRoots);
methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0);
type->SetMethodsPtr(methods_ptr, 0, 0);
DCHECK(type->GetMethodsPtr() != nullptr);
}
char name[32];
snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr));
info_.WriteString(dwarf::DW_AT_linkage_name, name);
}
// Some types are difficult to define as we go since they need
// to be enclosed in the right set of namespaces. Therefore we
// just define all types lazily at the end of compilation unit.
void WriteLazyType(const char* type_descriptor) {
if (type_descriptor != nullptr && type_descriptor[0] != 'V') {
lazy_types_.emplace(std::string(type_descriptor), info_.size());
info_.WriteRef4(dwarf::DW_AT_type, 0);
}
}
void FinishLazyTypes() {
for (const auto& lazy_type : lazy_types_) {
info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first));
}
lazy_types_.clear();
}
private:
void WriteName(const char* name) {
if (name != nullptr) {
info_.WriteString(dwarf::DW_AT_name, name);
}
}
// Convert dex type descriptor to DWARF.
// Returns offset in the compilation unit.
size_t WriteTypeDeclaration(const std::string& desc) {
using namespace dwarf; // NOLINT. For easy access to DWARF constants.
DCHECK(!desc.empty());
const auto it = type_cache_.find(desc);
if (it != type_cache_.end()) {
return it->second;
}
size_t offset;
if (desc[0] == 'L') {
// Class type. For example: Lpackage/name;
size_t class_offset = StartClassTag(desc.c_str());
info_.WriteFlagPresent(DW_AT_declaration);
EndClassTag();
// Reference to the class type.
offset = info_.StartTag(DW_TAG_reference_type);
info_.WriteRef(DW_AT_type, class_offset);
info_.EndTag();
} else if (desc[0] == '[') {
// Array type.
size_t element_type = WriteTypeDeclaration(desc.substr(1));
CloseNamespacesAboveDepth(0); // Declare in root namespace.
size_t array_type = info_.StartTag(DW_TAG_array_type);
info_.WriteFlagPresent(DW_AT_declaration);
info_.WriteRef(DW_AT_type, element_type);
info_.EndTag();
offset = info_.StartTag(DW_TAG_reference_type);
info_.WriteRef4(DW_AT_type, array_type);
info_.EndTag();
} else {
// Primitive types.
DCHECK_EQ(desc.size(), 1u);
const char* name;
uint32_t encoding;
uint32_t byte_size;
switch (desc[0]) {
case 'B':
name = "byte";
encoding = DW_ATE_signed;
byte_size = 1;
break;
case 'C':
name = "char";
encoding = DW_ATE_UTF;
byte_size = 2;
break;
case 'D':
name = "double";
encoding = DW_ATE_float;
byte_size = 8;
break;
case 'F':
name = "float";
encoding = DW_ATE_float;
byte_size = 4;
break;
case 'I':
name = "int";
encoding = DW_ATE_signed;
byte_size = 4;
break;
case 'J':
name = "long";
encoding = DW_ATE_signed;
byte_size = 8;
break;
case 'S':
name = "short";
encoding = DW_ATE_signed;
byte_size = 2;
break;
case 'Z':
name = "boolean";
encoding = DW_ATE_boolean;
byte_size = 1;
break;
case 'V':
LOG(FATAL) << "Void type should not be encoded";
UNREACHABLE();
default:
LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\"";
UNREACHABLE();
}
CloseNamespacesAboveDepth(0); // Declare in root namespace.
offset = info_.StartTag(DW_TAG_base_type);
WriteName(name);
info_.WriteData1(DW_AT_encoding, encoding);
info_.WriteData1(DW_AT_byte_size, byte_size);
info_.EndTag();
}
type_cache_.emplace(desc, offset);
return offset;
}
// Start DW_TAG_class_type tag nested in DW_TAG_namespace tags.
// Returns offset of the class tag in the compilation unit.
size_t StartClassTag(const char* desc) {
std::string name = SetNamespaceForClass(desc);
size_t offset = info_.StartTag(dwarf::DW_TAG_class_type);
WriteName(name.c_str());
return offset;
}
void EndClassTag() {
info_.EndTag();
}
// Set the current namespace nesting to one required by the given class.
// Returns the class name with namespaces, 'L', and ';' stripped.
std::string SetNamespaceForClass(const char* desc) {
DCHECK(desc != nullptr && desc[0] == 'L');
desc++; // Skip the initial 'L'.
size_t depth = 0;
for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) {
// Check whether the name at this depth is already what we need.
if (depth < current_namespace_.size()) {
const std::string& name = current_namespace_[depth];
if (name.compare(0, name.size(), desc, end - desc) == 0) {
continue;
}
}
// Otherwise we need to open a new namespace tag at this depth.
CloseNamespacesAboveDepth(depth);
info_.StartTag(dwarf::DW_TAG_namespace);
std::string name(desc, end - desc);
WriteName(name.c_str());
current_namespace_.push_back(std::move(name));
}
CloseNamespacesAboveDepth(depth);
return std::string(desc, strchr(desc, ';') - desc);
}
// Close namespace tags to reach the given nesting depth.
void CloseNamespacesAboveDepth(size_t depth) {
DCHECK_LE(depth, current_namespace_.size());
while (current_namespace_.size() > depth) {
info_.EndTag();
current_namespace_.pop_back();
}
}
// For access to the ELF sections.
ElfDebugInfoWriter<ElfTypes>* owner_;
// Temporary buffer to create and store the entries.
dwarf::DebugInfoEntryWriter<> info_;
// Cache of already translated type descriptors.
std::map<std::string, size_t> type_cache_; // type_desc -> definition_offset.
// 32-bit references which need to be resolved to a type later.
// Given type may be used multiple times. Therefore we need a multimap.
std::multimap<std::string, size_t> lazy_types_; // type_desc -> patch_offset.
// The current set of open namespace tags which are active and not closed yet.
std::vector<std::string> current_namespace_;
};
} // namespace debug
} // namespace art
#endif // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
|