1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "block_builder.h"
#include "base/logging.h" // FOR VLOG.
#include "dex/bytecode_utils.h"
#include "dex/code_item_accessors-inl.h"
#include "dex/dex_file_exception_helpers.h"
#include "quicken_info.h"
namespace art HIDDEN {
HBasicBlockBuilder::HBasicBlockBuilder(HGraph* graph,
const DexFile* const dex_file,
const CodeItemDebugInfoAccessor& accessor,
ScopedArenaAllocator* local_allocator)
: allocator_(graph->GetAllocator()),
graph_(graph),
dex_file_(dex_file),
code_item_accessor_(accessor),
local_allocator_(local_allocator),
branch_targets_(code_item_accessor_.HasCodeItem()
? code_item_accessor_.InsnsSizeInCodeUnits()
: /* fake dex_pc=0 for intrinsic graph */ 1u,
nullptr,
local_allocator->Adapter(kArenaAllocGraphBuilder)),
throwing_blocks_(kDefaultNumberOfThrowingBlocks,
local_allocator->Adapter(kArenaAllocGraphBuilder)),
number_of_branches_(0u),
quicken_index_for_dex_pc_(std::less<uint32_t>(),
local_allocator->Adapter(kArenaAllocGraphBuilder)) {}
HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t dex_pc) {
return MaybeCreateBlockAt(dex_pc, dex_pc);
}
HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t semantic_dex_pc,
uint32_t store_dex_pc) {
HBasicBlock* block = branch_targets_[store_dex_pc];
if (block == nullptr) {
block = new (allocator_) HBasicBlock(graph_, semantic_dex_pc);
branch_targets_[store_dex_pc] = block;
}
DCHECK_EQ(block->GetDexPc(), semantic_dex_pc);
return block;
}
bool HBasicBlockBuilder::CreateBranchTargets() {
// Create the first block for the dex instructions, single successor of the entry block.
MaybeCreateBlockAt(0u);
if (code_item_accessor_.TriesSize() != 0) {
// Create branch targets at the start/end of the TryItem range. These are
// places where the program might fall through into/out of the a block and
// where TryBoundary instructions will be inserted later. Other edges which
// enter/exit the try blocks are a result of branches/switches.
for (const dex::TryItem& try_item : code_item_accessor_.TryItems()) {
uint32_t dex_pc_start = try_item.start_addr_;
uint32_t dex_pc_end = dex_pc_start + try_item.insn_count_;
MaybeCreateBlockAt(dex_pc_start);
if (dex_pc_end < code_item_accessor_.InsnsSizeInCodeUnits()) {
// TODO: Do not create block if the last instruction cannot fall through.
MaybeCreateBlockAt(dex_pc_end);
} else if (dex_pc_end == code_item_accessor_.InsnsSizeInCodeUnits()) {
// The TryItem spans until the very end of the CodeItem and therefore
// cannot have any code afterwards.
} else {
// The TryItem spans beyond the end of the CodeItem. This is invalid code.
VLOG(compiler) << "Not compiled: TryItem spans beyond the end of the CodeItem";
return false;
}
}
// Create branch targets for exception handlers.
const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
for (uint32_t idx = 0; idx < handlers_size; ++idx) {
CatchHandlerIterator iterator(handlers_ptr);
for (; iterator.HasNext(); iterator.Next()) {
MaybeCreateBlockAt(iterator.GetHandlerAddress());
}
handlers_ptr = iterator.EndDataPointer();
}
}
// Iterate over all instructions and find branching instructions. Create blocks for
// the locations these instructions branch to.
for (const DexInstructionPcPair& pair : code_item_accessor_) {
const uint32_t dex_pc = pair.DexPc();
const Instruction& instruction = pair.Inst();
if (instruction.IsBranch()) {
number_of_branches_++;
MaybeCreateBlockAt(dex_pc + instruction.GetTargetOffset());
} else if (instruction.IsSwitch()) {
number_of_branches_++; // count as at least one branch (b/77652521)
DexSwitchTable table(instruction, dex_pc);
for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) {
MaybeCreateBlockAt(dex_pc + s_it.CurrentTargetOffset());
// Create N-1 blocks where we will insert comparisons of the input value
// against the Switch's case keys.
if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) {
// Store the block under dex_pc of the current key at the switch data
// instruction for uniqueness but give it the dex_pc of the SWITCH
// instruction which it semantically belongs to.
MaybeCreateBlockAt(dex_pc, s_it.GetDexPcForCurrentIndex());
}
}
} else if (instruction.Opcode() == Instruction::MOVE_EXCEPTION) {
// End the basic block after MOVE_EXCEPTION. This simplifies the later
// stage of TryBoundary-block insertion.
} else {
continue;
}
if (instruction.CanFlowThrough()) {
DexInstructionIterator next(std::next(DexInstructionIterator(pair)));
if (next == code_item_accessor_.end()) {
// In the normal case we should never hit this but someone can artificially forge a dex
// file to fall-through out the method code. In this case we bail out compilation.
VLOG(compiler) << "Not compiled: Fall-through beyond the CodeItem";
return false;
}
MaybeCreateBlockAt(next.DexPc());
}
}
return true;
}
void HBasicBlockBuilder::ConnectBasicBlocks() {
HBasicBlock* block = graph_->GetEntryBlock();
graph_->AddBlock(block);
size_t quicken_index = 0;
bool is_throwing_block = false;
// Calculate the qucikening index here instead of CreateBranchTargets since it's easier to
// calculate in dex_pc order.
for (const DexInstructionPcPair& pair : code_item_accessor_) {
const uint32_t dex_pc = pair.DexPc();
const Instruction& instruction = pair.Inst();
// Check if this dex_pc address starts a new basic block.
HBasicBlock* next_block = GetBlockAt(dex_pc);
if (next_block != nullptr) {
// We only need quicken index entries for basic block boundaries.
quicken_index_for_dex_pc_.Put(dex_pc, quicken_index);
if (block != nullptr) {
// Last instruction did not end its basic block but a new one starts here.
// It must have been a block falling through into the next one.
block->AddSuccessor(next_block);
}
block = next_block;
is_throwing_block = false;
graph_->AddBlock(block);
}
// Make sure to increment this before the continues.
if (QuickenInfoTable::NeedsIndexForInstruction(&instruction)) {
++quicken_index;
}
if (block == nullptr) {
// Ignore dead code.
continue;
}
if (!is_throwing_block && IsThrowingDexInstruction(instruction)) {
DCHECK(!ContainsElement(throwing_blocks_, block));
is_throwing_block = true;
throwing_blocks_.push_back(block);
}
if (instruction.IsBranch()) {
uint32_t target_dex_pc = dex_pc + instruction.GetTargetOffset();
block->AddSuccessor(GetBlockAt(target_dex_pc));
} else if (instruction.IsReturn() || (instruction.Opcode() == Instruction::THROW)) {
block->AddSuccessor(graph_->GetExitBlock());
} else if (instruction.IsSwitch()) {
DexSwitchTable table(instruction, dex_pc);
for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) {
uint32_t target_dex_pc = dex_pc + s_it.CurrentTargetOffset();
block->AddSuccessor(GetBlockAt(target_dex_pc));
if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) {
uint32_t next_case_dex_pc = s_it.GetDexPcForCurrentIndex();
HBasicBlock* next_case_block = GetBlockAt(next_case_dex_pc);
block->AddSuccessor(next_case_block);
block = next_case_block;
graph_->AddBlock(block);
}
}
} else {
// Remaining code only applies to instructions which end their basic block.
continue;
}
// Go to the next instruction in case we read dex PC below.
if (instruction.CanFlowThrough()) {
block->AddSuccessor(GetBlockAt(std::next(DexInstructionIterator(pair)).DexPc()));
}
// The basic block ends here. Do not add any more instructions.
block = nullptr;
}
graph_->AddBlock(graph_->GetExitBlock());
}
// Returns the TryItem stored for `block` or nullptr if there is no info for it.
static const dex::TryItem* GetTryItem(
HBasicBlock* block,
const ScopedArenaSafeMap<uint32_t, const dex::TryItem*>& try_block_info) {
auto iterator = try_block_info.find(block->GetBlockId());
return (iterator == try_block_info.end()) ? nullptr : iterator->second;
}
// Iterates over the exception handlers of `try_item`, finds the corresponding
// catch blocks and makes them successors of `try_boundary`. The order of
// successors matches the order in which runtime exception delivery searches
// for a handler.
static void LinkToCatchBlocks(HTryBoundary* try_boundary,
const CodeItemDataAccessor& accessor,
const dex::TryItem* try_item,
const ScopedArenaSafeMap<uint32_t, HBasicBlock*>& catch_blocks) {
for (CatchHandlerIterator it(accessor.GetCatchHandlerData(try_item->handler_off_));
it.HasNext();
it.Next()) {
try_boundary->AddExceptionHandler(catch_blocks.Get(it.GetHandlerAddress()));
}
}
bool HBasicBlockBuilder::MightHaveLiveNormalPredecessors(HBasicBlock* catch_block) {
if (kIsDebugBuild) {
DCHECK_NE(catch_block->GetDexPc(), kNoDexPc) << "Should not be called on synthetic blocks";
DCHECK(!graph_->GetEntryBlock()->GetSuccessors().empty())
<< "Basic blocks must have been created and connected";
for (HBasicBlock* predecessor : catch_block->GetPredecessors()) {
DCHECK(!predecessor->IsSingleTryBoundary())
<< "TryBoundary blocks must not have not been created yet";
}
}
const Instruction& first = code_item_accessor_.InstructionAt(catch_block->GetDexPc());
if (first.Opcode() == Instruction::MOVE_EXCEPTION) {
// Verifier guarantees that if a catch block begins with MOVE_EXCEPTION then
// it has no live normal predecessors.
return false;
} else if (catch_block->GetPredecessors().empty()) {
// Normal control-flow edges have already been created. Since block's list of
// predecessors is empty, it cannot have any live or dead normal predecessors.
return false;
}
// The catch block has normal predecessors but we do not know which are live
// and which will be removed during the initial DCE. Return `true` to signal
// that it may have live normal predecessors.
return true;
}
void HBasicBlockBuilder::InsertTryBoundaryBlocks() {
if (code_item_accessor_.TriesSize() == 0) {
return;
}
// Keep a map of all try blocks and their respective TryItems. We do not use
// the block's pointer but rather its id to ensure deterministic iteration.
ScopedArenaSafeMap<uint32_t, const dex::TryItem*> try_block_info(
std::less<uint32_t>(), local_allocator_->Adapter(kArenaAllocGraphBuilder));
// Obtain TryItem information for blocks with throwing instructions, and split
// blocks which are both try & catch to simplify the graph.
for (HBasicBlock* block : graph_->GetBlocks()) {
if (block->GetDexPc() == kNoDexPc) {
continue;
}
// Do not bother creating exceptional edges for try blocks which have no
// throwing instructions. In that case we simply assume that the block is
// not covered by a TryItem. This prevents us from creating a throw-catch
// loop for synchronized blocks.
if (ContainsElement(throwing_blocks_, block)) {
// Try to find a TryItem covering the block.
const dex::TryItem* try_item = code_item_accessor_.FindTryItem(block->GetDexPc());
if (try_item != nullptr) {
// Block throwing and in a TryItem. Store the try block information.
try_block_info.Put(block->GetBlockId(), try_item);
}
}
}
// Map from a handler dex_pc to the corresponding catch block.
ScopedArenaSafeMap<uint32_t, HBasicBlock*> catch_blocks(
std::less<uint32_t>(), local_allocator_->Adapter(kArenaAllocGraphBuilder));
// Iterate over catch blocks, create artifical landing pads if necessary to
// simplify the CFG, and set metadata.
const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
for (uint32_t idx = 0; idx < handlers_size; ++idx) {
CatchHandlerIterator iterator(handlers_ptr);
for (; iterator.HasNext(); iterator.Next()) {
uint32_t address = iterator.GetHandlerAddress();
auto existing = catch_blocks.find(address);
if (existing != catch_blocks.end()) {
// Catch block already processed.
TryCatchInformation* info = existing->second->GetTryCatchInformation();
if (iterator.GetHandlerTypeIndex() != info->GetCatchTypeIndex()) {
// The handler is for multiple types. We could record all the types, but
// doing class resolution here isn't ideal, and it's unclear whether wasting
// the space in TryCatchInformation is worth it.
info->SetInvalidTypeIndex();
}
continue;
}
// Check if we should create an artifical landing pad for the catch block.
// We create one if the catch block is also a try block because we do not
// have a strategy for inserting TryBoundaries on exceptional edges.
// We also create one if the block might have normal predecessors so as to
// simplify register allocation.
HBasicBlock* catch_block = GetBlockAt(address);
bool is_try_block = (try_block_info.find(catch_block->GetBlockId()) != try_block_info.end());
if (is_try_block || MightHaveLiveNormalPredecessors(catch_block)) {
HBasicBlock* new_catch_block = new (allocator_) HBasicBlock(graph_, address);
new_catch_block->AddInstruction(new (allocator_) HGoto(address));
new_catch_block->AddSuccessor(catch_block);
graph_->AddBlock(new_catch_block);
catch_block = new_catch_block;
}
catch_blocks.Put(address, catch_block);
catch_block->SetTryCatchInformation(
new (allocator_) TryCatchInformation(iterator.GetHandlerTypeIndex(), *dex_file_));
}
handlers_ptr = iterator.EndDataPointer();
}
// Do a pass over the try blocks and insert entering TryBoundaries where at
// least one predecessor is not covered by the same TryItem as the try block.
// We do not split each edge separately, but rather create one boundary block
// that all predecessors are relinked to. This preserves loop headers (b/23895756).
for (const auto& entry : try_block_info) {
uint32_t block_id = entry.first;
const dex::TryItem* try_item = entry.second;
HBasicBlock* try_block = graph_->GetBlocks()[block_id];
for (HBasicBlock* predecessor : try_block->GetPredecessors()) {
if (GetTryItem(predecessor, try_block_info) != try_item) {
// Found a predecessor not covered by the same TryItem. Insert entering
// boundary block.
HTryBoundary* try_entry = new (allocator_) HTryBoundary(
HTryBoundary::BoundaryKind::kEntry, try_block->GetDexPc());
try_block->CreateImmediateDominator()->AddInstruction(try_entry);
LinkToCatchBlocks(try_entry, code_item_accessor_, try_item, catch_blocks);
break;
}
}
}
// Do a second pass over the try blocks and insert exit TryBoundaries where
// the successor is not in the same TryItem.
for (const auto& entry : try_block_info) {
uint32_t block_id = entry.first;
const dex::TryItem* try_item = entry.second;
HBasicBlock* try_block = graph_->GetBlocks()[block_id];
// NOTE: Do not use iterators because SplitEdge would invalidate them.
for (size_t i = 0, e = try_block->GetSuccessors().size(); i < e; ++i) {
HBasicBlock* successor = try_block->GetSuccessors()[i];
// If the successor is a try block, all of its predecessors must be
// covered by the same TryItem. Otherwise the previous pass would have
// created a non-throwing boundary block.
if (GetTryItem(successor, try_block_info) != nullptr) {
DCHECK_EQ(try_item, GetTryItem(successor, try_block_info));
continue;
}
// Insert TryBoundary and link to catch blocks.
HTryBoundary* try_exit =
new (allocator_) HTryBoundary(HTryBoundary::BoundaryKind::kExit, successor->GetDexPc());
graph_->SplitEdge(try_block, successor)->AddInstruction(try_exit);
LinkToCatchBlocks(try_exit, code_item_accessor_, try_item, catch_blocks);
}
}
}
void HBasicBlockBuilder::InsertSynthesizedLoopsForOsr() {
ArenaSet<uint32_t> targets(allocator_->Adapter(kArenaAllocGraphBuilder));
// Collect basic blocks that are targets of a negative branch.
for (const DexInstructionPcPair& pair : code_item_accessor_) {
const uint32_t dex_pc = pair.DexPc();
const Instruction& instruction = pair.Inst();
if (instruction.IsBranch()) {
uint32_t target_dex_pc = dex_pc + instruction.GetTargetOffset();
if (target_dex_pc < dex_pc) {
HBasicBlock* block = GetBlockAt(target_dex_pc);
CHECK_NE(kNoDexPc, block->GetDexPc());
targets.insert(block->GetBlockId());
}
} else if (instruction.IsSwitch()) {
DexSwitchTable table(instruction, dex_pc);
for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) {
uint32_t target_dex_pc = dex_pc + s_it.CurrentTargetOffset();
if (target_dex_pc < dex_pc) {
HBasicBlock* block = GetBlockAt(target_dex_pc);
CHECK_NE(kNoDexPc, block->GetDexPc());
targets.insert(block->GetBlockId());
}
}
}
}
// Insert synthesized loops before the collected blocks.
for (uint32_t block_id : targets) {
HBasicBlock* block = graph_->GetBlocks()[block_id];
HBasicBlock* loop_block = new (allocator_) HBasicBlock(graph_, block->GetDexPc());
graph_->AddBlock(loop_block);
while (!block->GetPredecessors().empty()) {
block->GetPredecessors()[0]->ReplaceSuccessor(block, loop_block);
}
loop_block->AddSuccessor(loop_block);
loop_block->AddSuccessor(block);
// We loop on false - we know this won't be optimized later on as the loop
// is marked irreducible, which disables loop optimizations.
loop_block->AddInstruction(new (allocator_) HIf(graph_->GetIntConstant(0), kNoDexPc));
}
}
bool HBasicBlockBuilder::Build() {
DCHECK(code_item_accessor_.HasCodeItem());
DCHECK(graph_->GetBlocks().empty());
graph_->SetEntryBlock(new (allocator_) HBasicBlock(graph_, kNoDexPc));
graph_->SetExitBlock(new (allocator_) HBasicBlock(graph_, kNoDexPc));
// TODO(dbrazdil): Do CreateBranchTargets and ConnectBasicBlocks in one pass.
if (!CreateBranchTargets()) {
return false;
}
ConnectBasicBlocks();
InsertTryBoundaryBlocks();
if (graph_->IsCompilingOsr()) {
InsertSynthesizedLoopsForOsr();
}
return true;
}
void HBasicBlockBuilder::BuildIntrinsic() {
DCHECK(!code_item_accessor_.HasCodeItem());
DCHECK(graph_->GetBlocks().empty());
// Create blocks.
HBasicBlock* entry_block = new (allocator_) HBasicBlock(graph_, kNoDexPc);
HBasicBlock* exit_block = new (allocator_) HBasicBlock(graph_, kNoDexPc);
HBasicBlock* body = MaybeCreateBlockAt(/* semantic_dex_pc= */ kNoDexPc, /* store_dex_pc= */ 0u);
// Add blocks to the graph.
graph_->AddBlock(entry_block);
graph_->AddBlock(body);
graph_->AddBlock(exit_block);
graph_->SetEntryBlock(entry_block);
graph_->SetExitBlock(exit_block);
// Connect blocks.
entry_block->AddSuccessor(body);
body->AddSuccessor(exit_block);
}
size_t HBasicBlockBuilder::GetQuickenIndex(uint32_t dex_pc) const {
return quicken_index_for_dex_pc_.Get(dex_pc);
}
} // namespace art
|