File: code_generator.cc

package info (click to toggle)
android-platform-art 14.0.0%2Br15-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 96,796 kB
  • sloc: cpp: 522,217; java: 194,312; asm: 28,950; python: 14,910; xml: 5,087; sh: 4,528; ansic: 4,035; makefile: 110; perl: 77
file content (1929 lines) | stat: -rw-r--r-- 82,572 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "code_generator.h"
#include "base/globals.h"

#ifdef ART_ENABLE_CODEGEN_arm
#include "code_generator_arm_vixl.h"
#endif

#ifdef ART_ENABLE_CODEGEN_arm64
#include "code_generator_arm64.h"
#endif

#ifdef ART_ENABLE_CODEGEN_riscv64
#include "code_generator_riscv64.h"
#endif

#ifdef ART_ENABLE_CODEGEN_x86
#include "code_generator_x86.h"
#endif

#ifdef ART_ENABLE_CODEGEN_x86_64
#include "code_generator_x86_64.h"
#endif

#include "art_method-inl.h"
#include "base/bit_utils.h"
#include "base/bit_utils_iterator.h"
#include "base/casts.h"
#include "base/leb128.h"
#include "class_linker.h"
#include "class_root-inl.h"
#include "dex/bytecode_utils.h"
#include "dex/code_item_accessors-inl.h"
#include "graph_visualizer.h"
#include "image.h"
#include "gc/space/image_space.h"
#include "intern_table.h"
#include "intrinsics.h"
#include "mirror/array-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/object_reference.h"
#include "mirror/reference.h"
#include "mirror/string.h"
#include "parallel_move_resolver.h"
#include "scoped_thread_state_change-inl.h"
#include "ssa_liveness_analysis.h"
#include "stack_map.h"
#include "stack_map_stream.h"
#include "string_builder_append.h"
#include "thread-current-inl.h"
#include "utils/assembler.h"

namespace art HIDDEN {

// Return whether a location is consistent with a type.
static bool CheckType(DataType::Type type, Location location) {
  if (location.IsFpuRegister()
      || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
    return (type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64);
  } else if (location.IsRegister() ||
             (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
    return DataType::IsIntegralType(type) || (type == DataType::Type::kReference);
  } else if (location.IsRegisterPair()) {
    return type == DataType::Type::kInt64;
  } else if (location.IsFpuRegisterPair()) {
    return type == DataType::Type::kFloat64;
  } else if (location.IsStackSlot()) {
    return (DataType::IsIntegralType(type) && type != DataType::Type::kInt64)
           || (type == DataType::Type::kFloat32)
           || (type == DataType::Type::kReference);
  } else if (location.IsDoubleStackSlot()) {
    return (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
  } else if (location.IsConstant()) {
    if (location.GetConstant()->IsIntConstant()) {
      return DataType::IsIntegralType(type) && (type != DataType::Type::kInt64);
    } else if (location.GetConstant()->IsNullConstant()) {
      return type == DataType::Type::kReference;
    } else if (location.GetConstant()->IsLongConstant()) {
      return type == DataType::Type::kInt64;
    } else if (location.GetConstant()->IsFloatConstant()) {
      return type == DataType::Type::kFloat32;
    } else {
      return location.GetConstant()->IsDoubleConstant()
          && (type == DataType::Type::kFloat64);
    }
  } else {
    return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
  }
}

// Check that a location summary is consistent with an instruction.
static bool CheckTypeConsistency(HInstruction* instruction) {
  LocationSummary* locations = instruction->GetLocations();
  if (locations == nullptr) {
    return true;
  }

  if (locations->Out().IsUnallocated()
      && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
    DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
        << instruction->GetType()
        << " " << locations->InAt(0);
  } else {
    DCHECK(CheckType(instruction->GetType(), locations->Out()))
        << instruction->GetType()
        << " " << locations->Out();
  }

  HConstInputsRef inputs = instruction->GetInputs();
  for (size_t i = 0; i < inputs.size(); ++i) {
    DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i)))
      << inputs[i]->GetType() << " " << locations->InAt(i);
  }

  HEnvironment* environment = instruction->GetEnvironment();
  for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
    if (environment->GetInstructionAt(i) != nullptr) {
      DataType::Type type = environment->GetInstructionAt(i)->GetType();
      DCHECK(CheckType(type, environment->GetLocationAt(i)))
        << type << " " << environment->GetLocationAt(i);
    } else {
      DCHECK(environment->GetLocationAt(i).IsInvalid())
        << environment->GetLocationAt(i);
    }
  }
  return true;
}

class CodeGenerator::CodeGenerationData : public DeletableArenaObject<kArenaAllocCodeGenerator> {
 public:
  static std::unique_ptr<CodeGenerationData> Create(ArenaStack* arena_stack,
                                                    InstructionSet instruction_set) {
    ScopedArenaAllocator allocator(arena_stack);
    void* memory = allocator.Alloc<CodeGenerationData>(kArenaAllocCodeGenerator);
    return std::unique_ptr<CodeGenerationData>(
        ::new (memory) CodeGenerationData(std::move(allocator), instruction_set));
  }

  ScopedArenaAllocator* GetScopedAllocator() {
    return &allocator_;
  }

  void AddSlowPath(SlowPathCode* slow_path) {
    slow_paths_.emplace_back(std::unique_ptr<SlowPathCode>(slow_path));
  }

  ArrayRef<const std::unique_ptr<SlowPathCode>> GetSlowPaths() const {
    return ArrayRef<const std::unique_ptr<SlowPathCode>>(slow_paths_);
  }

  StackMapStream* GetStackMapStream() { return &stack_map_stream_; }

  void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string) {
    jit_string_roots_.Overwrite(string_reference,
                                reinterpret_cast64<uint64_t>(string.GetReference()));
  }

  uint64_t GetJitStringRootIndex(StringReference string_reference) const {
    return jit_string_roots_.Get(string_reference);
  }

  size_t GetNumberOfJitStringRoots() const {
    return jit_string_roots_.size();
  }

  void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
    jit_class_roots_.Overwrite(type_reference, reinterpret_cast64<uint64_t>(klass.GetReference()));
  }

  uint64_t GetJitClassRootIndex(TypeReference type_reference) const {
    return jit_class_roots_.Get(type_reference);
  }

  size_t GetNumberOfJitClassRoots() const {
    return jit_class_roots_.size();
  }

  size_t GetNumberOfJitRoots() const {
    return GetNumberOfJitStringRoots() + GetNumberOfJitClassRoots();
  }

  void EmitJitRoots(/*out*/std::vector<Handle<mirror::Object>>* roots)
      REQUIRES_SHARED(Locks::mutator_lock_);

 private:
  CodeGenerationData(ScopedArenaAllocator&& allocator, InstructionSet instruction_set)
      : allocator_(std::move(allocator)),
        stack_map_stream_(&allocator_, instruction_set),
        slow_paths_(allocator_.Adapter(kArenaAllocCodeGenerator)),
        jit_string_roots_(StringReferenceValueComparator(),
                          allocator_.Adapter(kArenaAllocCodeGenerator)),
        jit_class_roots_(TypeReferenceValueComparator(),
                         allocator_.Adapter(kArenaAllocCodeGenerator)) {
    slow_paths_.reserve(kDefaultSlowPathsCapacity);
  }

  static constexpr size_t kDefaultSlowPathsCapacity = 8;

  ScopedArenaAllocator allocator_;
  StackMapStream stack_map_stream_;
  ScopedArenaVector<std::unique_ptr<SlowPathCode>> slow_paths_;

  // Maps a StringReference (dex_file, string_index) to the index in the literal table.
  // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
  // will compute all the indices.
  ScopedArenaSafeMap<StringReference, uint64_t, StringReferenceValueComparator> jit_string_roots_;

  // Maps a ClassReference (dex_file, type_index) to the index in the literal table.
  // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
  // will compute all the indices.
  ScopedArenaSafeMap<TypeReference, uint64_t, TypeReferenceValueComparator> jit_class_roots_;
};

void CodeGenerator::CodeGenerationData::EmitJitRoots(
    /*out*/std::vector<Handle<mirror::Object>>* roots) {
  DCHECK(roots->empty());
  roots->reserve(GetNumberOfJitRoots());
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  size_t index = 0;
  for (auto& entry : jit_string_roots_) {
    // Update the `roots` with the string, and replace the address temporarily
    // stored to the index in the table.
    uint64_t address = entry.second;
    roots->emplace_back(reinterpret_cast<StackReference<mirror::Object>*>(address));
    DCHECK(roots->back() != nullptr);
    DCHECK(roots->back()->IsString());
    entry.second = index;
    // Ensure the string is strongly interned. This is a requirement on how the JIT
    // handles strings. b/32995596
    class_linker->GetInternTable()->InternStrong(roots->back()->AsString());
    ++index;
  }
  for (auto& entry : jit_class_roots_) {
    // Update the `roots` with the class, and replace the address temporarily
    // stored to the index in the table.
    uint64_t address = entry.second;
    roots->emplace_back(reinterpret_cast<StackReference<mirror::Object>*>(address));
    DCHECK(roots->back() != nullptr);
    DCHECK(roots->back()->IsClass());
    entry.second = index;
    ++index;
  }
}

ScopedArenaAllocator* CodeGenerator::GetScopedAllocator() {
  DCHECK(code_generation_data_ != nullptr);
  return code_generation_data_->GetScopedAllocator();
}

StackMapStream* CodeGenerator::GetStackMapStream() {
  DCHECK(code_generation_data_ != nullptr);
  return code_generation_data_->GetStackMapStream();
}

void CodeGenerator::ReserveJitStringRoot(StringReference string_reference,
                                         Handle<mirror::String> string) {
  DCHECK(code_generation_data_ != nullptr);
  code_generation_data_->ReserveJitStringRoot(string_reference, string);
}

uint64_t CodeGenerator::GetJitStringRootIndex(StringReference string_reference) {
  DCHECK(code_generation_data_ != nullptr);
  return code_generation_data_->GetJitStringRootIndex(string_reference);
}

void CodeGenerator::ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
  DCHECK(code_generation_data_ != nullptr);
  code_generation_data_->ReserveJitClassRoot(type_reference, klass);
}

uint64_t CodeGenerator::GetJitClassRootIndex(TypeReference type_reference) {
  DCHECK(code_generation_data_ != nullptr);
  return code_generation_data_->GetJitClassRootIndex(type_reference);
}

void CodeGenerator::EmitJitRootPatches(uint8_t* code ATTRIBUTE_UNUSED,
                                       const uint8_t* roots_data ATTRIBUTE_UNUSED) {
  DCHECK(code_generation_data_ != nullptr);
  DCHECK_EQ(code_generation_data_->GetNumberOfJitStringRoots(), 0u);
  DCHECK_EQ(code_generation_data_->GetNumberOfJitClassRoots(), 0u);
}

uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) {
  return array_length->IsStringLength()
      ? mirror::String::CountOffset().Uint32Value()
      : mirror::Array::LengthOffset().Uint32Value();
}

uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) {
  DCHECK(array_get->GetType() == DataType::Type::kUint16 || !array_get->IsStringCharAt());
  return array_get->IsStringCharAt()
      ? mirror::String::ValueOffset().Uint32Value()
      : mirror::Array::DataOffset(DataType::Size(array_get->GetType())).Uint32Value();
}

bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
  DCHECK_EQ((*block_order_)[current_block_index_], current);
  return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
}

HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
  for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
    HBasicBlock* block = (*block_order_)[i];
    if (!block->IsSingleJump()) {
      return block;
    }
  }
  return nullptr;
}

HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
  while (block->IsSingleJump()) {
    block = block->GetSuccessors()[0];
  }
  return block;
}

class DisassemblyScope {
 public:
  DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
      : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
    if (codegen_.GetDisassemblyInformation() != nullptr) {
      start_offset_ = codegen_.GetAssembler().CodeSize();
    }
  }

  ~DisassemblyScope() {
    // We avoid building this data when we know it will not be used.
    if (codegen_.GetDisassemblyInformation() != nullptr) {
      codegen_.GetDisassemblyInformation()->AddInstructionInterval(
          instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
    }
  }

 private:
  const CodeGenerator& codegen_;
  HInstruction* instruction_;
  size_t start_offset_;
};


void CodeGenerator::GenerateSlowPaths() {
  DCHECK(code_generation_data_ != nullptr);
  size_t code_start = 0;
  for (const std::unique_ptr<SlowPathCode>& slow_path_ptr : code_generation_data_->GetSlowPaths()) {
    SlowPathCode* slow_path = slow_path_ptr.get();
    current_slow_path_ = slow_path;
    if (disasm_info_ != nullptr) {
      code_start = GetAssembler()->CodeSize();
    }
    // Record the dex pc at start of slow path (required for java line number mapping).
    MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
    slow_path->EmitNativeCode(this);
    if (disasm_info_ != nullptr) {
      disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
    }
  }
  current_slow_path_ = nullptr;
}

void CodeGenerator::InitializeCodeGenerationData() {
  DCHECK(code_generation_data_ == nullptr);
  code_generation_data_ = CodeGenerationData::Create(graph_->GetArenaStack(), GetInstructionSet());
}

void CodeGenerator::Compile(CodeAllocator* allocator) {
  InitializeCodeGenerationData();

  // The register allocator already called `InitializeCodeGeneration`,
  // where the frame size has been computed.
  DCHECK(block_order_ != nullptr);
  Initialize();

  HGraphVisitor* instruction_visitor = GetInstructionVisitor();
  DCHECK_EQ(current_block_index_, 0u);

  GetStackMapStream()->BeginMethod(HasEmptyFrame() ? 0 : frame_size_,
                                   core_spill_mask_,
                                   fpu_spill_mask_,
                                   GetGraph()->GetNumberOfVRegs(),
                                   GetGraph()->IsCompilingBaseline(),
                                   GetGraph()->IsDebuggable());

  size_t frame_start = GetAssembler()->CodeSize();
  GenerateFrameEntry();
  DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
  if (disasm_info_ != nullptr) {
    disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
  }

  for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
    HBasicBlock* block = (*block_order_)[current_block_index_];
    // Don't generate code for an empty block. Its predecessors will branch to its successor
    // directly. Also, the label of that block will not be emitted, so this helps catch
    // errors where we reference that label.
    if (block->IsSingleJump()) continue;
    Bind(block);
    // This ensures that we have correct native line mapping for all native instructions.
    // It is necessary to make stepping over a statement work. Otherwise, any initial
    // instructions (e.g. moves) would be assumed to be the start of next statement.
    MaybeRecordNativeDebugInfo(/* instruction= */ nullptr, block->GetDexPc());
    for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
      HInstruction* current = it.Current();
      if (current->HasEnvironment()) {
        // Catch StackMaps are dealt with later on in `RecordCatchBlockInfo`.
        if (block->IsCatchBlock() && block->GetFirstInstruction() == current) {
          DCHECK(current->IsNop());
          continue;
        }

        // Create stackmap for HNop or any instruction which calls native code.
        // Note that we need correct mapping for the native PC of the call instruction,
        // so the runtime's stackmap is not sufficient since it is at PC after the call.
        MaybeRecordNativeDebugInfo(current, block->GetDexPc());
      }
      DisassemblyScope disassembly_scope(current, *this);
      DCHECK(CheckTypeConsistency(current));
      current->Accept(instruction_visitor);
    }
  }

  GenerateSlowPaths();

  // Emit catch stack maps at the end of the stack map stream as expected by the
  // runtime exception handler.
  if (graph_->HasTryCatch()) {
    RecordCatchBlockInfo();
  }

  // Finalize instructions in assember;
  Finalize(allocator);

  GetStackMapStream()->EndMethod(GetAssembler()->CodeSize());
}

void CodeGenerator::Finalize(CodeAllocator* allocator) {
  size_t code_size = GetAssembler()->CodeSize();
  uint8_t* buffer = allocator->Allocate(code_size);

  MemoryRegion code(buffer, code_size);
  GetAssembler()->FinalizeInstructions(code);
}

void CodeGenerator::EmitLinkerPatches(
    ArenaVector<linker::LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) {
  // No linker patches by default.
}

bool CodeGenerator::NeedsThunkCode(const linker::LinkerPatch& patch ATTRIBUTE_UNUSED) const {
  // Code generators that create patches requiring thunk compilation should override this function.
  return false;
}

void CodeGenerator::EmitThunkCode(const linker::LinkerPatch& patch ATTRIBUTE_UNUSED,
                                  /*out*/ ArenaVector<uint8_t>* code ATTRIBUTE_UNUSED,
                                  /*out*/ std::string* debug_name ATTRIBUTE_UNUSED) {
  // Code generators that create patches requiring thunk compilation should override this function.
  LOG(FATAL) << "Unexpected call to EmitThunkCode().";
}

void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
                                             size_t maximum_safepoint_spill_size,
                                             size_t number_of_out_slots,
                                             const ArenaVector<HBasicBlock*>& block_order) {
  block_order_ = &block_order;
  DCHECK(!block_order.empty());
  DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
  ComputeSpillMask();
  first_register_slot_in_slow_path_ = RoundUp(
      (number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment());

  if (number_of_spill_slots == 0
      && !HasAllocatedCalleeSaveRegisters()
      && IsLeafMethod()
      && !RequiresCurrentMethod()) {
    DCHECK_EQ(maximum_safepoint_spill_size, 0u);
    SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
  } else {
    SetFrameSize(RoundUp(
        first_register_slot_in_slow_path_
        + maximum_safepoint_spill_size
        + (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0)
        + FrameEntrySpillSize(),
        kStackAlignment));
  }
}

void CodeGenerator::CreateCommonInvokeLocationSummary(
    HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
  ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
  LocationSummary* locations = new (allocator) LocationSummary(invoke,
                                                               LocationSummary::kCallOnMainOnly);

  for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
    HInstruction* input = invoke->InputAt(i);
    locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
  }

  locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));

  if (invoke->IsInvokeStaticOrDirect()) {
    HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
    MethodLoadKind method_load_kind = call->GetMethodLoadKind();
    CodePtrLocation code_ptr_location = call->GetCodePtrLocation();
    if (code_ptr_location == CodePtrLocation::kCallCriticalNative) {
      locations->AddTemp(Location::RequiresRegister());  // For target method.
    }
    if (code_ptr_location == CodePtrLocation::kCallCriticalNative ||
        method_load_kind == MethodLoadKind::kRecursive) {
      // For `kCallCriticalNative` we need the current method as the hidden argument
      // if we reach the dlsym lookup stub for @CriticalNative.
      locations->SetInAt(call->GetCurrentMethodIndex(), visitor->GetMethodLocation());
    } else {
      locations->AddTemp(visitor->GetMethodLocation());
      if (method_load_kind == MethodLoadKind::kRuntimeCall) {
        locations->SetInAt(call->GetCurrentMethodIndex(), Location::RequiresRegister());
      }
    }
  } else if (!invoke->IsInvokePolymorphic()) {
    locations->AddTemp(visitor->GetMethodLocation());
  }
}

void CodeGenerator::PrepareCriticalNativeArgumentMoves(
    HInvokeStaticOrDirect* invoke,
    /*inout*/InvokeDexCallingConventionVisitor* visitor,
    /*out*/HParallelMove* parallel_move) {
  LocationSummary* locations = invoke->GetLocations();
  for (size_t i = 0, num = invoke->GetNumberOfArguments(); i != num; ++i) {
    Location in_location = locations->InAt(i);
    DataType::Type type = invoke->InputAt(i)->GetType();
    DCHECK_NE(type, DataType::Type::kReference);
    Location out_location = visitor->GetNextLocation(type);
    if (out_location.IsStackSlot() || out_location.IsDoubleStackSlot()) {
      // Stack arguments will need to be moved after adjusting the SP.
      parallel_move->AddMove(in_location, out_location, type, /*instruction=*/ nullptr);
    } else {
      // Register arguments should have been assigned their final locations for register allocation.
      DCHECK(out_location.Equals(in_location)) << in_location << " -> " << out_location;
    }
  }
}

void CodeGenerator::FinishCriticalNativeFrameSetup(size_t out_frame_size,
                                                   /*inout*/HParallelMove* parallel_move) {
  DCHECK_NE(out_frame_size, 0u);
  IncreaseFrame(out_frame_size);
  // Adjust the source stack offsets by `out_frame_size`, i.e. the additional
  // frame size needed for outgoing stack arguments.
  for (size_t i = 0, num = parallel_move->NumMoves(); i != num; ++i) {
    MoveOperands* operands = parallel_move->MoveOperandsAt(i);
    Location source = operands->GetSource();
    if (operands->GetSource().IsStackSlot()) {
      operands->SetSource(Location::StackSlot(source.GetStackIndex() +  out_frame_size));
    } else if (operands->GetSource().IsDoubleStackSlot()) {
      operands->SetSource(Location::DoubleStackSlot(source.GetStackIndex() +  out_frame_size));
    }
  }
  // Emit the moves.
  GetMoveResolver()->EmitNativeCode(parallel_move);
}

const char* CodeGenerator::GetCriticalNativeShorty(HInvokeStaticOrDirect* invoke,
                                                   uint32_t* shorty_len) {
  ScopedObjectAccess soa(Thread::Current());
  DCHECK(invoke->GetResolvedMethod()->IsCriticalNative());
  return invoke->GetResolvedMethod()->GetShorty(shorty_len);
}

void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall(
    HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
  MethodReference method_reference(invoke->GetMethodReference());
  MoveConstant(temp, method_reference.index);

  // The access check is unnecessary but we do not want to introduce
  // extra entrypoints for the codegens that do not support some
  // invoke type and fall back to the runtime call.

  // Initialize to anything to silent compiler warnings.
  QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
  switch (invoke->GetInvokeType()) {
    case kStatic:
      entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
      break;
    case kDirect:
      entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
      break;
    case kSuper:
      entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
      break;
    case kVirtual:
    case kInterface:
    case kPolymorphic:
    case kCustom:
      LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
      UNREACHABLE();
  }

  InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
}
void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
  MethodReference method_reference(invoke->GetMethodReference());
  MoveConstant(invoke->GetLocations()->GetTemp(0), method_reference.index);

  // Initialize to anything to silent compiler warnings.
  QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
  switch (invoke->GetInvokeType()) {
    case kStatic:
      entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
      break;
    case kDirect:
      entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
      break;
    case kVirtual:
      entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
      break;
    case kSuper:
      entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
      break;
    case kInterface:
      entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
      break;
    case kPolymorphic:
    case kCustom:
      LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
      UNREACHABLE();
  }
  InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
}

void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke,
                                                  SlowPathCode* slow_path) {
  // invoke-polymorphic does not use a temporary to convey any additional information (e.g. a
  // method index) since it requires multiple info from the instruction (registers A, B, H). Not
  // using the reservation has no effect on the registers used in the runtime call.
  QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic;
  InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
}

void CodeGenerator::GenerateInvokeCustomCall(HInvokeCustom* invoke) {
  MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetCallSiteIndex());
  QuickEntrypointEnum entrypoint = kQuickInvokeCustom;
  InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
}

void CodeGenerator::CreateStringBuilderAppendLocations(HStringBuilderAppend* instruction,
                                                       Location out) {
  ArenaAllocator* allocator = GetGraph()->GetAllocator();
  LocationSummary* locations =
      new (allocator) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
  locations->SetOut(out);
  instruction->GetLocations()->SetInAt(instruction->FormatIndex(),
                                       Location::ConstantLocation(instruction->GetFormat()));

  uint32_t format = static_cast<uint32_t>(instruction->GetFormat()->GetValue());
  uint32_t f = format;
  PointerSize pointer_size = InstructionSetPointerSize(GetInstructionSet());
  size_t stack_offset = static_cast<size_t>(pointer_size);  // Start after the ArtMethod*.
  for (size_t i = 0, num_args = instruction->GetNumberOfArguments(); i != num_args; ++i) {
    StringBuilderAppend::Argument arg_type =
        static_cast<StringBuilderAppend::Argument>(f & StringBuilderAppend::kArgMask);
    switch (arg_type) {
      case StringBuilderAppend::Argument::kStringBuilder:
      case StringBuilderAppend::Argument::kString:
      case StringBuilderAppend::Argument::kCharArray:
        static_assert(sizeof(StackReference<mirror::Object>) == sizeof(uint32_t), "Size check.");
        FALLTHROUGH_INTENDED;
      case StringBuilderAppend::Argument::kBoolean:
      case StringBuilderAppend::Argument::kChar:
      case StringBuilderAppend::Argument::kInt:
      case StringBuilderAppend::Argument::kFloat:
        locations->SetInAt(i, Location::StackSlot(stack_offset));
        break;
      case StringBuilderAppend::Argument::kLong:
      case StringBuilderAppend::Argument::kDouble:
        stack_offset = RoundUp(stack_offset, sizeof(uint64_t));
        locations->SetInAt(i, Location::DoubleStackSlot(stack_offset));
        // Skip the low word, let the common code skip the high word.
        stack_offset += sizeof(uint32_t);
        break;
      default:
        LOG(FATAL) << "Unexpected arg format: 0x" << std::hex
            << (f & StringBuilderAppend::kArgMask) << " full format: 0x" << format;
        UNREACHABLE();
    }
    f >>= StringBuilderAppend::kBitsPerArg;
    stack_offset += sizeof(uint32_t);
  }
  DCHECK_EQ(f, 0u);

  size_t param_size = stack_offset - static_cast<size_t>(pointer_size);
  DCHECK_ALIGNED(param_size, kVRegSize);
  size_t num_vregs = param_size / kVRegSize;
  graph_->UpdateMaximumNumberOfOutVRegs(num_vregs);
}

void CodeGenerator::CreateUnresolvedFieldLocationSummary(
    HInstruction* field_access,
    DataType::Type field_type,
    const FieldAccessCallingConvention& calling_convention) {
  bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
      || field_access->IsUnresolvedInstanceFieldSet();
  bool is_get = field_access->IsUnresolvedInstanceFieldGet()
      || field_access->IsUnresolvedStaticFieldGet();

  ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetAllocator();
  LocationSummary* locations =
      new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly);

  locations->AddTemp(calling_convention.GetFieldIndexLocation());

  if (is_instance) {
    // Add the `this` object for instance field accesses.
    locations->SetInAt(0, calling_convention.GetObjectLocation());
  }

  // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
  // regardless of the the type. Because of that we forced to special case
  // the access to floating point values.
  if (is_get) {
    if (DataType::IsFloatingPointType(field_type)) {
      // The return value will be stored in regular registers while register
      // allocator expects it in a floating point register.
      // Note We don't need to request additional temps because the return
      // register(s) are already blocked due the call and they may overlap with
      // the input or field index.
      // The transfer between the two will be done at codegen level.
      locations->SetOut(calling_convention.GetFpuLocation(field_type));
    } else {
      locations->SetOut(calling_convention.GetReturnLocation(field_type));
    }
  } else {
     size_t set_index = is_instance ? 1 : 0;
     if (DataType::IsFloatingPointType(field_type)) {
      // The set value comes from a float location while the calling convention
      // expects it in a regular register location. Allocate a temp for it and
      // make the transfer at codegen.
      AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
      locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
    } else {
      locations->SetInAt(set_index,
          calling_convention.GetSetValueLocation(field_type, is_instance));
    }
  }
}

void CodeGenerator::GenerateUnresolvedFieldAccess(
    HInstruction* field_access,
    DataType::Type field_type,
    uint32_t field_index,
    uint32_t dex_pc,
    const FieldAccessCallingConvention& calling_convention) {
  LocationSummary* locations = field_access->GetLocations();

  MoveConstant(locations->GetTemp(0), field_index);

  bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
      || field_access->IsUnresolvedInstanceFieldSet();
  bool is_get = field_access->IsUnresolvedInstanceFieldGet()
      || field_access->IsUnresolvedStaticFieldGet();

  if (!is_get && DataType::IsFloatingPointType(field_type)) {
    // Copy the float value to be set into the calling convention register.
    // Note that using directly the temp location is problematic as we don't
    // support temp register pairs. To avoid boilerplate conversion code, use
    // the location from the calling convention.
    MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
                 locations->InAt(is_instance ? 1 : 0),
                 (DataType::Is64BitType(field_type) ? DataType::Type::kInt64
                                                    : DataType::Type::kInt32));
  }

  QuickEntrypointEnum entrypoint = kQuickSet8Static;  // Initialize to anything to avoid warnings.
  switch (field_type) {
    case DataType::Type::kBool:
      entrypoint = is_instance
          ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
          : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
      break;
    case DataType::Type::kInt8:
      entrypoint = is_instance
          ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
          : (is_get ? kQuickGetByteStatic : kQuickSet8Static);
      break;
    case DataType::Type::kInt16:
      entrypoint = is_instance
          ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
          : (is_get ? kQuickGetShortStatic : kQuickSet16Static);
      break;
    case DataType::Type::kUint16:
      entrypoint = is_instance
          ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
          : (is_get ? kQuickGetCharStatic : kQuickSet16Static);
      break;
    case DataType::Type::kInt32:
    case DataType::Type::kFloat32:
      entrypoint = is_instance
          ? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
          : (is_get ? kQuickGet32Static : kQuickSet32Static);
      break;
    case DataType::Type::kReference:
      entrypoint = is_instance
          ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
          : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
      break;
    case DataType::Type::kInt64:
    case DataType::Type::kFloat64:
      entrypoint = is_instance
          ? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
          : (is_get ? kQuickGet64Static : kQuickSet64Static);
      break;
    default:
      LOG(FATAL) << "Invalid type " << field_type;
  }
  InvokeRuntime(entrypoint, field_access, dex_pc, nullptr);

  if (is_get && DataType::IsFloatingPointType(field_type)) {
    MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
  }
}

void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
                                                              Location runtime_type_index_location,
                                                              Location runtime_return_location) {
  DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
  DCHECK_EQ(cls->InputCount(), 1u);
  LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
      cls, LocationSummary::kCallOnMainOnly);
  locations->SetInAt(0, Location::NoLocation());
  locations->AddTemp(runtime_type_index_location);
  locations->SetOut(runtime_return_location);
}

void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) {
  DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
  DCHECK(!cls->MustGenerateClinitCheck());
  LocationSummary* locations = cls->GetLocations();
  MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_);
  if (cls->NeedsAccessCheck()) {
    CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
    InvokeRuntime(kQuickResolveTypeAndVerifyAccess, cls, cls->GetDexPc());
  } else {
    CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
    InvokeRuntime(kQuickResolveType, cls, cls->GetDexPc());
  }
}

void CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(
    HLoadMethodHandle* method_handle,
    Location runtime_proto_index_location,
    Location runtime_return_location) {
  DCHECK_EQ(method_handle->InputCount(), 1u);
  LocationSummary* locations =
      new (method_handle->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
          method_handle, LocationSummary::kCallOnMainOnly);
  locations->SetInAt(0, Location::NoLocation());
  locations->AddTemp(runtime_proto_index_location);
  locations->SetOut(runtime_return_location);
}

void CodeGenerator::GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle) {
  LocationSummary* locations = method_handle->GetLocations();
  MoveConstant(locations->GetTemp(0), method_handle->GetMethodHandleIndex());
  CheckEntrypointTypes<kQuickResolveMethodHandle, void*, uint32_t>();
  InvokeRuntime(kQuickResolveMethodHandle, method_handle, method_handle->GetDexPc());
}

void CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(
    HLoadMethodType* method_type,
    Location runtime_proto_index_location,
    Location runtime_return_location) {
  DCHECK_EQ(method_type->InputCount(), 1u);
  LocationSummary* locations =
      new (method_type->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
          method_type, LocationSummary::kCallOnMainOnly);
  locations->SetInAt(0, Location::NoLocation());
  locations->AddTemp(runtime_proto_index_location);
  locations->SetOut(runtime_return_location);
}

void CodeGenerator::GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type) {
  LocationSummary* locations = method_type->GetLocations();
  MoveConstant(locations->GetTemp(0), method_type->GetProtoIndex().index_);
  CheckEntrypointTypes<kQuickResolveMethodType, void*, uint32_t>();
  InvokeRuntime(kQuickResolveMethodType, method_type, method_type->GetDexPc());
}

static uint32_t GetBootImageOffsetImpl(const void* object, ImageHeader::ImageSections section) {
  Runtime* runtime = Runtime::Current();
  const std::vector<gc::space::ImageSpace*>& boot_image_spaces =
      runtime->GetHeap()->GetBootImageSpaces();
  // Check that the `object` is in the expected section of one of the boot image files.
  DCHECK(std::any_of(boot_image_spaces.begin(),
                     boot_image_spaces.end(),
                     [object, section](gc::space::ImageSpace* space) {
                       uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
                       uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
                       return space->GetImageHeader().GetImageSection(section).Contains(offset);
                     }));
  uintptr_t begin = reinterpret_cast<uintptr_t>(boot_image_spaces.front()->Begin());
  uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
  return dchecked_integral_cast<uint32_t>(offset);
}

uint32_t CodeGenerator::GetBootImageOffset(ObjPtr<mirror::Object> object) {
  return GetBootImageOffsetImpl(object.Ptr(), ImageHeader::kSectionObjects);
}

// NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable.
uint32_t CodeGenerator::GetBootImageOffset(HLoadClass* load_class) NO_THREAD_SAFETY_ANALYSIS {
  DCHECK_EQ(load_class->GetLoadKind(), HLoadClass::LoadKind::kBootImageRelRo);
  ObjPtr<mirror::Class> klass = load_class->GetClass().Get();
  DCHECK(klass != nullptr);
  return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects);
}

// NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image strings are non-moveable.
uint32_t CodeGenerator::GetBootImageOffset(HLoadString* load_string) NO_THREAD_SAFETY_ANALYSIS {
  DCHECK_EQ(load_string->GetLoadKind(), HLoadString::LoadKind::kBootImageRelRo);
  ObjPtr<mirror::String> string = load_string->GetString().Get();
  DCHECK(string != nullptr);
  return GetBootImageOffsetImpl(string.Ptr(), ImageHeader::kSectionObjects);
}

uint32_t CodeGenerator::GetBootImageOffset(HInvoke* invoke) {
  ArtMethod* method = invoke->GetResolvedMethod();
  DCHECK(method != nullptr);
  return GetBootImageOffsetImpl(method, ImageHeader::kSectionArtMethods);
}

// NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image objects are non-moveable.
uint32_t CodeGenerator::GetBootImageOffset(ClassRoot class_root) NO_THREAD_SAFETY_ANALYSIS {
  ObjPtr<mirror::Class> klass = GetClassRoot<kWithoutReadBarrier>(class_root);
  return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects);
}

// NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable.
uint32_t CodeGenerator::GetBootImageOffsetOfIntrinsicDeclaringClass(HInvoke* invoke)
    NO_THREAD_SAFETY_ANALYSIS {
  DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
  ArtMethod* method = invoke->GetResolvedMethod();
  DCHECK(method != nullptr);
  ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass<kWithoutReadBarrier>();
  return GetBootImageOffsetImpl(declaring_class.Ptr(), ImageHeader::kSectionObjects);
}

void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
  // The DCHECKS below check that a register is not specified twice in
  // the summary. The out location can overlap with an input, so we need
  // to special case it.
  if (location.IsRegister()) {
    DCHECK(is_out || !blocked_core_registers_[location.reg()]);
    blocked_core_registers_[location.reg()] = true;
  } else if (location.IsFpuRegister()) {
    DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
    blocked_fpu_registers_[location.reg()] = true;
  } else if (location.IsFpuRegisterPair()) {
    DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
    blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
    DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
    blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
  } else if (location.IsRegisterPair()) {
    DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
    blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
    DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
    blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
  }
}

void CodeGenerator::AllocateLocations(HInstruction* instruction) {
  for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) {
    env->AllocateLocations();
  }
  instruction->Accept(GetLocationBuilder());
  DCHECK(CheckTypeConsistency(instruction));
  LocationSummary* locations = instruction->GetLocations();
  if (!instruction->IsSuspendCheckEntry()) {
    if (locations != nullptr) {
      if (locations->CanCall()) {
        MarkNotLeaf();
        if (locations->NeedsSuspendCheckEntry()) {
          MarkNeedsSuspendCheckEntry();
        }
      } else if (locations->Intrinsified() &&
                 instruction->IsInvokeStaticOrDirect() &&
                 !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
        // A static method call that has been fully intrinsified, and cannot call on the slow
        // path or refer to the current method directly, no longer needs current method.
        return;
      }
    }
    if (instruction->NeedsCurrentMethod()) {
      SetRequiresCurrentMethod();
    }
  }
}

std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
                                                     const CompilerOptions& compiler_options,
                                                     OptimizingCompilerStats* stats) {
  ArenaAllocator* allocator = graph->GetAllocator();
  switch (compiler_options.GetInstructionSet()) {
#ifdef ART_ENABLE_CODEGEN_arm
    case InstructionSet::kArm:
    case InstructionSet::kThumb2: {
      return std::unique_ptr<CodeGenerator>(
          new (allocator) arm::CodeGeneratorARMVIXL(graph, compiler_options, stats));
    }
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
    case InstructionSet::kArm64: {
      return std::unique_ptr<CodeGenerator>(
          new (allocator) arm64::CodeGeneratorARM64(graph, compiler_options, stats));
    }
#endif
#ifdef ART_ENABLE_CODEGEN_x86
    case InstructionSet::kX86: {
      return std::unique_ptr<CodeGenerator>(
          new (allocator) x86::CodeGeneratorX86(graph, compiler_options, stats));
    }
#endif
#ifdef ART_ENABLE_CODEGEN_x86_64
    case InstructionSet::kX86_64: {
      return std::unique_ptr<CodeGenerator>(
          new (allocator) x86_64::CodeGeneratorX86_64(graph, compiler_options, stats));
    }
#endif
    default:
      UNUSED(allocator);
      UNUSED(graph);
      UNUSED(stats);
      return nullptr;
  }
}

CodeGenerator::CodeGenerator(HGraph* graph,
                             size_t number_of_core_registers,
                             size_t number_of_fpu_registers,
                             size_t number_of_register_pairs,
                             uint32_t core_callee_save_mask,
                             uint32_t fpu_callee_save_mask,
                             const CompilerOptions& compiler_options,
                             OptimizingCompilerStats* stats,
                             const art::ArrayRef<const bool>& unimplemented_intrinsics)
    : frame_size_(0),
      core_spill_mask_(0),
      fpu_spill_mask_(0),
      first_register_slot_in_slow_path_(0),
      allocated_registers_(RegisterSet::Empty()),
      blocked_core_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_core_registers,
                                                                      kArenaAllocCodeGenerator)),
      blocked_fpu_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_fpu_registers,
                                                                     kArenaAllocCodeGenerator)),
      number_of_core_registers_(number_of_core_registers),
      number_of_fpu_registers_(number_of_fpu_registers),
      number_of_register_pairs_(number_of_register_pairs),
      core_callee_save_mask_(core_callee_save_mask),
      fpu_callee_save_mask_(fpu_callee_save_mask),
      block_order_(nullptr),
      disasm_info_(nullptr),
      stats_(stats),
      graph_(graph),
      compiler_options_(compiler_options),
      current_slow_path_(nullptr),
      current_block_index_(0),
      is_leaf_(true),
      needs_suspend_check_entry_(false),
      requires_current_method_(false),
      code_generation_data_(),
      unimplemented_intrinsics_(unimplemented_intrinsics) {
  if (GetGraph()->IsCompilingOsr()) {
    // Make OSR methods have all registers spilled, this simplifies the logic of
    // jumping to the compiled code directly.
    for (size_t i = 0; i < number_of_core_registers_; ++i) {
      if (IsCoreCalleeSaveRegister(i)) {
        AddAllocatedRegister(Location::RegisterLocation(i));
      }
    }
    for (size_t i = 0; i < number_of_fpu_registers_; ++i) {
      if (IsFloatingPointCalleeSaveRegister(i)) {
        AddAllocatedRegister(Location::FpuRegisterLocation(i));
      }
    }
  }
  if (GetGraph()->IsCompilingBaseline()) {
    // We need the current method in case we reach the hotness threshold. As a
    // side effect this makes the frame non-empty.
    SetRequiresCurrentMethod();
  }
}

CodeGenerator::~CodeGenerator() {}

size_t CodeGenerator::GetNumberOfJitRoots() const {
  DCHECK(code_generation_data_ != nullptr);
  return code_generation_data_->GetNumberOfJitRoots();
}

static void CheckCovers(uint32_t dex_pc,
                        const HGraph& graph,
                        const CodeInfo& code_info,
                        const ArenaVector<HSuspendCheck*>& loop_headers,
                        ArenaVector<size_t>* covered) {
  for (size_t i = 0; i < loop_headers.size(); ++i) {
    if (loop_headers[i]->GetDexPc() == dex_pc) {
      if (graph.IsCompilingOsr()) {
        DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc).IsValid());
      }
      ++(*covered)[i];
    }
  }
}

// Debug helper to ensure loop entries in compiled code are matched by
// dex branch instructions.
static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
                                            const CodeInfo& code_info,
                                            const dex::CodeItem& code_item) {
  if (graph.HasTryCatch()) {
    // One can write loops through try/catch, which we do not support for OSR anyway.
    return;
  }
  ArenaVector<HSuspendCheck*> loop_headers(graph.GetAllocator()->Adapter(kArenaAllocMisc));
  for (HBasicBlock* block : graph.GetReversePostOrder()) {
    if (block->IsLoopHeader()) {
      HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck();
      if (suspend_check != nullptr && !suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
        loop_headers.push_back(suspend_check);
      }
    }
  }
  ArenaVector<size_t> covered(
      loop_headers.size(), 0, graph.GetAllocator()->Adapter(kArenaAllocMisc));
  for (const DexInstructionPcPair& pair : CodeItemInstructionAccessor(graph.GetDexFile(),
                                                                      &code_item)) {
    const uint32_t dex_pc = pair.DexPc();
    const Instruction& instruction = pair.Inst();
    if (instruction.IsBranch()) {
      uint32_t target = dex_pc + instruction.GetTargetOffset();
      CheckCovers(target, graph, code_info, loop_headers, &covered);
    } else if (instruction.IsSwitch()) {
      DexSwitchTable table(instruction, dex_pc);
      uint16_t num_entries = table.GetNumEntries();
      size_t offset = table.GetFirstValueIndex();

      // Use a larger loop counter type to avoid overflow issues.
      for (size_t i = 0; i < num_entries; ++i) {
        // The target of the case.
        uint32_t target = dex_pc + table.GetEntryAt(i + offset);
        CheckCovers(target, graph, code_info, loop_headers, &covered);
      }
    }
  }

  for (size_t i = 0; i < covered.size(); ++i) {
    DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
  }
}

ScopedArenaVector<uint8_t> CodeGenerator::BuildStackMaps(const dex::CodeItem* code_item) {
  ScopedArenaVector<uint8_t> stack_map = GetStackMapStream()->Encode();
  if (kIsDebugBuild && code_item != nullptr) {
    CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map.data()), *code_item);
  }
  return stack_map;
}

// Returns whether stackmap dex register info is needed for the instruction.
//
// The following cases mandate having a dex register map:
//  * Deoptimization
//    when we need to obtain the values to restore actual vregisters for interpreter.
//  * Debuggability
//    when we want to observe the values / asynchronously deoptimize.
//  * Monitor operations
//    to allow dumping in a stack trace locked dex registers for non-debuggable code.
//  * On-stack-replacement (OSR)
//    when entering compiled for OSR code from the interpreter we need to initialize the compiled
//    code values with the values from the vregisters.
//  * Method local catch blocks
//    a catch block must see the environment of the instruction from the same method that can
//    throw to this block.
static bool NeedsVregInfo(HInstruction* instruction, bool osr) {
  HGraph* graph = instruction->GetBlock()->GetGraph();
  return instruction->IsDeoptimize() ||
         graph->IsDebuggable() ||
         graph->HasMonitorOperations() ||
         osr ||
         instruction->CanThrowIntoCatchBlock();
}

void CodeGenerator::RecordPcInfo(HInstruction* instruction,
                                 uint32_t dex_pc,
                                 SlowPathCode* slow_path,
                                 bool native_debug_info) {
  RecordPcInfo(instruction, dex_pc, GetAssembler()->CodePosition(), slow_path, native_debug_info);
}

void CodeGenerator::RecordPcInfo(HInstruction* instruction,
                                 uint32_t dex_pc,
                                 uint32_t native_pc,
                                 SlowPathCode* slow_path,
                                 bool native_debug_info) {
  if (instruction != nullptr) {
    // The code generated for some type conversions
    // may call the runtime, thus normally requiring a subsequent
    // call to this method. However, the method verifier does not
    // produce PC information for certain instructions, which are
    // considered "atomic" (they cannot join a GC).
    // Therefore we do not currently record PC information for such
    // instructions.  As this may change later, we added this special
    // case so that code generators may nevertheless call
    // CodeGenerator::RecordPcInfo without triggering an error in
    // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
    // thereafter.
    if (instruction->IsTypeConversion()) {
      return;
    }
    if (instruction->IsRem()) {
      DataType::Type type = instruction->AsRem()->GetResultType();
      if ((type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64)) {
        return;
      }
    }
  }

  StackMapStream* stack_map_stream = GetStackMapStream();
  if (instruction == nullptr) {
    // For stack overflow checks and native-debug-info entries without dex register
    // mapping (i.e. start of basic block or start of slow path).
    stack_map_stream->BeginStackMapEntry(dex_pc, native_pc);
    stack_map_stream->EndStackMapEntry();
    return;
  }

  LocationSummary* locations = instruction->GetLocations();
  uint32_t register_mask = locations->GetRegisterMask();
  DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u);
  if (locations->OnlyCallsOnSlowPath()) {
    // In case of slow path, we currently set the location of caller-save registers
    // to register (instead of their stack location when pushed before the slow-path
    // call). Therefore register_mask contains both callee-save and caller-save
    // registers that hold objects. We must remove the spilled caller-save from the
    // mask, since they will be overwritten by the callee.
    uint32_t spills = GetSlowPathSpills(locations, /* core_registers= */ true);
    register_mask &= ~spills;
  } else {
    // The register mask must be a subset of callee-save registers.
    DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
  }

  uint32_t outer_dex_pc = dex_pc;
  uint32_t inlining_depth = 0;
  HEnvironment* const environment = instruction->GetEnvironment();
  if (environment != nullptr) {
    HEnvironment* outer_environment = environment;
    while (outer_environment->GetParent() != nullptr) {
      outer_environment = outer_environment->GetParent();
      ++inlining_depth;
    }
    outer_dex_pc = outer_environment->GetDexPc();
  }

  HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
  bool osr =
      instruction->IsSuspendCheck() &&
      (info != nullptr) &&
      graph_->IsCompilingOsr() &&
      (inlining_depth == 0);
  StackMap::Kind kind = native_debug_info
      ? StackMap::Kind::Debug
      : (osr ? StackMap::Kind::OSR : StackMap::Kind::Default);
  bool needs_vreg_info = NeedsVregInfo(instruction, osr);
  stack_map_stream->BeginStackMapEntry(outer_dex_pc,
                                       native_pc,
                                       register_mask,
                                       locations->GetStackMask(),
                                       kind,
                                       needs_vreg_info);

  EmitEnvironment(environment, slow_path, needs_vreg_info);
  stack_map_stream->EndStackMapEntry();

  if (osr) {
    DCHECK_EQ(info->GetSuspendCheck(), instruction);
    DCHECK(info->IsIrreducible());
    DCHECK(environment != nullptr);
    if (kIsDebugBuild) {
      for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
        HInstruction* in_environment = environment->GetInstructionAt(i);
        if (in_environment != nullptr) {
          DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
          Location location = environment->GetLocationAt(i);
          DCHECK(location.IsStackSlot() ||
                 location.IsDoubleStackSlot() ||
                 location.IsConstant() ||
                 location.IsInvalid());
          if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
            DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
          }
        }
      }
    }
  }
}

bool CodeGenerator::HasStackMapAtCurrentPc() {
  uint32_t pc = GetAssembler()->CodeSize();
  StackMapStream* stack_map_stream = GetStackMapStream();
  size_t count = stack_map_stream->GetNumberOfStackMaps();
  if (count == 0) {
    return false;
  }
  return stack_map_stream->GetStackMapNativePcOffset(count - 1) == pc;
}

void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
                                               uint32_t dex_pc,
                                               SlowPathCode* slow_path) {
  if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
    if (HasStackMapAtCurrentPc()) {
      // Ensure that we do not collide with the stack map of the previous instruction.
      GenerateNop();
    }
    RecordPcInfo(instruction, dex_pc, slow_path, /* native_debug_info= */ true);
  }
}

void CodeGenerator::RecordCatchBlockInfo() {
  StackMapStream* stack_map_stream = GetStackMapStream();

  for (HBasicBlock* block : *block_order_) {
    if (!block->IsCatchBlock()) {
      continue;
    }

    // Get the outer dex_pc. We save the full environment list for DCHECK purposes in kIsDebugBuild.
    std::vector<uint32_t> dex_pc_list_for_verification;
    if (kIsDebugBuild) {
      dex_pc_list_for_verification.push_back(block->GetDexPc());
    }
    DCHECK(block->GetFirstInstruction()->IsNop());
    DCHECK(block->GetFirstInstruction()->AsNop()->NeedsEnvironment());
    HEnvironment* const environment = block->GetFirstInstruction()->GetEnvironment();
    DCHECK(environment != nullptr);
    HEnvironment* outer_environment = environment;
    while (outer_environment->GetParent() != nullptr) {
      outer_environment = outer_environment->GetParent();
      if (kIsDebugBuild) {
        dex_pc_list_for_verification.push_back(outer_environment->GetDexPc());
      }
    }

    if (kIsDebugBuild) {
      // dex_pc_list_for_verification is set from innnermost to outermost. Let's reverse it
      // since we are expected to pass from outermost to innermost.
      std::reverse(dex_pc_list_for_verification.begin(), dex_pc_list_for_verification.end());
      DCHECK_EQ(dex_pc_list_for_verification.front(), outer_environment->GetDexPc());
    }

    uint32_t native_pc = GetAddressOf(block);
    stack_map_stream->BeginStackMapEntry(outer_environment->GetDexPc(),
                                         native_pc,
                                         /* register_mask= */ 0,
                                         /* sp_mask= */ nullptr,
                                         StackMap::Kind::Catch,
                                         /* needs_vreg_info= */ true,
                                         dex_pc_list_for_verification);

    EmitEnvironment(environment,
                    /* slow_path= */ nullptr,
                    /* needs_vreg_info= */ true,
                    /* is_for_catch_handler= */ true);

    stack_map_stream->EndStackMapEntry();
  }
}

void CodeGenerator::AddSlowPath(SlowPathCode* slow_path) {
  DCHECK(code_generation_data_ != nullptr);
  code_generation_data_->AddSlowPath(slow_path);
}

void CodeGenerator::EmitVRegInfo(HEnvironment* environment,
                                 SlowPathCode* slow_path,
                                 bool is_for_catch_handler) {
  StackMapStream* stack_map_stream = GetStackMapStream();
  // Walk over the environment, and record the location of dex registers.
  for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
    HInstruction* current = environment->GetInstructionAt(i);
    if (current == nullptr) {
      stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
      continue;
    }

    using Kind = DexRegisterLocation::Kind;
    Location location = environment->GetLocationAt(i);
    switch (location.GetKind()) {
      case Location::kConstant: {
        DCHECK_EQ(current, location.GetConstant());
        if (current->IsLongConstant()) {
          int64_t value = current->AsLongConstant()->GetValue();
          stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
          stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
          ++i;
          DCHECK_LT(i, environment_size);
        } else if (current->IsDoubleConstant()) {
          int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
          stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
          stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
          ++i;
          DCHECK_LT(i, environment_size);
        } else if (current->IsIntConstant()) {
          int32_t value = current->AsIntConstant()->GetValue();
          stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
        } else if (current->IsNullConstant()) {
          stack_map_stream->AddDexRegisterEntry(Kind::kConstant, 0);
        } else {
          DCHECK(current->IsFloatConstant()) << current->DebugName();
          int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
          stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
        }
        break;
      }

      case Location::kStackSlot: {
        stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
        break;
      }

      case Location::kDoubleStackSlot: {
        stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
        stack_map_stream->AddDexRegisterEntry(
            Kind::kInStack, location.GetHighStackIndex(kVRegSize));
        ++i;
        DCHECK_LT(i, environment_size);
        break;
      }

      case Location::kRegister : {
        DCHECK(!is_for_catch_handler);
        int id = location.reg();
        if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
          uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
          stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
          if (current->GetType() == DataType::Type::kInt64) {
            stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
            ++i;
            DCHECK_LT(i, environment_size);
          }
        } else {
          stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, id);
          if (current->GetType() == DataType::Type::kInt64) {
            stack_map_stream->AddDexRegisterEntry(Kind::kInRegisterHigh, id);
            ++i;
            DCHECK_LT(i, environment_size);
          }
        }
        break;
      }

      case Location::kFpuRegister : {
        DCHECK(!is_for_catch_handler);
        int id = location.reg();
        if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
          uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
          stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
          if (current->GetType() == DataType::Type::kFloat64) {
            stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
            ++i;
            DCHECK_LT(i, environment_size);
          }
        } else {
          stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, id);
          if (current->GetType() == DataType::Type::kFloat64) {
            stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegisterHigh, id);
            ++i;
            DCHECK_LT(i, environment_size);
          }
        }
        break;
      }

      case Location::kFpuRegisterPair : {
        DCHECK(!is_for_catch_handler);
        int low = location.low();
        int high = location.high();
        if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
          uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
          stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
        } else {
          stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, low);
        }
        if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
          uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
          stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
          ++i;
        } else {
          stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, high);
          ++i;
        }
        DCHECK_LT(i, environment_size);
        break;
      }

      case Location::kRegisterPair : {
        DCHECK(!is_for_catch_handler);
        int low = location.low();
        int high = location.high();
        if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
          uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
          stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
        } else {
          stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, low);
        }
        if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
          uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
          stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
        } else {
          stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, high);
        }
        ++i;
        DCHECK_LT(i, environment_size);
        break;
      }

      case Location::kInvalid: {
        stack_map_stream->AddDexRegisterEntry(Kind::kNone, 0);
        break;
      }

      default:
        LOG(FATAL) << "Unexpected kind " << location.GetKind();
    }
  }
}

void CodeGenerator::EmitVRegInfoOnlyCatchPhis(HEnvironment* environment) {
  StackMapStream* stack_map_stream = GetStackMapStream();
  DCHECK(environment->GetHolder()->GetBlock()->IsCatchBlock());
  DCHECK_EQ(environment->GetHolder()->GetBlock()->GetFirstInstruction(), environment->GetHolder());
  HInstruction* current_phi = environment->GetHolder()->GetBlock()->GetFirstPhi();
  for (size_t vreg = 0; vreg < environment->Size(); ++vreg) {
    while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
      HInstruction* next_phi = current_phi->GetNext();
      DCHECK(next_phi == nullptr ||
             current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
          << "Phis need to be sorted by vreg number to keep this a linear-time loop.";
      current_phi = next_phi;
    }

    if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
      stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
    } else {
      Location location = current_phi->GetLocations()->Out();
      switch (location.GetKind()) {
        case Location::kStackSlot: {
          stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack,
                                                location.GetStackIndex());
          break;
        }
        case Location::kDoubleStackSlot: {
          stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack,
                                                location.GetStackIndex());
          stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack,
                                                location.GetHighStackIndex(kVRegSize));
          ++vreg;
          DCHECK_LT(vreg, environment->Size());
          break;
        }
        default: {
          LOG(FATAL) << "All catch phis must be allocated to a stack slot. Unexpected kind "
                     << location.GetKind();
          UNREACHABLE();
        }
      }
    }
  }
}

void CodeGenerator::EmitEnvironment(HEnvironment* environment,
                                    SlowPathCode* slow_path,
                                    bool needs_vreg_info,
                                    bool is_for_catch_handler,
                                    bool innermost_environment) {
  if (environment == nullptr) return;

  StackMapStream* stack_map_stream = GetStackMapStream();
  bool emit_inline_info = environment->GetParent() != nullptr;

  if (emit_inline_info) {
    // We emit the parent environment first.
    EmitEnvironment(environment->GetParent(),
                    slow_path,
                    needs_vreg_info,
                    is_for_catch_handler,
                    /* innermost_environment= */ false);
    stack_map_stream->BeginInlineInfoEntry(environment->GetMethod(),
                                           environment->GetDexPc(),
                                           needs_vreg_info ? environment->Size() : 0,
                                           &graph_->GetDexFile(),
                                           this);
  }

  // If a dex register map is not required we just won't emit it.
  if (needs_vreg_info) {
    if (innermost_environment && is_for_catch_handler) {
      EmitVRegInfoOnlyCatchPhis(environment);
    } else {
      EmitVRegInfo(environment, slow_path, is_for_catch_handler);
    }
  }

  if (emit_inline_info) {
    stack_map_stream->EndInlineInfoEntry();
  }
}

bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
  return null_check->IsEmittedAtUseSite();
}

void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
  HNullCheck* null_check = instr->GetImplicitNullCheck();
  if (null_check != nullptr) {
    RecordPcInfo(null_check, null_check->GetDexPc(), GetAssembler()->CodePosition());
  }
}

LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction,
                                                                RegisterSet caller_saves) {
  // Note: Using kNoCall allows the method to be treated as leaf (and eliminate the
  // HSuspendCheck from entry block). However, it will still get a valid stack frame
  // because the HNullCheck needs an environment.
  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
  // When throwing from a try block, we may need to retrieve dalvik registers from
  // physical registers and we also need to set up stack mask for GC. This is
  // implicitly achieved by passing kCallOnSlowPath to the LocationSummary.
  bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock();
  if (can_throw_into_catch_block) {
    call_kind = LocationSummary::kCallOnSlowPath;
  }
  LocationSummary* locations =
      new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
  if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) {
    locations->SetCustomSlowPathCallerSaves(caller_saves);  // Default: no caller-save registers.
  }
  DCHECK(!instruction->HasUses());
  return locations;
}

void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
  if (compiler_options_.GetImplicitNullChecks()) {
    MaybeRecordStat(stats_, MethodCompilationStat::kImplicitNullCheckGenerated);
    GenerateImplicitNullCheck(instruction);
  } else {
    MaybeRecordStat(stats_, MethodCompilationStat::kExplicitNullCheckGenerated);
    GenerateExplicitNullCheck(instruction);
  }
}

void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
                                                          HParallelMove* spills) const {
  LocationSummary* locations = suspend_check->GetLocations();
  HBasicBlock* block = suspend_check->GetBlock();
  DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
  DCHECK(block->IsLoopHeader());
  DCHECK(block->GetFirstInstruction() == spills);

  for (size_t i = 0, num_moves = spills->NumMoves(); i != num_moves; ++i) {
    Location dest = spills->MoveOperandsAt(i)->GetDestination();
    // All parallel moves in loop headers are spills.
    DCHECK(dest.IsStackSlot() || dest.IsDoubleStackSlot() || dest.IsSIMDStackSlot()) << dest;
    // Clear the stack bit marking a reference. Do not bother to check if the spill is
    // actually a reference spill, clearing bits that are already zero is harmless.
    locations->ClearStackBit(dest.GetStackIndex() / kVRegSize);
  }
}

void CodeGenerator::EmitParallelMoves(Location from1,
                                      Location to1,
                                      DataType::Type type1,
                                      Location from2,
                                      Location to2,
                                      DataType::Type type2) {
  HParallelMove parallel_move(GetGraph()->GetAllocator());
  parallel_move.AddMove(from1, to1, type1, nullptr);
  parallel_move.AddMove(from2, to2, type2, nullptr);
  GetMoveResolver()->EmitNativeCode(&parallel_move);
}

void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
                                          HInstruction* instruction,
                                          SlowPathCode* slow_path) {
  // Ensure that the call kind indication given to the register allocator is
  // coherent with the runtime call generated.
  if (slow_path == nullptr) {
    DCHECK(instruction->GetLocations()->WillCall())
        << "instruction->DebugName()=" << instruction->DebugName();
  } else {
    DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal())
        << "instruction->DebugName()=" << instruction->DebugName()
        << " slow_path->GetDescription()=" << slow_path->GetDescription();
  }

  // Check that the GC side effect is set when required.
  // TODO: Reverse EntrypointCanTriggerGC
  if (EntrypointCanTriggerGC(entrypoint)) {
    if (slow_path == nullptr) {
      DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
          << "instruction->DebugName()=" << instruction->DebugName()
          << " instruction->GetSideEffects().ToString()="
          << instruction->GetSideEffects().ToString();
    } else {
      // 'CanTriggerGC' side effect is used to restrict optimization of instructions which depend
      // on GC (e.g. IntermediateAddress) - to ensure they are not alive across GC points. However
      // if execution never returns to the compiled code from a GC point this restriction is
      // unnecessary - in particular for fatal slow paths which might trigger GC.
      DCHECK((slow_path->IsFatal() && !instruction->GetLocations()->WillCall()) ||
             instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
             // When (non-Baker) read barriers are enabled, some instructions
             // use a slow path to emit a read barrier, which does not trigger
             // GC.
             (gUseReadBarrier &&
              !kUseBakerReadBarrier &&
              (instruction->IsInstanceFieldGet() ||
               instruction->IsPredicatedInstanceFieldGet() ||
               instruction->IsStaticFieldGet() ||
               instruction->IsArrayGet() ||
               instruction->IsLoadClass() ||
               instruction->IsLoadString() ||
               instruction->IsInstanceOf() ||
               instruction->IsCheckCast() ||
               (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()))))
          << "instruction->DebugName()=" << instruction->DebugName()
          << " instruction->GetSideEffects().ToString()="
          << instruction->GetSideEffects().ToString()
          << " slow_path->GetDescription()=" << slow_path->GetDescription() << std::endl
          << "Instruction and args: " << instruction->DumpWithArgs();
    }
  } else {
    // The GC side effect is not required for the instruction. But the instruction might still have
    // it, for example if it calls other entrypoints requiring it.
  }

  // Check the coherency of leaf information.
  DCHECK(instruction->IsSuspendCheck()
         || ((slow_path != nullptr) && slow_path->IsFatal())
         || instruction->GetLocations()->CanCall()
         || !IsLeafMethod())
      << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
}

void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
                                                                SlowPathCode* slow_path) {
  DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath())
      << "instruction->DebugName()=" << instruction->DebugName()
      << " slow_path->GetDescription()=" << slow_path->GetDescription();
  // Only the Baker read barrier marking slow path used by certains
  // instructions is expected to invoke the runtime without recording
  // PC-related information.
  DCHECK(kUseBakerReadBarrier);
  DCHECK(instruction->IsInstanceFieldGet() ||
         instruction->IsPredicatedInstanceFieldGet() ||
         instruction->IsStaticFieldGet() ||
         instruction->IsArrayGet() ||
         instruction->IsArraySet() ||
         instruction->IsLoadClass() ||
         instruction->IsLoadString() ||
         instruction->IsInstanceOf() ||
         instruction->IsCheckCast() ||
         (instruction->IsInvoke() && instruction->GetLocations()->Intrinsified()))
      << "instruction->DebugName()=" << instruction->DebugName()
      << " slow_path->GetDescription()=" << slow_path->GetDescription();
}

void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();

  const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
  for (uint32_t i : LowToHighBits(core_spills)) {
    // If the register holds an object, update the stack mask.
    if (locations->RegisterContainsObject(i)) {
      locations->SetStackBit(stack_offset / kVRegSize);
    }
    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
    saved_core_stack_offsets_[i] = stack_offset;
    stack_offset += codegen->SaveCoreRegister(stack_offset, i);
  }

  const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
  for (uint32_t i : LowToHighBits(fp_spills)) {
    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
    saved_fpu_stack_offsets_[i] = stack_offset;
    stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
  }
}

void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();

  const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
  for (uint32_t i : LowToHighBits(core_spills)) {
    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
    stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
  }

  const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
  for (uint32_t i : LowToHighBits(fp_spills)) {
    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
    stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
  }
}

void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) {
  // Check to see if we have known failures that will cause us to have to bail out
  // to the runtime, and just generate the runtime call directly.
  HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
  HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();

  // The positions must be non-negative.
  if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
      (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
    // We will have to fail anyways.
    return;
  }

  // The length must be >= 0.
  HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
  if (length != nullptr) {
    int32_t len = length->GetValue();
    if (len < 0) {
      // Just call as normal.
      return;
    }
  }

  SystemArrayCopyOptimizations optimizations(invoke);

  if (optimizations.GetDestinationIsSource()) {
    if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
      // We only support backward copying if source and destination are the same.
      return;
    }
  }

  if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
    // We currently don't intrinsify primitive copying.
    return;
  }

  ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
  LocationSummary* locations = new (allocator) LocationSummary(invoke,
                                                               LocationSummary::kCallOnSlowPath,
                                                               kIntrinsified);
  // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
  locations->SetInAt(0, Location::RequiresRegister());
  locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
  locations->SetInAt(2, Location::RequiresRegister());
  locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
  locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));

  locations->AddTemp(Location::RequiresRegister());
  locations->AddTemp(Location::RequiresRegister());
  locations->AddTemp(Location::RequiresRegister());
}

void CodeGenerator::EmitJitRoots(uint8_t* code,
                                 const uint8_t* roots_data,
                                 /*out*/std::vector<Handle<mirror::Object>>* roots) {
  code_generation_data_->EmitJitRoots(roots);
  EmitJitRootPatches(code, roots_data);
}

QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(HNewArray* new_array) {
  switch (new_array->GetComponentSizeShift()) {
    case 0: return kQuickAllocArrayResolved8;
    case 1: return kQuickAllocArrayResolved16;
    case 2: return kQuickAllocArrayResolved32;
    case 3: return kQuickAllocArrayResolved64;
  }
  LOG(FATAL) << "Unreachable";
  UNREACHABLE();
}

ScaleFactor CodeGenerator::ScaleFactorForType(DataType::Type type) {
  switch (type) {
    case DataType::Type::kBool:
    case DataType::Type::kUint8:
    case DataType::Type::kInt8:
      return TIMES_1;
    case DataType::Type::kUint16:
    case DataType::Type::kInt16:
      return TIMES_2;
    case DataType::Type::kInt32:
    case DataType::Type::kUint32:
    case DataType::Type::kFloat32:
    case DataType::Type::kReference:
      return TIMES_4;
    case DataType::Type::kInt64:
    case DataType::Type::kUint64:
    case DataType::Type::kFloat64:
      return TIMES_8;
    case DataType::Type::kVoid:
      LOG(FATAL) << "Unreachable type " << type;
      UNREACHABLE();
  }
}

}  // namespace art