File: common_arm64.h

package info (click to toggle)
android-platform-art 14.0.0%2Br15-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 96,796 kB
  • sloc: cpp: 522,217; java: 194,312; asm: 28,950; python: 14,910; xml: 5,087; sh: 4,528; ansic: 4,035; makefile: 110; perl: 77
file content (388 lines) | stat: -rw-r--r-- 15,121 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_
#define ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_

#include "base/macros.h"
#include "code_generator.h"
#include "instruction_simplifier_shared.h"
#include "locations.h"
#include "nodes.h"
#include "utils/arm64/assembler_arm64.h"

// TODO(VIXL): Make VIXL compile with -Wshadow.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#include "aarch64/disasm-aarch64.h"
#include "aarch64/macro-assembler-aarch64.h"
#include "aarch64/simulator-aarch64.h"
#pragma GCC diagnostic pop

namespace art HIDDEN {

using helpers::CanFitInShifterOperand;
using helpers::HasShifterOperand;

namespace arm64 {
namespace helpers {

// Convenience helpers to ease conversion to and from VIXL operands.
static_assert((SP == 31) && (WSP == 31) && (XZR == 32) && (WZR == 32),
              "Unexpected values for register codes.");

inline int VIXLRegCodeFromART(int code) {
  if (code == SP) {
    return vixl::aarch64::kSPRegInternalCode;
  }
  if (code == XZR) {
    return vixl::aarch64::kZeroRegCode;
  }
  return code;
}

inline int ARTRegCodeFromVIXL(int code) {
  if (code == vixl::aarch64::kSPRegInternalCode) {
    return SP;
  }
  if (code == vixl::aarch64::kZeroRegCode) {
    return XZR;
  }
  return code;
}

inline vixl::aarch64::Register XRegisterFrom(Location location) {
  DCHECK(location.IsRegister()) << location;
  return vixl::aarch64::XRegister(VIXLRegCodeFromART(location.reg()));
}

inline vixl::aarch64::Register WRegisterFrom(Location location) {
  DCHECK(location.IsRegister()) << location;
  return vixl::aarch64::WRegister(VIXLRegCodeFromART(location.reg()));
}

inline vixl::aarch64::Register RegisterFrom(Location location, DataType::Type type) {
  DCHECK(type != DataType::Type::kVoid && !DataType::IsFloatingPointType(type)) << type;
  return type == DataType::Type::kInt64 ? XRegisterFrom(location) : WRegisterFrom(location);
}

inline vixl::aarch64::Register OutputRegister(HInstruction* instr) {
  return RegisterFrom(instr->GetLocations()->Out(), instr->GetType());
}

inline vixl::aarch64::Register InputRegisterAt(HInstruction* instr, int input_index) {
  return RegisterFrom(instr->GetLocations()->InAt(input_index),
                      instr->InputAt(input_index)->GetType());
}

inline vixl::aarch64::VRegister DRegisterFrom(Location location) {
  DCHECK(location.IsFpuRegister()) << location;
  return vixl::aarch64::DRegister(location.reg());
}

inline vixl::aarch64::VRegister QRegisterFrom(Location location) {
  DCHECK(location.IsFpuRegister()) << location;
  return vixl::aarch64::QRegister(location.reg());
}

inline vixl::aarch64::VRegister VRegisterFrom(Location location) {
  DCHECK(location.IsFpuRegister()) << location;
  return vixl::aarch64::VRegister(location.reg());
}

inline vixl::aarch64::ZRegister ZRegisterFrom(Location location) {
  DCHECK(location.IsFpuRegister()) << location;
  return vixl::aarch64::ZRegister(location.reg());
}

inline vixl::aarch64::VRegister SRegisterFrom(Location location) {
  DCHECK(location.IsFpuRegister()) << location;
  return vixl::aarch64::SRegister(location.reg());
}

inline vixl::aarch64::VRegister HRegisterFrom(Location location) {
  DCHECK(location.IsFpuRegister()) << location;
  return vixl::aarch64::HRegister(location.reg());
}

inline vixl::aarch64::VRegister FPRegisterFrom(Location location, DataType::Type type) {
  DCHECK(DataType::IsFloatingPointType(type)) << type;
  return type == DataType::Type::kFloat64 ? DRegisterFrom(location) : SRegisterFrom(location);
}

inline vixl::aarch64::VRegister OutputFPRegister(HInstruction* instr) {
  return FPRegisterFrom(instr->GetLocations()->Out(), instr->GetType());
}

inline vixl::aarch64::VRegister InputFPRegisterAt(HInstruction* instr, int input_index) {
  return FPRegisterFrom(instr->GetLocations()->InAt(input_index),
                        instr->InputAt(input_index)->GetType());
}

inline vixl::aarch64::CPURegister CPURegisterFrom(Location location, DataType::Type type) {
  return DataType::IsFloatingPointType(type)
      ? vixl::aarch64::CPURegister(FPRegisterFrom(location, type))
      : vixl::aarch64::CPURegister(RegisterFrom(location, type));
}

inline vixl::aarch64::CPURegister OutputCPURegister(HInstruction* instr) {
  return DataType::IsFloatingPointType(instr->GetType())
      ? static_cast<vixl::aarch64::CPURegister>(OutputFPRegister(instr))
      : static_cast<vixl::aarch64::CPURegister>(OutputRegister(instr));
}

inline vixl::aarch64::CPURegister InputCPURegisterAt(HInstruction* instr, int index) {
  return DataType::IsFloatingPointType(instr->InputAt(index)->GetType())
      ? static_cast<vixl::aarch64::CPURegister>(InputFPRegisterAt(instr, index))
      : static_cast<vixl::aarch64::CPURegister>(InputRegisterAt(instr, index));
}

inline vixl::aarch64::CPURegister InputCPURegisterOrZeroRegAt(HInstruction* instr,
                                                                     int index) {
  HInstruction* input = instr->InputAt(index);
  DataType::Type input_type = input->GetType();
  if (IsZeroBitPattern(input)) {
    return (DataType::Size(input_type) >= vixl::aarch64::kXRegSizeInBytes)
        ? vixl::aarch64::Register(vixl::aarch64::xzr)
        : vixl::aarch64::Register(vixl::aarch64::wzr);
  }
  return InputCPURegisterAt(instr, index);
}

inline int64_t Int64FromLocation(Location location) {
  return Int64FromConstant(location.GetConstant());
}

inline vixl::aarch64::Operand OperandFrom(Location location, DataType::Type type) {
  if (location.IsRegister()) {
    return vixl::aarch64::Operand(RegisterFrom(location, type));
  } else {
    return vixl::aarch64::Operand(Int64FromLocation(location));
  }
}

inline vixl::aarch64::Operand InputOperandAt(HInstruction* instr, int input_index) {
  return OperandFrom(instr->GetLocations()->InAt(input_index),
                     instr->InputAt(input_index)->GetType());
}

inline vixl::aarch64::MemOperand StackOperandFrom(Location location) {
  return vixl::aarch64::MemOperand(vixl::aarch64::sp, location.GetStackIndex());
}

inline vixl::aarch64::SVEMemOperand SveStackOperandFrom(Location location) {
  return vixl::aarch64::SVEMemOperand(vixl::aarch64::sp, location.GetStackIndex());
}

inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base,
                                                    size_t offset = 0) {
  // A heap reference must be 32bit, so fit in a W register.
  DCHECK(base.IsW());
  return vixl::aarch64::MemOperand(base.X(), offset);
}

inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base,
                                                    const vixl::aarch64::Register& regoffset,
                                                    vixl::aarch64::Shift shift = vixl::aarch64::LSL,
                                                    unsigned shift_amount = 0) {
  // A heap reference must be 32bit, so fit in a W register.
  DCHECK(base.IsW());
  return vixl::aarch64::MemOperand(base.X(), regoffset, shift, shift_amount);
}

inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base,
                                                    Offset offset) {
  return HeapOperand(base, offset.SizeValue());
}

inline vixl::aarch64::MemOperand HeapOperandFrom(Location location, Offset offset) {
  return HeapOperand(RegisterFrom(location, DataType::Type::kReference), offset);
}

inline Location LocationFrom(const vixl::aarch64::Register& reg) {
  return Location::RegisterLocation(ARTRegCodeFromVIXL(reg.GetCode()));
}

inline Location LocationFrom(const vixl::aarch64::VRegister& fpreg) {
  return Location::FpuRegisterLocation(fpreg.GetCode());
}

inline Location LocationFrom(const vixl::aarch64::ZRegister& zreg) {
  return Location::FpuRegisterLocation(zreg.GetCode());
}

inline vixl::aarch64::Operand OperandFromMemOperand(
    const vixl::aarch64::MemOperand& mem_op) {
  if (mem_op.IsImmediateOffset()) {
    return vixl::aarch64::Operand(mem_op.GetOffset());
  } else {
    DCHECK(mem_op.IsRegisterOffset());
    if (mem_op.GetExtend() != vixl::aarch64::NO_EXTEND) {
      return vixl::aarch64::Operand(mem_op.GetRegisterOffset(),
                                    mem_op.GetExtend(),
                                    mem_op.GetShiftAmount());
    } else if (mem_op.GetShift() != vixl::aarch64::NO_SHIFT) {
      return vixl::aarch64::Operand(mem_op.GetRegisterOffset(),
                                    mem_op.GetShift(),
                                    mem_op.GetShiftAmount());
    } else {
      LOG(FATAL) << "Should not reach here";
      UNREACHABLE();
    }
  }
}

inline bool AddSubCanEncodeAsImmediate(int64_t value) {
  // If `value` does not fit but `-value` does, VIXL will automatically use
  // the 'opposite' instruction.
  return vixl::aarch64::Assembler::IsImmAddSub(value)
      || vixl::aarch64::Assembler::IsImmAddSub(-value);
}

inline bool Arm64CanEncodeConstantAsImmediate(HConstant* constant, HInstruction* instr) {
  int64_t value = CodeGenerator::GetInt64ValueOf(constant);

  // TODO: Improve this when IsSIMDConstantEncodable method is implemented in VIXL.
  if (instr->IsVecReplicateScalar()) {
    if (constant->IsLongConstant()) {
      return false;
    } else if (constant->IsFloatConstant()) {
      return vixl::aarch64::Assembler::IsImmFP32(constant->AsFloatConstant()->GetValue());
    } else if (constant->IsDoubleConstant()) {
      return vixl::aarch64::Assembler::IsImmFP64(constant->AsDoubleConstant()->GetValue());
    }
    return IsUint<8>(value);
  }

  // Code generation for Min/Max:
  //    Cmp left_op, right_op
  //    Csel dst, left_op, right_op, cond
  if (instr->IsMin() || instr->IsMax()) {
    if (constant->GetUses().HasExactlyOneElement()) {
      // If value can be encoded as immediate for the Cmp, then let VIXL handle
      // the constant generation for the Csel.
      return AddSubCanEncodeAsImmediate(value);
    }
    // These values are encodable as immediates for Cmp and VIXL will use csinc and csinv
    // with the zr register as right_op, hence no constant generation is required.
    return constant->IsZeroBitPattern() || constant->IsOne() || constant->IsMinusOne();
  }

  // For single uses we let VIXL handle the constant generation since it will
  // use registers that are not managed by the register allocator (wip0, wip1).
  if (constant->GetUses().HasExactlyOneElement()) {
    return true;
  }

  // Our code generator ensures shift distances are within an encodable range.
  if (instr->IsRor()) {
    return true;
  }

  if (instr->IsAnd() || instr->IsOr() || instr->IsXor()) {
    // Uses logical operations.
    return vixl::aarch64::Assembler::IsImmLogical(value, vixl::aarch64::kXRegSize);
  } else if (instr->IsNeg()) {
    // Uses mov -immediate.
    return vixl::aarch64::Assembler::IsImmMovn(value, vixl::aarch64::kXRegSize);
  } else {
    DCHECK(instr->IsAdd() ||
           instr->IsIntermediateAddress() ||
           instr->IsBoundsCheck() ||
           instr->IsCompare() ||
           instr->IsCondition() ||
           instr->IsSub())
        << instr->DebugName();
    // Uses aliases of ADD/SUB instructions.
    return AddSubCanEncodeAsImmediate(value);
  }
}

inline Location ARM64EncodableConstantOrRegister(HInstruction* constant,
                                                 HInstruction* instr) {
  if (constant->IsConstant()
      && Arm64CanEncodeConstantAsImmediate(constant->AsConstant(), instr)) {
    return Location::ConstantLocation(constant);
  }

  return Location::RequiresRegister();
}

// Check if registers in art register set have the same register code in vixl. If the register
// codes are same, we can initialize vixl register list simply by the register masks. Currently,
// only SP/WSP and ZXR/WZR codes are different between art and vixl.
// Note: This function is only used for debug checks.
inline bool ArtVixlRegCodeCoherentForRegSet(uint32_t art_core_registers,
                                            size_t num_core,
                                            uint32_t art_fpu_registers,
                                            size_t num_fpu) {
  // The register masks won't work if the number of register is larger than 32.
  DCHECK_GE(sizeof(art_core_registers) * 8, num_core);
  DCHECK_GE(sizeof(art_fpu_registers) * 8, num_fpu);
  for (size_t art_reg_code = 0;  art_reg_code < num_core; ++art_reg_code) {
    if (RegisterSet::Contains(art_core_registers, art_reg_code)) {
      if (art_reg_code != static_cast<size_t>(VIXLRegCodeFromART(art_reg_code))) {
        return false;
      }
    }
  }
  // There is no register code translation for float registers.
  return true;
}

inline vixl::aarch64::Shift ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) {
  switch (op_kind) {
    case HDataProcWithShifterOp::kASR: return vixl::aarch64::ASR;
    case HDataProcWithShifterOp::kLSL: return vixl::aarch64::LSL;
    case HDataProcWithShifterOp::kLSR: return vixl::aarch64::LSR;
    default:
      LOG(FATAL) << "Unexpected op kind " << op_kind;
      UNREACHABLE();
      return vixl::aarch64::NO_SHIFT;
  }
}

inline vixl::aarch64::Extend ExtendFromOpKind(HDataProcWithShifterOp::OpKind op_kind) {
  switch (op_kind) {
    case HDataProcWithShifterOp::kUXTB: return vixl::aarch64::UXTB;
    case HDataProcWithShifterOp::kUXTH: return vixl::aarch64::UXTH;
    case HDataProcWithShifterOp::kUXTW: return vixl::aarch64::UXTW;
    case HDataProcWithShifterOp::kSXTB: return vixl::aarch64::SXTB;
    case HDataProcWithShifterOp::kSXTH: return vixl::aarch64::SXTH;
    case HDataProcWithShifterOp::kSXTW: return vixl::aarch64::SXTW;
    default:
      LOG(FATAL) << "Unexpected op kind " << op_kind;
      UNREACHABLE();
      return vixl::aarch64::NO_EXTEND;
  }
}

inline bool ShifterOperandSupportsExtension(HInstruction* instruction) {
  DCHECK(HasShifterOperand(instruction, InstructionSet::kArm64));
  // Although the `neg` instruction is an alias of the `sub` instruction, `HNeg`
  // does *not* support extension. This is because the `extended register` form
  // of the `sub` instruction interprets the left register with code 31 as the
  // stack pointer and not the zero register. (So does the `immediate` form.) In
  // the other form `shifted register, the register with code 31 is interpreted
  // as the zero register.
  return instruction->IsAdd() || instruction->IsSub();
}

}  // namespace helpers
}  // namespace arm64
}  // namespace art

#endif  // ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_