File: constant_folding.cc

package info (click to toggle)
android-platform-art 14.0.0%2Br15-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 96,796 kB
  • sloc: cpp: 522,217; java: 194,312; asm: 28,950; python: 14,910; xml: 5,087; sh: 4,528; ansic: 4,035; makefile: 110; perl: 77
file content (653 lines) | stat: -rw-r--r-- 25,000 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "constant_folding.h"

#include <algorithm>

#include "dex/dex_file-inl.h"
#include "optimizing/data_type.h"
#include "optimizing/nodes.h"

namespace art HIDDEN {

// This visitor tries to simplify instructions that can be evaluated
// as constants.
class HConstantFoldingVisitor final : public HGraphDelegateVisitor {
 public:
  HConstantFoldingVisitor(HGraph* graph, OptimizingCompilerStats* stats, bool use_all_optimizations)
      : HGraphDelegateVisitor(graph, stats), use_all_optimizations_(use_all_optimizations) {}

 private:
  void VisitBasicBlock(HBasicBlock* block) override;

  void VisitUnaryOperation(HUnaryOperation* inst) override;
  void VisitBinaryOperation(HBinaryOperation* inst) override;

  void VisitArrayLength(HArrayLength* inst) override;
  void VisitDivZeroCheck(HDivZeroCheck* inst) override;
  void VisitIf(HIf* inst) override;
  void VisitTypeConversion(HTypeConversion* inst) override;

  void PropagateValue(HBasicBlock* starting_block, HInstruction* variable, HConstant* constant);

  // Use all optimizations without restrictions.
  bool use_all_optimizations_;

  DISALLOW_COPY_AND_ASSIGN(HConstantFoldingVisitor);
};

// This visitor tries to simplify operations with an absorbing input,
// yielding a constant. For example `input * 0` is replaced by a
// null constant.
class InstructionWithAbsorbingInputSimplifier : public HGraphVisitor {
 public:
  explicit InstructionWithAbsorbingInputSimplifier(HGraph* graph) : HGraphVisitor(graph) {}

 private:
  void VisitShift(HBinaryOperation* shift);

  void VisitEqual(HEqual* instruction) override;
  void VisitNotEqual(HNotEqual* instruction) override;

  void VisitAbove(HAbove* instruction) override;
  void VisitAboveOrEqual(HAboveOrEqual* instruction) override;
  void VisitBelow(HBelow* instruction) override;
  void VisitBelowOrEqual(HBelowOrEqual* instruction) override;

  void VisitGreaterThan(HGreaterThan* instruction) override;
  void VisitGreaterThanOrEqual(HGreaterThanOrEqual* instruction) override;
  void VisitLessThan(HLessThan* instruction) override;
  void VisitLessThanOrEqual(HLessThanOrEqual* instruction) override;

  void VisitAnd(HAnd* instruction) override;
  void VisitCompare(HCompare* instruction) override;
  void VisitMul(HMul* instruction) override;
  void VisitOr(HOr* instruction) override;
  void VisitRem(HRem* instruction) override;
  void VisitShl(HShl* instruction) override;
  void VisitShr(HShr* instruction) override;
  void VisitSub(HSub* instruction) override;
  void VisitUShr(HUShr* instruction) override;
  void VisitXor(HXor* instruction) override;
};


bool HConstantFolding::Run() {
  HConstantFoldingVisitor visitor(graph_, stats_, use_all_optimizations_);
  // Process basic blocks in reverse post-order in the dominator tree,
  // so that an instruction turned into a constant, used as input of
  // another instruction, may possibly be used to turn that second
  // instruction into a constant as well.
  visitor.VisitReversePostOrder();
  return true;
}


void HConstantFoldingVisitor::VisitBasicBlock(HBasicBlock* block) {
  // Traverse this block's instructions (phis don't need to be
  // processed) in (forward) order and replace the ones that can be
  // statically evaluated by a compile-time counterpart.
  for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
    it.Current()->Accept(this);
  }
}

void HConstantFoldingVisitor::VisitUnaryOperation(HUnaryOperation* inst) {
  // Constant folding: replace `op(a)' with a constant at compile
  // time if `a' is a constant.
  HConstant* constant = inst->TryStaticEvaluation();
  if (constant != nullptr) {
    inst->ReplaceWith(constant);
    inst->GetBlock()->RemoveInstruction(inst);
  }
}

void HConstantFoldingVisitor::VisitBinaryOperation(HBinaryOperation* inst) {
  // Constant folding: replace `op(a, b)' with a constant at
  // compile time if `a' and `b' are both constants.
  HConstant* constant = inst->TryStaticEvaluation();
  if (constant != nullptr) {
    inst->ReplaceWith(constant);
    inst->GetBlock()->RemoveInstruction(inst);
  } else {
    InstructionWithAbsorbingInputSimplifier simplifier(GetGraph());
    inst->Accept(&simplifier);
  }
}

void HConstantFoldingVisitor::VisitDivZeroCheck(HDivZeroCheck* inst) {
  // We can safely remove the check if the input is a non-null constant.
  HInstruction* check_input = inst->InputAt(0);
  if (check_input->IsConstant() && !check_input->AsConstant()->IsArithmeticZero()) {
    inst->ReplaceWith(check_input);
    inst->GetBlock()->RemoveInstruction(inst);
  }
}

void HConstantFoldingVisitor::PropagateValue(HBasicBlock* starting_block,
                                             HInstruction* variable,
                                             HConstant* constant) {
  const bool recording_stats = stats_ != nullptr;
  size_t uses_before = 0;
  size_t uses_after = 0;
  if (recording_stats) {
    uses_before = variable->GetUses().SizeSlow();
  }

  if (variable->GetUses().HasExactlyOneElement()) {
    // Nothing to do, since we only have the `if (variable)` use or the `condition` use.
    return;
  }

  variable->ReplaceUsesDominatedBy(
      starting_block->GetFirstInstruction(), constant, /* strictly_dominated= */ false);

  if (recording_stats) {
    uses_after = variable->GetUses().SizeSlow();
    DCHECK_GE(uses_after, 1u) << "we must at least have the use in the if clause.";
    DCHECK_GE(uses_before, uses_after);
    MaybeRecordStat(stats_, MethodCompilationStat::kPropagatedIfValue, uses_before - uses_after);
  }
}

void HConstantFoldingVisitor::VisitIf(HIf* inst) {
  // This optimization can take a lot of compile time since we have a lot of If instructions in
  // graphs.
  if (!use_all_optimizations_) {
    return;
  }

  // Consistency check: the true and false successors do not dominate each other.
  DCHECK(!inst->IfTrueSuccessor()->Dominates(inst->IfFalseSuccessor()) &&
         !inst->IfFalseSuccessor()->Dominates(inst->IfTrueSuccessor()));

  HInstruction* if_input = inst->InputAt(0);

  // Already a constant.
  if (if_input->IsConstant()) {
    return;
  }

  // if (variable) {
  //   SSA `variable` guaranteed to be true
  // } else {
  //   and here false
  // }
  PropagateValue(inst->IfTrueSuccessor(), if_input, GetGraph()->GetIntConstant(1));
  PropagateValue(inst->IfFalseSuccessor(), if_input, GetGraph()->GetIntConstant(0));

  // If the input is a condition, we can propagate the information of the condition itself.
  if (!if_input->IsCondition()) {
    return;
  }
  HCondition* condition = if_input->AsCondition();

  // We want either `==` or `!=`, since we cannot make assumptions for other conditions e.g. `>`
  if (!condition->IsEqual() && !condition->IsNotEqual()) {
    return;
  }

  HInstruction* left = condition->GetLeft();
  HInstruction* right = condition->GetRight();

  // We want one of them to be a constant and not the other.
  if (left->IsConstant() == right->IsConstant()) {
    return;
  }

  // At this point we have something like:
  // if (variable == constant) {
  //   SSA `variable` guaranteed to be equal to constant here
  // } else {
  //   No guarantees can be made here (usually, see boolean case below).
  // }
  // Similarly with variable != constant, except that we can make guarantees in the else case.

  HConstant* constant = left->IsConstant() ? left->AsConstant() : right->AsConstant();
  HInstruction* variable = left->IsConstant() ? right : left;

  // Don't deal with floats/doubles since they bring a lot of edge cases e.g.
  // if (f == 0.0f) {
  //   // f is not really guaranteed to be 0.0f. It could be -0.0f, for example
  // }
  if (DataType::IsFloatingPointType(variable->GetType())) {
    return;
  }
  DCHECK(!DataType::IsFloatingPointType(constant->GetType()));

  // Sometimes we have an HCompare flowing into an Equals/NonEquals, which can act as a proxy. For
  // example: `Equals(Compare(var, constant), 0)`. This is common for long, float, and double.
  if (variable->IsCompare()) {
    // We only care about equality comparisons so we skip if it is a less or greater comparison.
    if (!constant->IsArithmeticZero()) {
      return;
    }

    // Update left and right to be the ones from the HCompare.
    left = variable->AsCompare()->GetLeft();
    right = variable->AsCompare()->GetRight();

    // Re-check that one of them to be a constant and not the other.
    if (left->IsConstant() == right->IsConstant()) {
      return;
    }

    constant = left->IsConstant() ? left->AsConstant() : right->AsConstant();
    variable = left->IsConstant() ? right : left;

    // Re-check floating point values.
    if (DataType::IsFloatingPointType(variable->GetType())) {
      return;
    }
    DCHECK(!DataType::IsFloatingPointType(constant->GetType()));
  }

  // From this block forward we want to replace the SSA value. We use `starting_block` and not the
  // `if` block as we want to update one of the branches but not the other.
  HBasicBlock* starting_block =
      condition->IsEqual() ? inst->IfTrueSuccessor() : inst->IfFalseSuccessor();

  PropagateValue(starting_block, variable, constant);

  // Special case for booleans since they have only two values so we know what to propagate in the
  // other branch. However, sometimes our boolean values are not compared to 0 or 1. In those cases
  // we cannot make an assumption for the `else` branch.
  if (variable->GetType() == DataType::Type::kBool &&
      constant->IsIntConstant() &&
      (constant->AsIntConstant()->IsTrue() || constant->AsIntConstant()->IsFalse())) {
    HBasicBlock* other_starting_block =
        condition->IsEqual() ? inst->IfFalseSuccessor() : inst->IfTrueSuccessor();
    DCHECK_NE(other_starting_block, starting_block);

    HConstant* other_constant = constant->AsIntConstant()->IsTrue() ?
                                    GetGraph()->GetIntConstant(0) :
                                    GetGraph()->GetIntConstant(1);
    DCHECK_NE(other_constant, constant);
    PropagateValue(other_starting_block, variable, other_constant);
  }
}

void HConstantFoldingVisitor::VisitArrayLength(HArrayLength* inst) {
  HInstruction* input = inst->InputAt(0);
  if (input->IsLoadString()) {
    DCHECK(inst->IsStringLength());
    HLoadString* load_string = input->AsLoadString();
    const DexFile& dex_file = load_string->GetDexFile();
    const dex::StringId& string_id = dex_file.GetStringId(load_string->GetStringIndex());
    inst->ReplaceWith(GetGraph()->GetIntConstant(dex_file.GetStringLength(string_id)));
  }
}

void HConstantFoldingVisitor::VisitTypeConversion(HTypeConversion* inst) {
  // Constant folding: replace `TypeConversion(a)' with a constant at
  // compile time if `a' is a constant.
  HConstant* constant = inst->TryStaticEvaluation();
  if (constant != nullptr) {
    inst->ReplaceWith(constant);
    inst->GetBlock()->RemoveInstruction(inst);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitShift(HBinaryOperation* instruction) {
  DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr());
  HInstruction* left = instruction->GetLeft();
  if (left->IsConstant() && left->AsConstant()->IsArithmeticZero()) {
    // Replace code looking like
    //    SHL dst, 0, shift_amount
    // with
    //    CONSTANT 0
    instruction->ReplaceWith(left);
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitEqual(HEqual* instruction) {
  if (instruction->GetLeft() == instruction->GetRight() &&
      !DataType::IsFloatingPointType(instruction->GetLeft()->GetType())) {
    // Replace code looking like
    //    EQUAL lhs, lhs
    //    CONSTANT true
    // We don't perform this optimizations for FP types since Double.NaN != Double.NaN, which is the
    // opposite value.
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 1));
    instruction->GetBlock()->RemoveInstruction(instruction);
  } else if ((instruction->GetLeft()->IsNullConstant() && !instruction->GetRight()->CanBeNull()) ||
             (instruction->GetRight()->IsNullConstant() && !instruction->GetLeft()->CanBeNull())) {
    // Replace code looking like
    //    EQUAL lhs, null
    // where lhs cannot be null with
    //    CONSTANT false
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 0));
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitNotEqual(HNotEqual* instruction) {
  if (instruction->GetLeft() == instruction->GetRight() &&
      !DataType::IsFloatingPointType(instruction->GetLeft()->GetType())) {
    // Replace code looking like
    //    NOT_EQUAL lhs, lhs
    //    CONSTANT false
    // We don't perform this optimizations for FP types since Double.NaN != Double.NaN, which is the
    // opposite value.
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 0));
    instruction->GetBlock()->RemoveInstruction(instruction);
  } else if ((instruction->GetLeft()->IsNullConstant() && !instruction->GetRight()->CanBeNull()) ||
             (instruction->GetRight()->IsNullConstant() && !instruction->GetLeft()->CanBeNull())) {
    // Replace code looking like
    //    NOT_EQUAL lhs, null
    // where lhs cannot be null with
    //    CONSTANT true
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 1));
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitAbove(HAbove* instruction) {
  if (instruction->GetLeft() == instruction->GetRight()) {
    // Replace code looking like
    //    ABOVE lhs, lhs
    //    CONSTANT false
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 0));
    instruction->GetBlock()->RemoveInstruction(instruction);
  } else if (instruction->GetLeft()->IsConstant() &&
             instruction->GetLeft()->AsConstant()->IsArithmeticZero()) {
    // Replace code looking like
    //    ABOVE dst, 0, src  // unsigned 0 > src is always false
    // with
    //    CONSTANT false
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 0));
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitAboveOrEqual(HAboveOrEqual* instruction) {
  if (instruction->GetLeft() == instruction->GetRight()) {
    // Replace code looking like
    //    ABOVE_OR_EQUAL lhs, lhs
    //    CONSTANT true
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 1));
    instruction->GetBlock()->RemoveInstruction(instruction);
  } else if (instruction->GetRight()->IsConstant() &&
             instruction->GetRight()->AsConstant()->IsArithmeticZero()) {
    // Replace code looking like
    //    ABOVE_OR_EQUAL dst, src, 0  // unsigned src >= 0 is always true
    // with
    //    CONSTANT true
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 1));
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitBelow(HBelow* instruction) {
  if (instruction->GetLeft() == instruction->GetRight()) {
    // Replace code looking like
    //    BELOW lhs, lhs
    //    CONSTANT false
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 0));
    instruction->GetBlock()->RemoveInstruction(instruction);
  } else if (instruction->GetRight()->IsConstant() &&
             instruction->GetRight()->AsConstant()->IsArithmeticZero()) {
    // Replace code looking like
    //    BELOW dst, src, 0  // unsigned src < 0 is always false
    // with
    //    CONSTANT false
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 0));
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitBelowOrEqual(HBelowOrEqual* instruction) {
  if (instruction->GetLeft() == instruction->GetRight()) {
    // Replace code looking like
    //    BELOW_OR_EQUAL lhs, lhs
    //    CONSTANT true
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 1));
    instruction->GetBlock()->RemoveInstruction(instruction);
  } else if (instruction->GetLeft()->IsConstant() &&
             instruction->GetLeft()->AsConstant()->IsArithmeticZero()) {
    // Replace code looking like
    //    BELOW_OR_EQUAL dst, 0, src  // unsigned 0 <= src is always true
    // with
    //    CONSTANT true
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 1));
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitGreaterThan(HGreaterThan* instruction) {
  if (instruction->GetLeft() == instruction->GetRight() &&
      (!DataType::IsFloatingPointType(instruction->GetLeft()->GetType()) ||
       instruction->IsLtBias())) {
    // Replace code looking like
    //    GREATER_THAN lhs, lhs
    //    CONSTANT false
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 0));
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitGreaterThanOrEqual(
    HGreaterThanOrEqual* instruction) {
  if (instruction->GetLeft() == instruction->GetRight() &&
      (!DataType::IsFloatingPointType(instruction->GetLeft()->GetType()) ||
       instruction->IsGtBias())) {
    // Replace code looking like
    //    GREATER_THAN_OR_EQUAL lhs, lhs
    //    CONSTANT true
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 1));
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitLessThan(HLessThan* instruction) {
  if (instruction->GetLeft() == instruction->GetRight() &&
      (!DataType::IsFloatingPointType(instruction->GetLeft()->GetType()) ||
       instruction->IsGtBias())) {
    // Replace code looking like
    //    LESS_THAN lhs, lhs
    //    CONSTANT false
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 0));
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitLessThanOrEqual(HLessThanOrEqual* instruction) {
  if (instruction->GetLeft() == instruction->GetRight() &&
      (!DataType::IsFloatingPointType(instruction->GetLeft()->GetType()) ||
       instruction->IsLtBias())) {
    // Replace code looking like
    //    LESS_THAN_OR_EQUAL lhs, lhs
    //    CONSTANT true
    instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kBool, 1));
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitAnd(HAnd* instruction) {
  DataType::Type type = instruction->GetType();
  HConstant* input_cst = instruction->GetConstantRight();
  if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
    // Replace code looking like
    //    AND dst, src, 0
    // with
    //    CONSTANT 0
    instruction->ReplaceWith(input_cst);
    instruction->GetBlock()->RemoveInstruction(instruction);
  }

  HInstruction* left = instruction->GetLeft();
  HInstruction* right = instruction->GetRight();

  if (left->IsNot() ^ right->IsNot()) {
    // Replace code looking like
    //    NOT notsrc, src
    //    AND dst, notsrc, src
    // with
    //    CONSTANT 0
    HInstruction* hnot = (left->IsNot() ? left : right);
    HInstruction* hother = (left->IsNot() ? right : left);
    HInstruction* src = hnot->AsNot()->GetInput();

    if (src == hother) {
      instruction->ReplaceWith(GetGraph()->GetConstant(type, 0));
      instruction->GetBlock()->RemoveInstruction(instruction);
    }
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitCompare(HCompare* instruction) {
  HConstant* input_cst = instruction->GetConstantRight();
  if (input_cst != nullptr) {
    HInstruction* input_value = instruction->GetLeastConstantLeft();
    if (DataType::IsFloatingPointType(input_value->GetType()) &&
        ((input_cst->IsFloatConstant() && input_cst->AsFloatConstant()->IsNaN()) ||
         (input_cst->IsDoubleConstant() && input_cst->AsDoubleConstant()->IsNaN()))) {
      // Replace code looking like
      //    CMP{G,L}-{FLOAT,DOUBLE} dst, src, NaN
      // with
      //    CONSTANT +1 (gt bias)
      // or
      //    CONSTANT -1 (lt bias)
      instruction->ReplaceWith(GetGraph()->GetConstant(DataType::Type::kInt32,
                                                       (instruction->IsGtBias() ? 1 : -1)));
      instruction->GetBlock()->RemoveInstruction(instruction);
    }
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitMul(HMul* instruction) {
  HConstant* input_cst = instruction->GetConstantRight();
  DataType::Type type = instruction->GetType();
  if (DataType::IsIntOrLongType(type) &&
      (input_cst != nullptr) && input_cst->IsArithmeticZero()) {
    // Replace code looking like
    //    MUL dst, src, 0
    // with
    //    CONSTANT 0
    // Integral multiplication by zero always yields zero, but floating-point
    // multiplication by zero does not always do. For example `Infinity * 0.0`
    // should yield a NaN.
    instruction->ReplaceWith(input_cst);
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitOr(HOr* instruction) {
  HConstant* input_cst = instruction->GetConstantRight();

  if (input_cst == nullptr) {
    return;
  }

  if (Int64FromConstant(input_cst) == -1) {
    // Replace code looking like
    //    OR dst, src, 0xFFF...FF
    // with
    //    CONSTANT 0xFFF...FF
    instruction->ReplaceWith(input_cst);
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitRem(HRem* instruction) {
  DataType::Type type = instruction->GetType();

  if (!DataType::IsIntegralType(type)) {
    return;
  }

  HBasicBlock* block = instruction->GetBlock();

  if (instruction->GetLeft()->IsConstant() &&
      instruction->GetLeft()->AsConstant()->IsArithmeticZero()) {
    // Replace code looking like
    //    REM dst, 0, src
    // with
    //    CONSTANT 0
    instruction->ReplaceWith(instruction->GetLeft());
    block->RemoveInstruction(instruction);
  }

  HConstant* cst_right = instruction->GetRight()->AsConstant();
  if (((cst_right != nullptr) &&
       (cst_right->IsOne() || cst_right->IsMinusOne())) ||
      (instruction->GetLeft() == instruction->GetRight())) {
    // Replace code looking like
    //    REM dst, src, 1
    // or
    //    REM dst, src, -1
    // or
    //    REM dst, src, src
    // with
    //    CONSTANT 0
    instruction->ReplaceWith(GetGraph()->GetConstant(type, 0));
    block->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitShl(HShl* instruction) {
  VisitShift(instruction);
}

void InstructionWithAbsorbingInputSimplifier::VisitShr(HShr* instruction) {
  VisitShift(instruction);
}

void InstructionWithAbsorbingInputSimplifier::VisitSub(HSub* instruction) {
  DataType::Type type = instruction->GetType();

  if (!DataType::IsIntegralType(type)) {
    return;
  }

  HBasicBlock* block = instruction->GetBlock();

  // We assume that GVN has run before, so we only perform a pointer
  // comparison.  If for some reason the values are equal but the pointers are
  // different, we are still correct and only miss an optimization
  // opportunity.
  if (instruction->GetLeft() == instruction->GetRight()) {
    // Replace code looking like
    //    SUB dst, src, src
    // with
    //    CONSTANT 0
    // Note that we cannot optimize `x - x` to `0` for floating-point. It does
    // not work when `x` is an infinity.
    instruction->ReplaceWith(GetGraph()->GetConstant(type, 0));
    block->RemoveInstruction(instruction);
  }
}

void InstructionWithAbsorbingInputSimplifier::VisitUShr(HUShr* instruction) {
  VisitShift(instruction);
}

void InstructionWithAbsorbingInputSimplifier::VisitXor(HXor* instruction) {
  if (instruction->GetLeft() == instruction->GetRight()) {
    // Replace code looking like
    //    XOR dst, src, src
    // with
    //    CONSTANT 0
    DataType::Type type = instruction->GetType();
    HBasicBlock* block = instruction->GetBlock();
    instruction->ReplaceWith(GetGraph()->GetConstant(type, 0));
    block->RemoveInstruction(instruction);
  }
}

}  // namespace art