File: dead_code_elimination.cc

package info (click to toggle)
android-platform-art 14.0.0%2Br15-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 96,796 kB
  • sloc: cpp: 522,217; java: 194,312; asm: 28,950; python: 14,910; xml: 5,087; sh: 4,528; ansic: 4,035; makefile: 110; perl: 77
file content (897 lines) | stat: -rw-r--r-- 35,323 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "dead_code_elimination.h"

#include "android-base/logging.h"
#include "base/array_ref.h"
#include "base/bit_vector-inl.h"
#include "base/logging.h"
#include "base/scoped_arena_allocator.h"
#include "base/scoped_arena_containers.h"
#include "base/stl_util.h"
#include "optimizing/nodes.h"
#include "ssa_phi_elimination.h"

namespace art HIDDEN {

static void MarkReachableBlocks(HGraph* graph, ArenaBitVector* visited) {
  // Use local allocator for allocating memory.
  ScopedArenaAllocator allocator(graph->GetArenaStack());

  ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocDCE));
  constexpr size_t kDefaultWorlistSize = 8;
  worklist.reserve(kDefaultWorlistSize);
  visited->SetBit(graph->GetEntryBlock()->GetBlockId());
  worklist.push_back(graph->GetEntryBlock());

  while (!worklist.empty()) {
    HBasicBlock* block = worklist.back();
    worklist.pop_back();
    int block_id = block->GetBlockId();
    DCHECK(visited->IsBitSet(block_id));

    ArrayRef<HBasicBlock* const> live_successors(block->GetSuccessors());
    HInstruction* last_instruction = block->GetLastInstruction();
    if (last_instruction->IsIf()) {
      HIf* if_instruction = last_instruction->AsIf();
      HInstruction* condition = if_instruction->InputAt(0);
      if (condition->IsIntConstant()) {
        if (condition->AsIntConstant()->IsTrue()) {
          live_successors = live_successors.SubArray(0u, 1u);
          DCHECK_EQ(live_successors[0], if_instruction->IfTrueSuccessor());
        } else {
          DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue();
          live_successors = live_successors.SubArray(1u, 1u);
          DCHECK_EQ(live_successors[0], if_instruction->IfFalseSuccessor());
        }
      }
    } else if (last_instruction->IsPackedSwitch()) {
      HPackedSwitch* switch_instruction = last_instruction->AsPackedSwitch();
      HInstruction* switch_input = switch_instruction->InputAt(0);
      if (switch_input->IsIntConstant()) {
        int32_t switch_value = switch_input->AsIntConstant()->GetValue();
        int32_t start_value = switch_instruction->GetStartValue();
        // Note: Though the spec forbids packed-switch values to wrap around, we leave
        // that task to the verifier and use unsigned arithmetic with it's "modulo 2^32"
        // semantics to check if the value is in range, wrapped or not.
        uint32_t switch_index =
            static_cast<uint32_t>(switch_value) - static_cast<uint32_t>(start_value);
        if (switch_index < switch_instruction->GetNumEntries()) {
          live_successors = live_successors.SubArray(switch_index, 1u);
          DCHECK_EQ(live_successors[0], block->GetSuccessors()[switch_index]);
        } else {
          live_successors = live_successors.SubArray(switch_instruction->GetNumEntries(), 1u);
          DCHECK_EQ(live_successors[0], switch_instruction->GetDefaultBlock());
        }
      }
    }

    for (HBasicBlock* successor : live_successors) {
      // Add only those successors that have not been visited yet.
      if (!visited->IsBitSet(successor->GetBlockId())) {
        visited->SetBit(successor->GetBlockId());
        worklist.push_back(successor);
      }
    }
  }
}

void HDeadCodeElimination::MaybeRecordDeadBlock(HBasicBlock* block) {
  if (stats_ != nullptr) {
    stats_->RecordStat(MethodCompilationStat::kRemovedDeadInstruction,
                       block->GetPhis().CountSize() + block->GetInstructions().CountSize());
  }
}

void HDeadCodeElimination::MaybeRecordSimplifyIf() {
  if (stats_ != nullptr) {
    stats_->RecordStat(MethodCompilationStat::kSimplifyIf);
  }
}

static bool HasInput(HCondition* instruction, HInstruction* input) {
  return (instruction->InputAt(0) == input) ||
         (instruction->InputAt(1) == input);
}

static bool HasEquality(IfCondition condition) {
  switch (condition) {
    case kCondEQ:
    case kCondLE:
    case kCondGE:
    case kCondBE:
    case kCondAE:
      return true;
    case kCondNE:
    case kCondLT:
    case kCondGT:
    case kCondB:
    case kCondA:
      return false;
  }
}

static HConstant* Evaluate(HCondition* condition, HInstruction* left, HInstruction* right) {
  if (left == right && !DataType::IsFloatingPointType(left->GetType())) {
    return condition->GetBlock()->GetGraph()->GetIntConstant(
        HasEquality(condition->GetCondition()) ? 1 : 0);
  }

  if (!left->IsConstant() || !right->IsConstant()) {
    return nullptr;
  }

  if (left->IsIntConstant()) {
    return condition->Evaluate(left->AsIntConstant(), right->AsIntConstant());
  } else if (left->IsNullConstant()) {
    return condition->Evaluate(left->AsNullConstant(), right->AsNullConstant());
  } else if (left->IsLongConstant()) {
    return condition->Evaluate(left->AsLongConstant(), right->AsLongConstant());
  } else if (left->IsFloatConstant()) {
    return condition->Evaluate(left->AsFloatConstant(), right->AsFloatConstant());
  } else {
    DCHECK(left->IsDoubleConstant());
    return condition->Evaluate(left->AsDoubleConstant(), right->AsDoubleConstant());
  }
}

static bool RemoveNonNullControlDependences(HBasicBlock* block, HBasicBlock* throws) {
  // Test for an if as last statement.
  if (!block->EndsWithIf()) {
    return false;
  }
  HIf* ifs = block->GetLastInstruction()->AsIf();
  // Find either:
  //   if obj == null
  //     throws
  //   else
  //     not_throws
  // or:
  //   if obj != null
  //     not_throws
  //   else
  //     throws
  HInstruction* cond = ifs->InputAt(0);
  HBasicBlock* not_throws = nullptr;
  if (throws == ifs->IfTrueSuccessor() && cond->IsEqual()) {
    not_throws = ifs->IfFalseSuccessor();
  } else if (throws == ifs->IfFalseSuccessor() && cond->IsNotEqual()) {
    not_throws = ifs->IfTrueSuccessor();
  } else {
    return false;
  }
  DCHECK(cond->IsEqual() || cond->IsNotEqual());
  HInstruction* obj = cond->InputAt(1);
  if (obj->IsNullConstant()) {
    obj = cond->InputAt(0);
  } else if (!cond->InputAt(0)->IsNullConstant()) {
    return false;
  }

  // We can't create a BoundType for an object with an invalid RTI.
  const ReferenceTypeInfo ti = obj->GetReferenceTypeInfo();
  if (!ti.IsValid()) {
    return false;
  }

  // Scan all uses of obj and find null check under control dependence.
  HBoundType* bound = nullptr;
  const HUseList<HInstruction*>& uses = obj->GetUses();
  for (auto it = uses.begin(), end = uses.end(); it != end;) {
    HInstruction* user = it->GetUser();
    ++it;  // increment before possibly replacing
    if (user->IsNullCheck()) {
      HBasicBlock* user_block = user->GetBlock();
      if (user_block != block &&
          user_block != throws &&
          block->Dominates(user_block)) {
        if (bound == nullptr) {
          bound = new (obj->GetBlock()->GetGraph()->GetAllocator()) HBoundType(obj);
          bound->SetUpperBound(ti, /*can_be_null*/ false);
          bound->SetReferenceTypeInfo(ti);
          bound->SetCanBeNull(false);
          not_throws->InsertInstructionBefore(bound, not_throws->GetFirstInstruction());
        }
        user->ReplaceWith(bound);
        user_block->RemoveInstruction(user);
      }
    }
  }
  return bound != nullptr;
}

// Simplify the pattern:
//
//           B1
//          /  \
//          |   instr_1
//          |   ...
//          |   instr_n
//          |   foo()  // always throws
//          |   instr_n+2
//          |   ...
//          |   instr_n+m
//          \   goto B2
//           \ /
//            B2
//
// Into:
//
//           B1
//          /  \
//          |  instr_1
//          |  ...
//          |  instr_n
//          |  foo()
//          |  goto Exit
//          |   |
//         B2  Exit
//
// Rationale:
// Removal of the never taken edge to B2 may expose other optimization opportunities, such as code
// sinking.
//
// Note: The example above is a simple one that uses a `goto` but we could end the block with an If,
// for example.
bool HDeadCodeElimination::SimplifyAlwaysThrows() {
  HBasicBlock* exit = graph_->GetExitBlock();
  if (!graph_->HasAlwaysThrowingInvokes() || exit == nullptr) {
    return false;
  }

  bool rerun_dominance_and_loop_analysis = false;

  // Order does not matter, just pick one.
  for (HBasicBlock* block : graph_->GetReversePostOrder()) {
    if (block->IsTryBlock()) {
      // We don't want to perform the simplify always throws optimizations for throws inside of
      // tries since those throws might not go to the exit block.
      continue;
    }

    // We iterate to find the first instruction that always throws. If two instructions always
    // throw, the first one will throw and the second one will never be reached.
    HInstruction* throwing_invoke = nullptr;
    for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
      if (it.Current()->IsInvoke() && it.Current()->AsInvoke()->AlwaysThrows()) {
        throwing_invoke = it.Current();
        break;
      }
    }

    if (throwing_invoke == nullptr) {
      // No always-throwing instruction found. Continue with the rest of the blocks.
      continue;
    }

    // If we are already pointing at the exit block we could still remove the instructions
    // between the always throwing instruction, and the exit block. If we have no other
    // instructions, just continue since there's nothing to do.
    if (block->GetSuccessors().size() == 1 &&
        block->GetSingleSuccessor() == exit &&
        block->GetLastInstruction()->GetPrevious() == throwing_invoke) {
      continue;
    }

    // We split the block at the throwing instruction, and the instructions after the throwing
    // instructions will be disconnected from the graph after `block` points to the exit.
    // `RemoveDeadBlocks` will take care of removing this new block and its instructions.
    // Even though `SplitBefore` doesn't guarantee the graph to remain in SSA form, it is fine
    // since we do not break it.
    HBasicBlock* new_block = block->SplitBefore(throwing_invoke->GetNext(),
                                                /* require_graph_not_in_ssa_form= */ false);
    DCHECK_EQ(block->GetSingleSuccessor(), new_block);
    block->ReplaceSuccessor(new_block, exit);

    rerun_dominance_and_loop_analysis = true;
    MaybeRecordStat(stats_, MethodCompilationStat::kSimplifyThrowingInvoke);
    // Perform a quick follow up optimization on object != null control dependences
    // that is much cheaper to perform now than in a later phase.
    // If there are multiple predecessors, none may end with a HIf as required in
    // RemoveNonNullControlDependences because we split critical edges.
    if (block->GetPredecessors().size() == 1u &&
        RemoveNonNullControlDependences(block->GetSinglePredecessor(), block)) {
      MaybeRecordStat(stats_, MethodCompilationStat::kRemovedNullCheck);
    }
  }

  // We need to re-analyze the graph in order to run DCE afterwards.
  if (rerun_dominance_and_loop_analysis) {
    graph_->ClearLoopInformation();
    graph_->ClearDominanceInformation();
    graph_->BuildDominatorTree();
    return true;
  }
  return false;
}

bool HDeadCodeElimination::SimplifyIfs() {
  bool simplified_one_or_more_ifs = false;
  bool rerun_dominance_and_loop_analysis = false;

  // Iterating in PostOrder it's better for MaybeAddPhi as it can add a Phi for multiple If
  // instructions in a chain without updating the dominator chain. The branch redirection itself can
  // work in PostOrder or ReversePostOrder without issues.
  for (HBasicBlock* block : graph_->GetPostOrder()) {
    if (block->IsCatchBlock()) {
      // This simplification cannot be applied to catch blocks, because exception handler edges do
      // not represent normal control flow. Though in theory this could still apply to normal
      // control flow going directly to a catch block, we cannot support it at the moment because
      // the catch Phi's inputs do not correspond to the catch block's predecessors, so we cannot
      // identify which predecessor corresponds to a given statically evaluated input.
      continue;
    }

    HInstruction* last = block->GetLastInstruction();
    if (!last->IsIf()) {
      continue;
    }

    if (block->IsLoopHeader()) {
      // We do not apply this optimization to loop headers as this could create irreducible loops.
      continue;
    }

    // We will add a Phi which allows the simplification to take place in cases where it wouldn't.
    MaybeAddPhi(block);

    // TODO(solanes): Investigate support for multiple phis in `block`. We can potentially "push
    // downwards" existing Phis into the true/false branches. For example, let's say we have another
    // Phi: Phi(x1,x2,x3,x4,x5,x6). This could turn into Phi(x1,x2) in the true branch, Phi(x3,x4)
    // in the false branch, and remain as Phi(x5,x6) in `block` (for edges that we couldn't
    // redirect). We might even be able to remove some phis altogether as they will have only one
    // value.
    if (block->HasSinglePhi() &&
        block->GetFirstPhi()->HasOnlyOneNonEnvironmentUse()) {
      HInstruction* first = block->GetFirstInstruction();
      bool has_only_phi_and_if = (last == first) && (last->InputAt(0) == block->GetFirstPhi());
      bool has_only_phi_condition_and_if =
          !has_only_phi_and_if &&
          first->IsCondition() &&
          HasInput(first->AsCondition(), block->GetFirstPhi()) &&
          (first->GetNext() == last) &&
          (last->InputAt(0) == first) &&
          first->HasOnlyOneNonEnvironmentUse();

      if (has_only_phi_and_if || has_only_phi_condition_and_if) {
        HPhi* phi = block->GetFirstPhi()->AsPhi();
        bool phi_input_is_left = (first->InputAt(0) == phi);

        // Walk over all inputs of the phis and update the control flow of
        // predecessors feeding constants to the phi.
        // Note that phi->InputCount() may change inside the loop.
        for (size_t i = 0; i < phi->InputCount();) {
          HInstruction* input = phi->InputAt(i);
          HInstruction* value_to_check = nullptr;
          if (has_only_phi_and_if) {
            if (input->IsIntConstant()) {
              value_to_check = input;
            }
          } else {
            DCHECK(has_only_phi_condition_and_if);
            if (phi_input_is_left) {
              value_to_check = Evaluate(first->AsCondition(), input, first->InputAt(1));
            } else {
              value_to_check = Evaluate(first->AsCondition(), first->InputAt(0), input);
            }
          }
          if (value_to_check == nullptr) {
            // Could not evaluate to a constant, continue iterating over the inputs.
            ++i;
          } else {
            HBasicBlock* predecessor_to_update = block->GetPredecessors()[i];
            HBasicBlock* successor_to_update = nullptr;
            if (value_to_check->AsIntConstant()->IsTrue()) {
              successor_to_update = last->AsIf()->IfTrueSuccessor();
            } else {
              DCHECK(value_to_check->AsIntConstant()->IsFalse())
                  << value_to_check->AsIntConstant()->GetValue();
              successor_to_update = last->AsIf()->IfFalseSuccessor();
            }
            predecessor_to_update->ReplaceSuccessor(block, successor_to_update);
            phi->RemoveInputAt(i);
            simplified_one_or_more_ifs = true;
            if (block->IsInLoop()) {
              rerun_dominance_and_loop_analysis = true;
            }
            // For simplicity, don't create a dead block, let the dead code elimination
            // pass deal with it.
            if (phi->InputCount() == 1) {
              break;
            }
          }
        }
        if (block->GetPredecessors().size() == 1) {
          phi->ReplaceWith(phi->InputAt(0));
          block->RemovePhi(phi);
          if (has_only_phi_condition_and_if) {
            // Evaluate here (and not wait for a constant folding pass) to open
            // more opportunities for DCE.
            HInstruction* result = first->AsCondition()->TryStaticEvaluation();
            if (result != nullptr) {
              first->ReplaceWith(result);
              block->RemoveInstruction(first);
            }
          }
        }
        if (simplified_one_or_more_ifs) {
          MaybeRecordSimplifyIf();
        }
      }
    }
  }
  // We need to re-analyze the graph in order to run DCE afterwards.
  if (simplified_one_or_more_ifs) {
    if (rerun_dominance_and_loop_analysis) {
      graph_->ClearLoopInformation();
      graph_->ClearDominanceInformation();
      graph_->BuildDominatorTree();
    } else {
      graph_->ClearDominanceInformation();
      // We have introduced critical edges, remove them.
      graph_->SimplifyCFG();
      graph_->ComputeDominanceInformation();
      graph_->ComputeTryBlockInformation();
    }
  }

  return simplified_one_or_more_ifs;
}

void HDeadCodeElimination::MaybeAddPhi(HBasicBlock* block) {
  DCHECK(block->GetLastInstruction()->IsIf());
  HIf* if_instruction = block->GetLastInstruction()->AsIf();
  if (if_instruction->InputAt(0)->IsConstant()) {
    // Constant values are handled in RemoveDeadBlocks.
    return;
  }

  if (block->GetNumberOfPredecessors() < 2u) {
    // Nothing to redirect.
    return;
  }

  if (!block->GetPhis().IsEmpty()) {
    // SimplifyIf doesn't currently work with multiple phis. Adding a phi here won't help that
    // optimization.
    return;
  }

  HBasicBlock* dominator = block->GetDominator();
  if (!dominator->EndsWithIf()) {
    return;
  }

  HInstruction* input = if_instruction->InputAt(0);
  HInstruction* dominator_input = dominator->GetLastInstruction()->AsIf()->InputAt(0);
  const bool same_input = dominator_input == input;
  if (!same_input) {
    // Try to see if the dominator has the opposite input (e.g. if(cond) and if(!cond)). If that's
    // the case, we can perform the optimization with the false and true branches reversed.
    if (!dominator_input->IsCondition() || !input->IsCondition()) {
      return;
    }

    HCondition* block_cond = input->AsCondition();
    HCondition* dominator_cond = dominator_input->AsCondition();

    if (block_cond->GetLeft() != dominator_cond->GetLeft() ||
        block_cond->GetRight() != dominator_cond->GetRight() ||
        block_cond->GetOppositeCondition() != dominator_cond->GetCondition()) {
      return;
    }
  }

  if (kIsDebugBuild) {
    // `block`'s successors should have only one predecessor. Otherwise, we have a critical edge in
    // the graph.
    for (HBasicBlock* succ : block->GetSuccessors()) {
      DCHECK_EQ(succ->GetNumberOfPredecessors(), 1u);
    }
  }

  const size_t pred_size = block->GetNumberOfPredecessors();
  HPhi* new_phi = new (graph_->GetAllocator())
      HPhi(graph_->GetAllocator(), kNoRegNumber, pred_size, DataType::Type::kInt32);

  for (size_t index = 0; index < pred_size; index++) {
    HBasicBlock* pred = block->GetPredecessors()[index];
    const bool dominated_by_true =
        dominator->GetLastInstruction()->AsIf()->IfTrueSuccessor()->Dominates(pred);
    const bool dominated_by_false =
        dominator->GetLastInstruction()->AsIf()->IfFalseSuccessor()->Dominates(pred);
    if (dominated_by_true == dominated_by_false) {
      // In this case, we can't know if we are coming from the true branch, or the false branch. It
      // happens in cases like:
      //      1 (outer if)
      //     / \
      //    2   3 (inner if)
      //    |  / \
      //    | 4  5
      //     \/  |
      //      6  |
      //       \ |
      //         7 (has the same if(cond) as 1)
      //         |
      //         8
      // `7` (which would be `block` in this example), and `6` will come from both the true path and
      // the false path of `1`. We bumped into something similar in SelectGenerator. See
      // HSelectGenerator::TryFixupDoubleDiamondPattern.
      // TODO(solanes): Figure out if we can fix up the graph into a double diamond in a generic way
      // so that DeadCodeElimination and SelectGenerator can take advantage of it.

      if (!same_input) {
        // `1` and `7` having the opposite condition is a case we are missing. We could potentially
        // add a BooleanNot instruction to be able to add the Phi, but it seems like overkill since
        // this case is not that common.
        return;
      }

      // The Phi will have `0`, `1`, and `cond` as inputs. If SimplifyIf redirects 0s and 1s, we
      // will end up with Phi(cond,...,cond) which will be replaced by `cond`. Effectively, we will
      // redirect edges that we are able to redirect and the rest will remain as before (i.e. we
      // won't have an extra Phi).
      new_phi->SetRawInputAt(index, input);
    } else {
      // Redirect to either the true branch (1), or the false branch (0).
      // Given that `dominated_by_true` is the exact opposite of `dominated_by_false`,
      // `(same_input && dominated_by_true) || (!same_input && dominated_by_false)` is equivalent to
      // `same_input == dominated_by_true`.
      new_phi->SetRawInputAt(
          index,
          same_input == dominated_by_true ? graph_->GetIntConstant(1) : graph_->GetIntConstant(0));
    }
  }

  block->AddPhi(new_phi);
  if_instruction->ReplaceInput(new_phi, 0);

  // Remove the old input now, if possible. This allows the branch redirection in SimplifyIf to
  // work without waiting for another pass of DCE.
  if (input->IsDeadAndRemovable()) {
    DCHECK(!same_input)
        << " if both blocks have the same condition, it shouldn't be dead and removable since the "
        << "dominator block's If instruction would be using that condition.";
    input->GetBlock()->RemoveInstruction(input);
  }
  MaybeRecordStat(stats_, MethodCompilationStat::kSimplifyIfAddedPhi);
}

void HDeadCodeElimination::ConnectSuccessiveBlocks() {
  // Order does not matter. Skip the entry block by starting at index 1 in reverse post order.
  for (size_t i = 1u, size = graph_->GetReversePostOrder().size(); i != size; ++i) {
    HBasicBlock* block  = graph_->GetReversePostOrder()[i];
    DCHECK(!block->IsEntryBlock());
    while (block->GetLastInstruction()->IsGoto()) {
      HBasicBlock* successor = block->GetSingleSuccessor();
      if (successor->IsExitBlock() || successor->GetPredecessors().size() != 1u) {
        break;
      }
      DCHECK_LT(i, IndexOfElement(graph_->GetReversePostOrder(), successor));
      block->MergeWith(successor);
      --size;
      DCHECK_EQ(size, graph_->GetReversePostOrder().size());
      DCHECK_EQ(block, graph_->GetReversePostOrder()[i]);
      // Reiterate on this block in case it can be merged with its new successor.
    }
  }
}

struct HDeadCodeElimination::TryBelongingInformation {
  explicit TryBelongingInformation(ScopedArenaAllocator* allocator)
      : blocks_in_try(allocator->Adapter(kArenaAllocDCE)),
        coalesced_try_entries(allocator->Adapter(kArenaAllocDCE)) {}

  // Which blocks belong in the try.
  ScopedArenaSet<HBasicBlock*> blocks_in_try;
  // Which other try entries are referencing this same try.
  ScopedArenaSet<HBasicBlock*> coalesced_try_entries;
};

bool HDeadCodeElimination::CanPerformTryRemoval(const TryBelongingInformation& try_belonging_info) {
  for (HBasicBlock* block : try_belonging_info.blocks_in_try) {
    for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
      if (it.Current()->CanThrow()) {
        return false;
      }
    }
  }
  return true;
}

void HDeadCodeElimination::DisconnectHandlersAndUpdateTryBoundary(
    HBasicBlock* block,
    /* out */ bool* any_block_in_loop) {
  if (block->IsInLoop()) {
    *any_block_in_loop = true;
  }

  // Disconnect the handlers.
  while (block->GetSuccessors().size() > 1) {
    HBasicBlock* handler = block->GetSuccessors()[1];
    DCHECK(handler->IsCatchBlock());
    block->RemoveSuccessor(handler);
    handler->RemovePredecessor(block);
    if (handler->IsInLoop()) {
      *any_block_in_loop = true;
    }
  }

  // Change TryBoundary to Goto.
  DCHECK(block->EndsWithTryBoundary());
  HInstruction* last = block->GetLastInstruction();
  block->RemoveInstruction(last);
  block->AddInstruction(new (graph_->GetAllocator()) HGoto(last->GetDexPc()));
  DCHECK_EQ(block->GetSuccessors().size(), 1u);
}

void HDeadCodeElimination::RemoveTry(HBasicBlock* try_entry,
                                     const TryBelongingInformation& try_belonging_info,
                                     /* out */ bool* any_block_in_loop) {
  // Update all try entries.
  DCHECK(try_entry->EndsWithTryBoundary());
  DCHECK(try_entry->GetLastInstruction()->AsTryBoundary()->IsEntry());
  DisconnectHandlersAndUpdateTryBoundary(try_entry, any_block_in_loop);

  for (HBasicBlock* other_try_entry : try_belonging_info.coalesced_try_entries) {
    DCHECK(other_try_entry->EndsWithTryBoundary());
    DCHECK(other_try_entry->GetLastInstruction()->AsTryBoundary()->IsEntry());
    DisconnectHandlersAndUpdateTryBoundary(other_try_entry, any_block_in_loop);
  }

  // Update the blocks in the try.
  for (HBasicBlock* block : try_belonging_info.blocks_in_try) {
    // Update the try catch information since now the try doesn't exist.
    block->SetTryCatchInformation(nullptr);
    if (block->IsInLoop()) {
      *any_block_in_loop = true;
    }

    if (block->EndsWithTryBoundary()) {
      // Try exits.
      DCHECK(!block->GetLastInstruction()->AsTryBoundary()->IsEntry());
      DisconnectHandlersAndUpdateTryBoundary(block, any_block_in_loop);

      if (block->GetSingleSuccessor()->IsExitBlock()) {
        // `block` used to be a single exit TryBoundary that got turned into a Goto. It
        // is now pointing to the exit which we don't allow. To fix it, we disconnect
        // `block` from its predecessor and RemoveDeadBlocks will remove it from the
        // graph.
        DCHECK(block->IsSingleGoto());
        HBasicBlock* predecessor = block->GetSinglePredecessor();
        predecessor->ReplaceSuccessor(block, graph_->GetExitBlock());

        if (!block->GetDominatedBlocks().empty()) {
          // Update domination tree if `block` dominates a block to keep the graph consistent.
          DCHECK_EQ(block->GetDominatedBlocks().size(), 1u);
          DCHECK_EQ(graph_->GetExitBlock()->GetDominator(), block);
          predecessor->AddDominatedBlock(graph_->GetExitBlock());
          graph_->GetExitBlock()->SetDominator(predecessor);
          block->RemoveDominatedBlock(graph_->GetExitBlock());
        }
      }
    }
  }
}

bool HDeadCodeElimination::RemoveUnneededTries() {
  if (!graph_->HasTryCatch()) {
    return false;
  }

  // Use local allocator for allocating memory.
  ScopedArenaAllocator allocator(graph_->GetArenaStack());

  // Collect which blocks are part of which try.
  std::unordered_map<HBasicBlock*, TryBelongingInformation> tries;
  for (HBasicBlock* block : graph_->GetReversePostOrderSkipEntryBlock()) {
    if (block->IsTryBlock()) {
      HBasicBlock* key = block->GetTryCatchInformation()->GetTryEntry().GetBlock();
      auto it = tries.find(key);
      if (it == tries.end()) {
        it = tries.insert({key, TryBelongingInformation(&allocator)}).first;
      }
      it->second.blocks_in_try.insert(block);
    }
  }

  // Deduplicate the tries which have different try entries but they are really the same try.
  for (auto it = tries.begin(); it != tries.end(); it++) {
    DCHECK(it->first->EndsWithTryBoundary());
    HTryBoundary* try_boundary = it->first->GetLastInstruction()->AsTryBoundary();
    for (auto other_it = next(it); other_it != tries.end(); /*other_it++ in the loop*/) {
      DCHECK(other_it->first->EndsWithTryBoundary());
      HTryBoundary* other_try_boundary = other_it->first->GetLastInstruction()->AsTryBoundary();
      if (try_boundary->HasSameExceptionHandlersAs(*other_try_boundary)) {
        // Merge the entries as they are really the same one.
        // Block merging.
        it->second.blocks_in_try.insert(other_it->second.blocks_in_try.begin(),
                                        other_it->second.blocks_in_try.end());

        // Add the coalesced try entry to update it too.
        it->second.coalesced_try_entries.insert(other_it->first);

        // Erase the other entry.
        other_it = tries.erase(other_it);
      } else {
        other_it++;
      }
    }
  }

  size_t removed_tries = 0;
  bool any_block_in_loop = false;

  // Check which tries contain throwing instructions.
  for (const auto& entry : tries) {
    if (CanPerformTryRemoval(entry.second)) {
      ++removed_tries;
      RemoveTry(entry.first, entry.second, &any_block_in_loop);
    }
  }

  if (removed_tries != 0) {
    // We want to:
    //   1) Update the dominance information
    //   2) Remove catch block subtrees, if they are now unreachable.
    // If we run the dominance recomputation without removing the code, those catch blocks will
    // not be part of the post order and won't be removed. If we don't run the dominance
    // recomputation, we risk RemoveDeadBlocks not running it and leaving the graph in an
    // inconsistent state. So, what we can do is run RemoveDeadBlocks and force a recomputation.
    // Note that we are not guaranteed to remove a catch block if we have nested try blocks:
    //
    //   try {
    //     ... nothing can throw. TryBoundary A ...
    //     try {
    //       ... can throw. TryBoundary B...
    //     } catch (Error e) {}
    //   } catch (Exception e) {}
    //
    // In the example above, we can remove the TryBoundary A but the Exception catch cannot be
    // removed as the TryBoundary B might still throw into that catch. TryBoundary A and B don't get
    // coalesced since they have different catch handlers.

    RemoveDeadBlocks(/* force_recomputation= */ true, any_block_in_loop);
    MaybeRecordStat(stats_, MethodCompilationStat::kRemovedTry, removed_tries);
    return true;
  } else {
    return false;
  }
}

bool HDeadCodeElimination::RemoveDeadBlocks(bool force_recomputation,
                                            bool force_loop_recomputation) {
  DCHECK_IMPLIES(force_loop_recomputation, force_recomputation);

  // Use local allocator for allocating memory.
  ScopedArenaAllocator allocator(graph_->GetArenaStack());

  // Classify blocks as reachable/unreachable.
  ArenaBitVector live_blocks(&allocator, graph_->GetBlocks().size(), false, kArenaAllocDCE);
  live_blocks.ClearAllBits();

  MarkReachableBlocks(graph_, &live_blocks);
  bool removed_one_or_more_blocks = false;
  bool rerun_dominance_and_loop_analysis = false;

  // Remove all dead blocks. Iterate in post order because removal needs the
  // block's chain of dominators and nested loops need to be updated from the
  // inside out.
  for (HBasicBlock* block : graph_->GetPostOrder()) {
    int id = block->GetBlockId();
    if (!live_blocks.IsBitSet(id)) {
      MaybeRecordDeadBlock(block);
      block->DisconnectAndDelete();
      removed_one_or_more_blocks = true;
      if (block->IsInLoop()) {
        rerun_dominance_and_loop_analysis = true;
      }
    }
  }

  // If we removed at least one block, we need to recompute the full
  // dominator tree and try block membership.
  if (removed_one_or_more_blocks || force_recomputation) {
    if (rerun_dominance_and_loop_analysis || force_loop_recomputation) {
      graph_->ClearLoopInformation();
      graph_->ClearDominanceInformation();
      graph_->BuildDominatorTree();
    } else {
      graph_->ClearDominanceInformation();
      graph_->ComputeDominanceInformation();
      graph_->ComputeTryBlockInformation();
    }
  }
  return removed_one_or_more_blocks;
}

void HDeadCodeElimination::RemoveDeadInstructions() {
  // Process basic blocks in post-order in the dominator tree, so that
  // a dead instruction depending on another dead instruction is removed.
  for (HBasicBlock* block : graph_->GetPostOrder()) {
    // Traverse this block's instructions in backward order and remove
    // the unused ones.
    HBackwardInstructionIterator i(block->GetInstructions());
    // Skip the first iteration, as the last instruction of a block is
    // a branching instruction.
    DCHECK(i.Current()->IsControlFlow());
    for (i.Advance(); !i.Done(); i.Advance()) {
      HInstruction* inst = i.Current();
      DCHECK(!inst->IsControlFlow());
      if (inst->IsDeadAndRemovable()) {
        block->RemoveInstruction(inst);
        MaybeRecordStat(stats_, MethodCompilationStat::kRemovedDeadInstruction);
      }
    }
  }
}

void HDeadCodeElimination::UpdateGraphFlags() {
  bool has_monitor_operations = false;
  bool has_simd = false;
  bool has_bounds_checks = false;
  bool has_always_throwing_invokes = false;

  for (HBasicBlock* block : graph_->GetReversePostOrder()) {
    for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
      HInstruction* instruction = it.Current();
      if (instruction->IsMonitorOperation()) {
        has_monitor_operations = true;
      } else if (instruction->IsVecOperation()) {
        has_simd = true;
      } else if (instruction->IsBoundsCheck()) {
        has_bounds_checks = true;
      } else if (instruction->IsInvoke() && instruction->AsInvoke()->AlwaysThrows()) {
        has_always_throwing_invokes = true;
      }
    }
  }

  graph_->SetHasMonitorOperations(has_monitor_operations);
  graph_->SetHasSIMD(has_simd);
  graph_->SetHasBoundsChecks(has_bounds_checks);
  graph_->SetHasAlwaysThrowingInvokes(has_always_throwing_invokes);
}

bool HDeadCodeElimination::Run() {
  // Do not eliminate dead blocks if the graph has irreducible loops. We could
  // support it, but that would require changes in our loop representation to handle
  // multiple entry points. We decided it was not worth the complexity.
  if (!graph_->HasIrreducibleLoops()) {
    // Simplify graph to generate more dead block patterns.
    ConnectSuccessiveBlocks();
    bool did_any_simplification = false;
    did_any_simplification |= SimplifyAlwaysThrows();
    did_any_simplification |= SimplifyIfs();
    did_any_simplification |= RemoveDeadBlocks();
    // We call RemoveDeadBlocks before RemoveUnneededTries to remove the dead blocks from the
    // previous optimizations. Otherwise, we might detect that a try has throwing instructions but
    // they are actually dead code. RemoveUnneededTryBoundary will call RemoveDeadBlocks again if
    // needed.
    did_any_simplification |= RemoveUnneededTries();
    if (did_any_simplification) {
      // Connect successive blocks created by dead branches.
      ConnectSuccessiveBlocks();
    }
  }
  SsaRedundantPhiElimination(graph_).Run();
  RemoveDeadInstructions();
  UpdateGraphFlags();
  return true;
}

}  // namespace art